TNF-α对类风湿关节炎P-糖蛋白的影响及机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景
     类风湿关节炎(Rheumatoid Arthritis, RA)是一种以关节滑膜为主要靶组织的慢性高致残性自身免疫性疾病,以进展性、侵蚀性关节炎为主要表现。RA是造成我国人群丧失劳动力和致残的主要疾病之一。目前类风湿关节炎的治疗主要包括非甾体抗炎药(non-steroidal antiinflammatory drugs, NSAIDs)、改善病情抗风湿药(disease modifying antirheumatic drug, DMARDs)及生物制剂。虽经过正规早期联合多种DMARDs药物治疗,仍有部分RA患者疗效不佳;同时随着治疗的延长,药物疗效逐渐减弱,对治疗药物无反应或低反应,出现耐药现象,导致治疗失败。耐药尤其是多药耐药(Multiple Drug Resistance, MDR)的形成是影响RA治疗效果的重要因素。作为治疗失败的原因之一,MDR在肿瘤和感染性疾病的治疗中已得以足够重视,但在RA的治疗中的研究还较少。
     跨膜转运蛋白介导的细胞内药物排出增加,导致细胞内药物降低,是MDR的重要机制。P-糖蛋白(P-glycoprotein, P-gp)是迄今为止研究的最多也是最重要的MDR相关的蛋白。它的作用底物广泛,在抗风湿药物中,目前已明确糖皮质激素、氯喹等是P-gp的底物。有研究报道难治性类风湿关节炎P-gp表达和活性增高,P-gp参与类风湿关节炎多药耐药的产生。TNF-α是RA发病机制中居中心地位的促炎症因子,参与RA复杂的细胞网络反应,其水平与疾病活动程度相关,并随疾病的缓解而降低。目前已证实TNF-α可影响多种细胞系P-gp的表达和活性,参与MDR的形成。但在RA中TNF-α是否影响P-gp的表达和活性,参与MDR的形成,国内外尚未见报道。本研究拟通过检测RA初治组、RA治疗有效组、RA难治组患者外周血单个核细胞P-gp表达和功能、TNF-αmRNA,血清TNF-α水平,对P-gp与类风湿关节炎多药耐药进行相关性研究,筛选RA耐药的分子标志,研究RA对DMARDs的耐药特征,分析P-gp与TNF-α及疾病活动的相关性。在此基础上,在体外实验中我们观察TNF-α对RA外周血单个核细胞P-gp的影响,探寻TNF-α对RA外周血单个核细胞P-gp的调控机制,从整体、细胞、胞内信号转导水平深入了解炎性因子TNF-α对RA P-gp的作用及RA多药耐药的影响。这一研究将为我们更深入了解RA多药耐药的特征及形成机制提供理论基础,并进一步探寻预防和逆转耐药的方法和途径,给类风湿关节炎的治疗带来新的突破。
     第一部分P-糖蛋白与类风湿关节炎多药耐药及TNF-α水平的相关性研究
     目的:检测正常对照组、RA初发未治组、RA治疗有效组、RA难治组患者外周血单个核细胞P-gp表达和功能、TNF-αmRNA,血清’TNF-α水平,分析P-gp与RA多药耐药及TNF-α相关性,探讨P-gp、TNF-α在RA多药耐药中的作用及其相关性。
     方法:入选RA初治组、治疗有效组、难治组患者和正常对照组各20例为研究对象。RA初治组未经任何DMARDs及生物制剂治疗。RA治疗有效组和难治组以联合甲氨蝶呤、来氟米特为基础治疗药物,未经糖皮质激素和生物制剂治疗。入组RA患者进行疾病活动度评分(DAS28)。采集入组患者血标本进行血清和外周血单个核细胞的分离。以流式细胞仪检测外周血单个核细胞的P-gp的表达,罗丹明123蓄积试验检测外周血单个核细胞的P-gp的功能,RT-PCR检测外周血单个核细胞TNF-αmRNA水平,ELISA检测血清TNF-α浓度。
     结果:
     1.外周血单个核细胞P-gp的表达和功能:在正常对照组有P-gp表达,但表达量和功能低;RA初治组、RA治疗有效组及RA难治组P-gp表达和功能均高于正常对照;RA难治组P-gp的表达和功能较RA初治组、RA治疗有效组明显增高,差异有统计学意义(P<0.01);RA初治组P-gp的表达和功能高于RA治疗有效组(P<0.05)。
     2.外周血单个核细胞TNF-αmRNA和血清TNF-α水平:正常对照组TNF-αmRNA表达水平明显低于RA各组(P<0.01)。RA各组TNF-αmRNA表达水平两两比较,差异有统计学意义(P<0.01),其中RA难治组TNF-αmRNA表达水平最高,RA治疗有效组TNF-αmRNA表达水平最低。RA各组血清TNF-α含量较正常对照组高(P<0.01),其中RA难治组明显高于RA初治组和RA治疗有效组(P<0.01),RA初治组高于RA治疗有效组(P<0.01)。
     3.RA各组疾病活动的比较:RA初治组DAS28评分为5.70士1.46,明显高于RA治疗有效组(3.78±0.79,P<0.01);RA难治组DAS28评分为7.02±0.93,明显高于其它两组(P<0.01)。
     4.PBMC P-gp的表达和功能与TNF-αmRNA、血清TNF-α水平和疾病活动度的相关性分析:PBMC P-gp的表达与PBMC TNF-αmRNA水平、血清TNF-α的水平均呈正相关(r=0.29,P<0.01;r=0.758,P<0.01);罗丹明蓄积细胞内荧光强度与PBMC TNF-αmRNA.血清TNF-α的水平呈负相关(r=-0.843,P<0.01;r=-0.863,P<0.01)。PBMC P-gp的表达与DAS28做相关性分析,显示二者呈正相关(r=0.588,,P<0.01),罗丹明蓄积细胞内荧光强度与DAS28做相关性分析,显示二者呈负相关(r=-0.702,P<0.01)。
     5.PBMC P-gp的表达和功能与病程和用药时间的相关性分析:P-gp表达和功能与RA的病程和用药时间无明显关联。
     结论:
     1.RA难治组的PBMC P-gp表达和功能明显高于与RA初治组和RA治疗有效组,P-gp表达升高功能增强与RA的难治程度有关,P-gp参与难治性RA多药耐药的形成。
     2.RA治疗有效组P-gp表达和功能较RA初治组下降,且RA各组P-gp表达和功能与疾病活动评分DAS28呈正相关,提示P-gp可作为RA治疗效果的监测指标之一。
     3.P-gp表达和功能与RA的病程和用药时间无明显关联。
     4.P-gp表达和功能与PBMC TNF-αmRNA、血清TNF-α呈正相关,TNF-α可能参与P-gp介导的RRA多药耐药的形成。
     5.P-gp的表达和活性受原发耐药、继发耐药、疾病活动内环境改变等多重因素的影响。疾病活动内环境改变可能在RA P-gp的表达和活性增强中起着重要作用。
     第二部分TNF-α对RA外周血单个核细胞P-gp表达及活性的影响
     目的:观察TNF-α对RA外周血单个核细胞后P-gp表达及活性的影响,探讨TNF-α在RA MDR形成中的作用。
     方法:入选RA初治组、治疗有效组、难治组患者和正常对照组各20例为研究对象。采集入组患者血标本并进行外周血单个核细胞的分离,以终浓度0.5ng/ml的TNF-α作用于外周血单个核细胞,置于37℃C02培养箱中饱和湿度下培养,分别在TNF-α干预前和干预后2h、6h、12h、24h后,收集细胞,流式检测PBMC P-gp的表达,罗丹明123蓄积试验检测PBMC P-gp功能。
     结果:在TNF-α干预2h后,各组P-gp的表达与干预前无明显变化,但Rh123蓄积试验荧光强度下降,即P-gp的功能增强。干预12h各组的P-gp的表达和功能都能达到最大值并维持在高水平的平台上。干预12h与干预24h P-gp的表达和功能差异无统计学意义。在6h和12h的P-gp的检测中发现,各组在起效时间和达峰时间上不一致。在正常对照组干预6h,P-gp的表达较干预前升高(P<0.05),干预12h P-gp的表达达峰。在RA初治组,在干预6h,P-gp的表达较干预前升高(P<0.05),干预12h P-gp的表达达峰。在RA治疗有效组,干预12h,P-gp的表达才较干预前升高(P<0.01)并达到峰值。在RA难治组,干预6h P-gp的表达较干预前明显升高(P<0.01)并达峰。干预12h P-gp的表达和功能达峰,比较各组P-gp的表达和功能的情况,RA各组P-gp表达和功能高于正常对照组(P<0.01);RA各组中难治组P-gp表达最高、功能最强,治疗有效组P-gp表达最低、功能最弱。
     结论:
     1.TNF-α可增强RA患者的PBMC P-gp的表达和功能,介导RA的多药耐药,参与难治性类风湿关节炎的产生。
     2.RA各组PBMC对相同浓度的TNF-α刺激上调P-gp的速度和效率不同,难治组起效和达峰所需时间短,治疗有效组起效和达峰所需时间长,这种差异性可能与细胞自身对TNF-α的内在反应性有关。
     3. TNF-α对各组PBMC P-gp的表达和功能的影响,在作用12h均可达到最大值,此后维持在高水平的平台上
     4.RA P-gp表达和活性增高的机制复杂,TNF-α的作用仅为影响P-gp的表达和活性增高的机制之一。
     第三部分TNF-α对RA外周血单个核细胞P-gp调控机制的研究
     目的:研究TNF-α信号转导途径中的MAPKs(ERK1/2、JNK和p38)及NF-κB信号转导途径在TNF-α增强RA PBMC P-gp表达和活性中的作用,探讨TNF-α对RA PBMC P-gp的调控机制。
     方法:入选RA初治组患者20例,采集入组患者血标本并进行外周血单个核细胞的分离。每份标本设6组:A组、B组、C组、D组、E组和F组。A组为空白对照组。在C、D、E、F组分别加入NF-κB、JNK、ERK1/2、p38的抑制剂PDTC、SP600125、U0126、SB202190进行预处理。处理30min后,B、C、D、E、F组均加入TNF-α,调整TNF-α终浓度为0.5ng/ml,置于37℃C02培养箱中饱和湿度下培养,12h后收集细胞,流式检测PBMC P-gp的表达,罗丹明蓄积试验检测PBMC P-gp功能。
     结果:与空白对照组相比,TNF-α组P-gp表达升高(P<0.01),Rh123荧光强度降低(P<0.01)即P-gp功能增强。用PDTC预处理抑制NF-κB活性或P600125预处理抑制JNK活性,与未预处理的TNF-α组相比,预处理组P-gp表达降低、功能减弱。用U0126预处理抑制ERK1/2活性或SB202190预处理抑制p38活性,与未预处理的TNF-α组相比,两组P-gp表达和功能差异无统计学意义
     结论:
     1. NF-κB的抑制剂PDTC和JNK抑制剂SP600125均可下调TNF-α诱导的RA PBMC P-gp的表达增加和功能增强。NF-κB和JNK信号转导通路介导TNF-a对RA PBMC P-gp的表达和功能的调控。
     2.ERK1/2抑制剂U0126和p38-MAPK抑制剂SB202190对TNF-α诱导的RA PBMC P-gp的表达增加和功能增强无影响。ERK1/2通路和p38-MAPK信号通路不直接参与TNF-α对RA PBMC P-gp的表达和功能的调控。
     3.TNF-α通过NF-κB和JNK信号转导通路的激活对RA PBMCP-gp的表达和功能进行调控。
Background:
     Rheumatoid arthritis (RA) is a chronic systemic inflammatory autoimmune disease with high rate of disability.The main manifestation is progressive and erosive arthritis. Progression of RA results in severe disability and loss of function with severe pain. The main treatments currently of RA include non-steroidal anti-inflammatory drug (NSAIDs), disease modifying antirheumatic drug (DMARDs) and biological agents. Although combination of two or three DMARDs was administered to the patients with RA in the earlier stage of the disease, some patients displayed Poor efficacy to the treatment. Moreover, as the extension of the treatment, drug efficacy gradually reduced, show low response or even no response and drug resistance occurred. Emergence of multiple drug resistance (MDR) plays an important part in therapeutic efficacy of RA. As one of the cause of treatment failure, MDR was take account in the domain of carcinoma and infective disease. The research of MDR in RA was less.
     Molecular mechanisms underlying drug resistance include the action of transmembrane transporters, which mediate the cellular extrusion of a large variety of therapeutic drugs. P-glycoprotein (P-gp) is the most important and classic transmembrane transporter up to now. Overexpressi -on of P-gp results in reduction of intracellular concentrations of substrates involving xenobiotics and various drugs such as vinca alkaloids, anthracyclines, verapamil, some DMARDs (eg, hydroxyl chloroquine, D-penicillamine, colchicines) and corticosteroids. It was reported that the expression and activity of P-gp increased in refractory RA and play a part in MDR of RA. Tumor necrosis factor-alpha (TNF-α) is proinflammatory factor which play a core role in the pathogenesis of RA. Many studies confirmed that TNF-αregulates P-gp in different cell lines and involved in MDR. It is unknown that whether TNF-αregulate P-gp and involved in MDR in RA. The main target of DMARDs is the lymphocyte, so we choose peripheral blood mononuclear cells (PBMC) as research object. In this study, we investigated the level of the expression and activity of P-gp, TNF-αand analyzed their correlation. On this basis, we also investigated the effect of TNF-αon the expression and activity of P-gp of PBMC in vitro and explored the possible mechanisms. Our study is helpful to elucidate the character of MDR in RA and provides a basis of the molecular mechanisms of MDR in RA, which can offer a new idea and strategy for the treatment of RA especially refractory RA.
     Objective:
     To investigate the expression and function of P-gp, TNF-αmRNA of PBMC and the level of TNF-αin serum in normal and RA patients (refractory, effective to treatment or untreated). To analyses correlations among multidrug resistance, TNF-αand expression and function of P-gp.
     Methods:
     20 normal control and 60 RA patients (20 untreated,20 ffective to treatment,20 refractory for each group) were selected as object of this study. The clinical activity of RA was assessed by the Disease Activity Score (DAS)28 in the selected RA patients. PBMC from the selected RA patients and normal control was analyzed by flow cytometry for P-gp expression, rhodamine123 accumulation test for P-gp function and RT-PC R for TNF-αmRNA. The serum was analyzed by ELISA for TNF-α.
     Results:
     1. The expression and function of P-gp on PBMC was lower in normal control group compared with that in RA groups. Among the groups of RA, the expression and function of P-gp in RA refractory group was higher than that in RA untreated group and RA effective to treatment group(P<0.01). The expression and function of P-gp in RA untreated group was higher than that in RA effective to treatment group(P<0.05)
     2. The level of PBMC TNF-αmRNA and serum TNF-αin RA groups were significantly higher than that of normal control group(P< 0.01). Among the groups of RA, the level of PBMC TNF-αmRNA and serum TNF-αin RA refractory group was highest, and that in RA effective to treatment group was lowest.
     3. The score of DAS28 in RA untreated group(5.70±1.46) was higher than that of RA effective to treatment group(3.78±0.79,P< 0.01). The score of DAS28 in RA refractory group(7.02±0.93) was higher than that of RA effective to treatment group and RA untreated group(P< 0.01).
     4. The expression of P-gp was positively correlated with the level of PBMC TNF-αmRNA and serum TNF-α(r=0.29, P<0.01; r=0.758, P <0.01); Intracellular fluorescence intensity of rhodamine123 was negatively correlated with the level of PBMC TNF-αmRNA and serum TNF-α(r=-0.843, P<0.01; r=-0.863, P<0.01). The expression of P-gp was positively correlated with the scores of DAS28 (r=0.588, P< 0.01). Intracellular fluorescence intensity of rhodamine123 was negatively correlated with the scores of DAS28(r=-0.702, P<0.01).
     5. No correlation was found among the expression and function of P-gp, duration of disease and time of therapy.
     Conclusions:
     1. The expression and function of P-gp on PBMC was highest in RA refractory group and lowest in RA effective to treatment group. The increase of expression and function of P-gp was associated with refractoriness of RA. P-gp played a role in MDR of RA.
     2. The expression and function of P-gp on PBMC were correlated with disease activity of RA. No correlation was found among the expressi-on and function of P-gp, duration of disease and time of therapy.
     3. The expression and function of P-gp were positively correlated with the level of PBMC TNF-αmRNA and serum TNF-α.
     4. We speculated that primary drug resistance, secondary drug resistance, the change of internal environment in disease activities involve in regulation of P-gp and development of MDR in RA. The change of internal environment in disease activities plays an important part in in regulation of P-gp.
     Objective:
     To investigate the influence of TNF-αon expression and function of P-gp on PBMC. To study the effect of TNF-αon the development of MDR in RA.
     Methods:
     20 normal control and 60 RA patients (20 untreated,20 effective to treatment,20 refractory for each group) were selected as object of this study. PBMC was isolated and treated with TNF-a (0.5ng/ml terminal concentration) in 24-well-plate at 37℃,5% CO2, and 95% relative humidity. PBMC was collected 0,2,6,12, or 24 h after TNF treatment, the 0 time being the untreated control. PBMC analyzed by flow cytometry for P-gp expression, rhodamine123 accumulation test for P-gp function.
     Results:
     Results from the experiment showed that 2h after TNF-αtreatment, the function of P-gp enhanced and the expression of P-gp did not change significantly.12h after TNF-αtreatment, the expression and function of P-gp reached it its maximum and then maintain a high level. No significant difference of the expression and function of P-gp were found between 12h and 24h after TNF-αtreatment. At the time of 6h and 12h after TNF-αtreatment, onset time and peak time of expression of P-gp were different in different groups. In normal control group and RA untreated group, onset time was 2h and peak time was 12h. In RA effective to treatment group, onset time and peak time was 12h. In refractory group onset time and peak time was 6h. We compared the expression and function of P-gp 12h after TNF-αtreatment in each group. The expression and function of P-gp in RA groups were significantly higher than that of normal control group. Among the groups of RA, the expression and function of P-gp in RA refractory group was highest, and that in RA effective to treatment group was lowest.
     Conclusions:
     1.TNF-αcan up regulate the expression and function of P-gp on PBMC in RA, and play a part in development of refractory RA and MDR in RA.
     2. The onset time and peak time of induction of P-gp expression by TNF-αwas short in in RA refractory group and was long in RA effective to treatment group. RA refractory group was more sensitive to TNF-αcompared with RA effective to treatment group.
     3. The expression and function of P-gp reached it its maximum and then maintain a high level 12h after TNF-αtreatment.
     4. The mechanisms of the expression and function of P-gp elevated in RA and RRA were complicated and the effect of TNF-αon P-gp was one of the mechanisms.
     Objective:
     To study the contribution of two signal transduction pathways of TNF-α-MAPKs(ERK1/2, JNK and p38) and NF-κB in regulation of the expression and function of P-gp on PBMC by TNF-αin RA.
     Methods:
     20 RA untreated patients were selected as object of this study. PBMC was isolated one PBMC sample was divided into 6 groups:group A, group B, group C, group D, group E and group F. Group A is blank control. Group C, D, E, F were pretreated with NF-κB, JNK, ERK1/2 and p38 inhibitor (PDTC, SP600125, U0126 and SB202190) for 30min. Then Group B, C, D, E, F were treated with TNF-α(0.5ng/ml terminal concentration) in 24-well-plate at 37℃,5% CO2, and 95% relative humidity for 12h. PBMC was collected and analyzed by flow cytometry for P-gp expression, rhodamine123 accumulation test for P-gp function.
     Results:
     The expression and function of P-gp in group B were significantly higher than that in group A. Compared with group B, the expression and function of P-gp decreased in group C and D. No significant differences of the expression and function of P-gp were found among group B, group E and group F.
     Conclusions:
     1. Inhibition of NF-κB and JNK can suppress the increased expression and function of P-gp induced by TNF-αsignal transduction pathways of NF-κB and JNK play a role in regulation of the expression and function of P-gp on PBMC by TNF-αin RA.
     2. Inhibition of ERK1/2 and p38-MAPK had no influence on the increased expression and function of P-gp induced by TNF-α. Signal transduction pathways of ERK1/2 and p38 probably did not play a role in regulation of the expression and function of P-gp on PBMC by TNF-αin RA directly.
     3. TNF-αregulated the expression and function of P-gp on PBMC through activation of NF-κB and JNK signal transduction pathways.
引文
[1]Morgan C, Lunt M, Brightwell H, et al. Contribution of patient related differences to multidrug resistance in rheumatoid arthritis. Ann Rheum Dis,2003, 62(1):15-9.
    [2]van de Putte LB, Kroot EJ, van Riel PL.Management of refractory rheumatoid arthritis. Rheumatology (Oxford),1999,38 Suppl 2:32-4.
    [3]Baguley BC.Multiple drug resistance mechanisms in cancer. Mol Biotechnol, 2010,46(3):308-16.
    [4]Teodori E, Dei S, Martelli C, et al. The functions and structure of ABC transporters:implications for the design of new inhibitors of P-gp and MRP1 to control multidrug resistance (MDR). Curr Drug Targets,2006,7(7):893-909.
    [5]Mizutani T, Masuda M, Nakai E, et al. Genuine functions of P-glycoprotein (ABCB1). Curr Drug Metab,2008,9(2):167-74.
    [6]Shitara K, Matsuo K, Ito S, et al. Effects of genetic polymorphisms in the ABCB1 gene on clinical outcomes in patients with gastric cancer treated by second-line chemotherapy. Asian Pac J Cancer Prev,2010,11(2):447-52.
    [7]Park SJ, Wu CH, Choi MR, et al. P-glycoprotein enhances TRAIL-triggered apoptosis in multidrug resistant cancer cells by interacting with the death receptor DR5. Biochem Pharmacol,2006,72(3):293-307.
    [8]Maillefert JF, Maynadie M, Tebib JG,et al. Expression of the multidrug resistance glycoprotein 170 in the peripheral blood lymphocytes of rheumatoid arthritis patients. The percentage of lymphocytes expressing glycoprotein 170 is increased in patients treated with prednisolone. Br J Rheumatol,1996, 35(5):430-5.
    [9]Borowski Lc, Lopes RP, Gonzalez TP, et al. Is steroid resistance related to multidrug resistance-1 (MDR-1)in rheumatoid arthritis? Int Immunopharmacol, 2007,7(6):836-44.
    [10]Ho EA, Piquette-Miller M.Regulation of multidrug resistance by pro-inflammatory cytokines. Curr Cancer Drug Targets,2006,6(4):295-311.
    [11]Hayeshi R, Masimirembwa C, Mukanganyama S, et al. The potential inhibitory effect of antiparasitic drugs and natural products on P-glycoprotein mediated efflux. Eur J Pharm Sci,2006,29(1):70-81.
    [12]Munic V, Kelneric Z, Mikac L, et al. Differences in assessment of macrolide interaction with human MDR1 (ABCB1, P-gp) using rhodamine-123 efflux, ATPase activity and cellular accumulation assays. Eur J Pharm Sci,2010, 41(1):86-95.
    [13]Parker RB, Yates CR, Laizure SC, et al.P-glycoprotein modulates aldosterone plasma disposition and tissue uptake. J Cardiovasc Pharmacol,2006,47(1):55-9.
    [14]Storch CH, Nikendei C, Schild S, et al. Expression and activity of P-glycoprotein (MDR1/ABCB1) in peripheral blood mononuclear cells from patients with anorexia nervosa compared with healthy controls. Int J Eat Disord,2008, 41(5):432-8.
    [15]Mantovani I, Cappellini A, Tazzari PL, et al.Caspase-dependent cleavage of 170-kDa P-glycoprotein during apoptosis of human T-lymphoblastoid CEM cells. J Cell Physiol,2006,207(3):836-44.
    [16]Llorente L, Richaud-Patin Y, Diaz-Borjon A, et al. Multidrug resistance-1 (MDR-1) in rheumatic autoimmune disorders. Part I:Increased P-glycoprotein activity in lymphocytes from rheumatoid arthritis patients might influence disease outcome. Joint Bone Spine,2000,67(1):30-9.
    [17]Petropoulos S, Gibb W, Matthews SG. Effect of glucocorticoids on regulation of placental multidrug resistance phosphoglycoprotein (P-gp) in the mouse. Placenta,2010,31(9):803-10.
    [18]Iqbal M, Gibb W, Matthews SG. Corticosteroid regulation of P-glycoprotein in the developing blood-brain barrier. Endocrinology,2011,152(3):1067-79.
    [19]Galindo-Rodriguez G, Avina-Zubieta JA, Russell AS, et al. Disappointing longterm results with disease modifying antirheumatic drugs. A practice based study. J Rheumatol,1999,26(11):2337-43.
    [20]Wolfe F.The epidemiology of drug treatment failure in rheumatoid arthritis. Baillieres Clin Rheumatol,1995,9(4):619-32.
    [21]Wolf J, Stranzl T, Filipits M, et al. Expression of resistance markers to methotrexate predicts clinical improvement in patients with rheumatoid arthritis. Ann Rheum Dis,2005,64(4):564-8.
    [22]Kis E, Nagy T, Jani M,et al. Leflunomide and its metabolite A771726 are high affinity substrates of BCRP:implications for drug resistance. Ann Rheum Dis, 2009,68(7):1201-7.
    [23]Borowski LC, Lopes RP, Gonzalez TP, et al. Is steroid resistance related to multidrug resistance-1 (MDR-1) in rheumatoid arthritis? Int Immunopharmacol, 2007,7(6):836-44.
    [24]Jorgensen C, Sun R, Rossi JF, et al. Expression of a multidrug resistance gene in human rheumatoid synovium. Rheumatol Int,1995,15(2):83-6.
    [25]Tsujimura S, Saito K, Nawata M,et al. Overcoming drug resistance induced by P-glycoprotein on lymphocytes in patients with refractory rheumatoid arthritis. Ann Rheum Dis,2008,67(3):380-8.
    [26]Farooqui AN, Ahmad SL, Mansuri FA. Efficacy of cyclosporin-A in refractory rheumatoid arthritis. J Coll Physicians Surg Pak,2004,14(3):139-41.
    [27]Johns KR, Littlejohn GO.The safety and efficacy of cyclosporine (Neoral) in rheumatoid arthritis. J Rheumatol,1999,26(10):2110-3.
    [28]Suzuki K, Saito K, Tsujimura S,et al. Tacrolimus, a calcineurin inhibitor, overcomes treatment unresponsiveness mediated by P-glycoprotein on lymphocytes in refractory rheumatoid arthritis. J Rheumatol,2010,37(3):512-20.
    [29]Honjo K, Takahashi KA, Mazda O, et al. MDR1a/1b gene silencing enhances drug sensitivity in rat fibroblast-like synoviocytes. J Gene Med,2010, 12(2):219-27.
    [30]Kock K, Grube M, Jedlitschky G,et al. Expression of adenosine triphosphate-binding cassette (ABC) drug transporters in peripheral blood cells: relevance for physiology and pharmacotherapy. Clin Pharmacokinet,2007, 46(6):449-70.
    [31]Baguley BC.Multiple drug resistance mechanisms in cancer. Mol Biotechnol, 2010,46(3):308-16.
    [32]Shtil AA, Azare J.Redundancy of biological regulation as the basis of emergence of multidrug resistance,2005,246:1-29.
    [33]Chekhun VF, Kulik GI, Yurchenko OV, et al. Role of DNA hypomethylation in the development of the resistance to doxorubicin in human MCF-7 breast adenocarcinoma cells. Cancer Lett,2006,231(1):87-93.
    [34]Drozdzik M, Rudas T, Pawlik A, et al. The effect of 3435C>T MDR1 gene polymorphism on rheumatoid arthritis treatment with disease-modifying antirheumatic drugs. Eur J Clin Pharmacol,2006,62(11):933-7.
    [35]马晓黎,邢辉,马丁.肿瘤微环境介导获得性耐药的研究进展.癌症,2007,26(8):923-926
    [36]朱虹,陈孝平,罗顺峰等ERK/MAPK通路参与肝癌产生多药耐药的胞内信号传导.中华外科杂志,2007,45(13):917-920
    [37]王琳琳,刘晓东,王靖元.抗癫癎药物诱导对血脑屏障上P-糖蛋白功能与表达的影响.徐州医学院学报,2010,30(4):230-233
    [38]Steiner G, Tohidast Akrad M, Witzmann G. Cytokine production by synovial T cells in rheumatoid arthritis. Rheumatol (Oxford),1999,38 (3):202-213.
    [39]李景怡,方勇飞,邹丽云Th1/Th2细胞因子谱在类风湿关节炎患者外周血和关节积液中的表达及意义.第三军医大学学报,2010,32(18):1921-1924
    [40]Kobayashi T, Murasawa A, Komatsu Y, et al. Serum cytokine and periodontal profiles in relation to disease activity of rheumatoid arthritis in Japanese adults. J Periodontol,2010,81(5):650-7.
    [41]Schulze-Koops H, Davis LS, Kavanaugh AF, et al. Elevated cytokine messenger RNA levels in the peripheral blood of patients with rheumatoid arthritis suggest different degrees of myeloid cell activation. Arthritis Rheum,1997, 40(4):639-47.
    [42]Okamoto T. The epigenetic alteration of synovial cell gene expression in rheumatoid arthritis and the roles of nuclear factor kappaB and Notch signaling pathways. Mod Rheumatol,2005,15(2):79-86.
    [43]Reid A, Brady A, Blake C, et al. Randomised controlled trial examining the effect of exercise in people with rheumatoid arthritis taking anti-TNFa therapy medication. BMC Musculoskelet Disord,2011,12(11):1-10
    [44]Vander Cruyssen B, Van Looy S, Wyns B, et al. Four-year follow-up of infliximab therapy in rheumatoid arthritis patients with long-standing refractory disease:attrition and long-term evolution of disease activity. Arthritis Res Ther, 2006,8(4):R112.
    [45]Moreland LW, Weinblatt ME, Keystone EC, et al. Etanercept treatment in adults with established rheumatoid arthritis:7 years of clinical experience. J Rheumatol, 2006,33(5):854-61.
    [46]Tsujimura S, Saito K, Nakayamada S, et al. Etanercept overcomes P-glycoprotein-induced drug resistance in lymphocytes of patients with intractable rheumatoid arthritis. Mod Rheumatol,2010,20(2):139-46.
    [47]Westra J, Kuldo JM, van Rijswijk MH, et al. Chemokine production and E-selectin expression in activated endothelial cells are inhibited by p38 MAPK (mitogen activated protein kinase) inhibitor RWJ 67657. Int Immunopharmacol, 2005,5(7-8):1259-69.
    [48]Bradley J R. TNF-mediated inflammatory disease. J Pathol,2008,214(2):149-60.
    [49]Li H, Lin X. Positive and negative signaling components involved in TNF-α-induced NF-κB activation. Cytokine,2008,41 (1):1-8.
    [50]Deleuran BW, Chu CQ, Field M, et al. Localization of tumor necrosis factor receptors in the synovial tissue and cartilage-pannus junction in patients with rheumatoid arthritis. Implications for local actions of tumor necrosis factor alpha. Arthritis Rheum,1992,35(10):1170-8.
    [51]Youn J, Kim HY, Park JH, et al. Regulation of TNF-alpha-mediated hyperplasia through TNF receptors, TRAFs, and NF-kappaB in synoviocytes obtained from patients with rheumatoid arthritis. Immunol Lett,2002,83(2):85-93.
    [52]H.Matsuno, K.Yudoh, R.Katayama, et al. The role of TNF-α in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA):a study using a human RA/SCID mouse chimera. J Rheumatology,2002,41(3):329-337.
    [53]G O', D Ireland, S Bord, et al. Joint erosion in rheumatoid arthritis:interactions between tumour necrosis factor α, interleukin 1, and receptor activator of nuclear factor κB ligand (RANKL) regulate osteoclasts. Ann Rheum Dis,2004,63(4): 354-359
    [54]Hennessy M, Spiers JP.A primer on the mechanics of P-glycoprotein the multidrug transporter. Pharmacol Res,2007,55(1):1-15.
    [55]Sukhai M, Yong A, Kalitsky J, et al. Inflammation and interleukin-6 mediate reductions in the hepatic expression and transcription of the mdrla and mdrlb Genes. Mol Cell Biol Res Commun,2000,4(4):248-256.
    [56]AI-Bataineh MM, van der Merwe D, Schultz BD, Gehring R.Tumor necrosis factor alpha increases P-glycoprotein expression in a BME-UV in vitro model of mammary epithelial cells. Biopharm Drug Dispos,2010 Oct 22. [Epub ahead of print]
    [57]Ronaldson PT, Ashraf T, Bendayan R. Regulation of multidrug resistance protein 1 by tumor necrosis factor alpha in cultured glial cells:involvement of nuclear factor-kappaB and c-Jun N-terminal kinase signaling pathways. Mol Pharmacol, 2010,77(4):644-59.
    [58]Yu C, Kastin AJ, Tu H, et al.TNF activates P-glycoprotein in cerebral microvascular endothelial cells. Cell Physiol Biochem,2007,20(6):853-8.
    [59]Ros JE, Schuetz JD, Geuken M, et al. Induction of Mdrlb expression by tumor necrosis factor-alpha in rat liver cells is independent of p53 but requires NF-kappaB signaling. Hepatology,2001,33(6):1425-31.
    [60]Ros JE, Schuetz JD, Geuken M, et al. Regulation of P-glycoprotein in renal proximal tubule epithelial cells by LPS and TNF-alpha. J Biomed Biotechnol, 2010,2010:525180.
    [61]Bauer B, Hartz AM, Miller DS.Tumor necrosis factor alpha and endothelin-1 increase P-glycoprotein expression and transport activity at the blood-brain barrier. Mol Pharmacol,2007,71(3):667-75.
    [62]Stein U, Walther W, Shoemaker RH.Modulation of mdrl expression by cytokines in human colon carcinoma cells:an approach for reversal of multidrug resistance. Br J Cancer,1996,74(9):1384-91.
    [63]Walther W, Stein U, Pfeil D. Gene transfer of human TNF alpha into glioblastoma cells permits modulation of mdrl expression and potentiation of chemosensitivity. Int J Cancer,1995,61(6):832-9.
    [64]Ding L, Chen XP, Zhang ZW, et al.Synergistic effect of bromocriptine and tumor necrosis factor-alpha on reversing hepatocellular carcinoma multidrug resistance in nude mouse MDR1 model of liver neoplasm. World J Gastroenterol,2005, 11(36):5621-6.
    [65]冯凤芝,向阳,张卫光等.人肿瘤坏死因-α基因转导绒癌耐药细胞系体外耐药逆转的研究.肿瘤,2003,23(4):283-286
    [66]Baker EK, Johnstone RW, Zalcberg JR, et al. Epigenetic changes to the MDR1 locus in response to chemotherapeutic drugs.Oncogene,2005,24(54):8061-75.
    [67]Shareef MM, Brown B, Shajahan S,et al. Lack of P-glycoprotein expression by low-dose fractionated radiation results from loss of nuclear factor-kappaB and NF-Y activation in oral carcinoma cells. Mol Cancer Res,2008,6(1):89-98.
    [68]Coulombe P, Meloche S.Atypical mitogen-activated protein kinases:structure, regulation and functions. Biochim Biophys Acta,2007,1773(8):1376-87.
    [69]Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta,2010,1802(4):396-405.
    [70]Meyer LH, Pap T. MAPK signalling in rheumatoid joint destruction:can we unravel the puzzle? Arthritis Res Ther,2005,7(5):177-8.
    [71]Ohshima S, Mima T, Sasai M,et al. Tumor necrosis factor alpha (TNF-alpha) interferes with Fas-mediated apoptotic cell death on rheumatoid arthritis (RA) synovial cells:a possible mechanism of rheumatoid synovial hyperplasia and a clinical benefit of anti-TNF-alpha therapy for RA. Cytokine,2000,12(3):281-8.
    [72]Zhang LL, Wei W, Wang QT, et al. Cross-talk between MEK1/2-ERK1/2 signaling and G protein-couple signaling in synoviocytes of collagen-induced arthritis rats. Chin Med J (Engl),2008,121(22):2278-83.
    [73]Ling L, Cao Z, and Goeddel DV (1998) NF-κB-inducing kinase activates IKKa by phosphorylation of Ser-176. Proc Natl Acad Sci USA,1998,95(7):3792-3797
    [74]Maria-Jose Lallena, Maria T. Diaz-Meco, Gary Bren, et al. Activation of IκB Kinase β by Protein Kinase C Isoforms.Mol. Cell Biol,1999,19(3):2180-2188
    [75]Okamoto H, Cujec TP, Yamanaka H, et al. Molecular aspects of rheumatoid arthritis:role of transcription factors. FEBS J,2008,275(18):4463-70.
    [76]Makarov SS. NF-kappa B in rheumatoid arthritis:a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res,2001, 3(4):200-6.
    [77]Okamoto T. The epigenetic alteration of synovial cell gene expression in rheumatoid arthritis and the roles of nuclear factor kappaB and Notch signaling pathways.Mod Rheumatol,2005,15(2):79-86.
    [78]Pobezinskaya YL, Kim YS, Choksi S, et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat Immunol,2008,9(9):1047-54.
    [79]Shakibaei M, Sung B, Sethi G, et al. Aggarwal BB.TNF-alpha-induced mitochondrial alterations in human T cells requires FADD and caspase-8 activation but not RIP and caspase-3 activation. Antioxid Redox Signal,2010, 13(6):821-31.
    [80]Raghav SK, Gupta B, Agrawal C, et al. Expression of TNF-alpha and related signaling molecules in the peripheral blood mononuclear cells of rheumatoid arthritis patients. Mediators Inflamm,2006,2006(3):12682.
    [81]Bentires-Alj M, Barbu V, Fillet M, et al. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene,2003,22(1): 90-7.
    [82]Zhou G, Kuo MT. NF-kappaB-mediated induction of mdrlb expression by insulin in rat hepatoma cells. J Biol Chem,1997,272(24):15174-83.
    [83]Thevenod F, Friedmann JM, Katsen AD, et al. Up-regulation of multidrug resistance P-glycoprotein via nuclear factor-kappaB activation protects kidney proximal tubule cells from cadmium-and reactive oxygen species-induced apoptosis. J Biol Chem,2000,275(3):1887-96.
    [84]Bentires-Alj M, Barbu V, Fillet M, et al. NF-kappaB transcription factor induces drug resistance through MDR1 expression in cancer cells. Oncogene,2003, 22(1):90-7.
    [85]Fujita T, Washio K, Takabatake D,et al. Proteasome inhibitors can alter the signaling pathways and attenuate the P-glycoprotein-mediated multidrug resistance. Int J Cancer,2005,117(4):670-82.
    [86]Kao JJ.The NF-kappaB inhibitor pyrrolidine dithiocarbamate blocks IL-lbeta induced hyaluronan synthase 1 (HAS1) mRNA transcription, pointing at NF-kappaB dependence of the gene HAS1. Exp Gerontol,2006,41(6):641-7.
    [87]Gagliardo R, Chanez P, Mathieu M, et al. Persistent activation of nuclear factor-kappaB signaling pathway in severe uncontrolled asthma. Am J Respir Crit Care Med,2003,68(10):1190-8.
    [88]Hellmuth M, Wetzler C, Nold M, et al.Expression of interleukin-8, heme oxygenase-1 and vascular endothelial growth factor in DLD-1 colon carcinoma cells exposed to pyrrolidine dithiocarbamate. Carcinogenesis,2002, 23(8):1273-9.
    [89]Kim KW, Cho ML, Park MK, et al. Increased interleukin-17 production via a phosphoinositide 3-kinase/Akt and nuclear factor kappaB-dependent pathway in patients with rheumatoid arthritis. Arthritis Res Ther,2005,7(1):R139-48.
    [90]Mealey KL, Bentjen SA. Sequence and structural analysis of the presumed downstream promoter of the canine mdrl gene. Vet Comp Oncol,2003, 1(1):30-5.
    [91]Chen B, Jin F, Lu P, et al. Effect of mitogen-activated protein kinase signal transduction pathway on multidrug resistance induced by vincristine in gastric cancer cell line MGC803. World J Gastroenterol,2004,10(6):795-799.
    [92]Katayama K, Yoshioka S, Tsukahara S, et al.Inhibition of the mitogen-activated protein kinase pathway results in the down regulation of P-glycoprotein. Mol Cancer Ther,2007,6(7):2092-2102.
    [93]谢德荣,郭双双,杨琼等.ERK通路在胰腺癌细胞株SW1990吉西他滨化疗耐药中的作用.中国肿瘤临床,2008,35(14):829-832
    [94]Zhou J, Liu M, Aneja R, et al. Reversal of P-glycoprotein-mediated multidrug resistance in cancer cells by the c-Jun NH2-terminal kinase. Cancer Res,2006, 66(1):445-52.
    [95]Bark H, Choi CH. PSC833, cyclosporine analogue, downregulates MDR1 expression by activating JNK/c-Jun/AP-1 and suppressing NF-kappaB. Cancer Chemother Pharmacol,2010,65(6):1131-6.
    [96]Comerford KM, Cummins EP, Taylor CT.c-Jun NH2-terminal kinase activation contributes to hypoxia-inducible factor 1 alpha-dependent P-glycoprotein expression in hypoxia. Cancer Res,2004,64(24):9057-61.
    [97]Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta,2010,1802(4):396-405.
    [98]Guo X, Ma N, Wang J,et al. Increased p38-MAPK is responsible for chemotherapy resistance in human gastric cancer cells. BMC Cancer,2008, 18(8):375.
    [99]陈英辉,祖衡兵,李欢庆,等.p38蛋白激酶对耐药K562细胞株上P-糖蛋白表达的影响.中国临床神经科学,2009,17(4):346-350
    [100]Barnes PJ, Adcock IM. Glucocorticoid resistance in inflammatory diseases. Lancet,2009,373(9678):1905-17.
    [101]Luo SF, Fang RY, Hsieh HL, et al. Involvement of MAPKs and NF-kappaB in tumor necrosis factor alpha-induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. Arthritis Rheum, 2010,62(1):105-16
    [102]Johansson P, Jansson A, Ruetschi U,et al. The p38 signaling pathway upregulates expression of the Epstein-Barr virus LMP1 oncogene. J Virol,2010, 84(6):2787-97.
    [103]Sharma A, Guan H, Yang K.The p38 mitogen-activated protein kinase regulates 11beta-hydroxysteroid dehydrogenase type 2 (11beta-HSD2) expression in human trophoblast cells through modulation of llbeta-HSD2 messenger ribonucleic acid stability. Endocrinology,2009,150(9):4278-86.
    [1]Morgan C, Lunt M, Brightwell H, et al. Contribution of patient related differences to multidrug resistance in rheumatoid arthritis. Ann Rheum Dis,2003,62(1):15-9.
    [2]Rubbert-Roth A, Finckh A.Treatment options in patients with rheumatoid arthritis failing initial TNF inhibitor therapy:a critical review. Arthritis Res Ther, 2009,11 Suppl 1:S1.
    [3]van de Putte LB, Kroot EJ, van Riel PL.Management of refractory rheumatoid arthritis. Rheumatology (Oxford),1999,38 Suppl 2:32-4.
    [4]Llorente L, Richaud-Patin Y, Diaz-Borjon A, et al. Multidrug resistance-1 (MDR-1) in rheumatic autoimmune disorders. Part I:Increased P-glycoprotein activity in lymphocytes from rheumatoid arthritis patients might influence disease outcome. Joint Bone Spine,2000,67(1):30-9.
    [5]Galindo-Rodriguez G, Avina-Zubieta JA, Russell AS, et al.Disappointing longterm results with disease modifying antirheumatic drugs. A practice based study. J Rheumatol,1999,26(11):2337-43.
    [6]Wolfe F.The epidemiology of drug treatment failure in rheumatoid arthritis. Baillieres Clin Rheumatol,1995,9(4):619-32.
    [7]Baguley BC. Multiple drug resistance mechanisms in cancer. Mol Biotechnol, 2010,46(3):308-16.
    [8]Teodori E, Dei S, Martelli C, Scapecchi S, et al. The functions and structure of ABC transporters:implications for the design of new inhibitors of Pgp and MRP1 to control multidrug resistance (MDR). Curr Drug Targets,2006,7(7): 893-909.
    [9]Parker RB, Yates CR, Laizure SC, et al. P-glycoprotein modulates aldosterone plasma disposition and tissue uptake.J Cardiovasc Pharmacol,2006,47 (1): 55-9.
    [10]Nakamura T, Okamura N, Yagi M, et al. Effects of ABCB1 3435C>T genotype on serum levels of cortisol and aldosterone in women with normal menstrual cycles. Genet Mol Res,2009,8(2):397-403.
    [11]Park SJ, Wu CH, Choi MR, et al. P-glycoprotein enhances TRAIL-triggered apoptosis in multidrug resistant cancer cells by interacting with the death receptor DR5. Biochem Pharmacol,2006,72(3):293-307.
    [12]Mantovani I, Cappellini A, Tazzari PL, et al. Caspase-dependent cleavage of 170-kDa P-glycoprotein during apoptosis of human T-lymphoblastoid CEM cells. J Cell Physiol,2006,207(3):836-44.
    [13]Maillefert JF, Maynadie M, Tebib JG,et al. Expression of the multidrug resistance glycoprotein 170 in the peripheral blood lymphocytes of rheumatoid arthritis patients. The percentage of lymphocytes expressing glycoprotein 170 is increased in patients treated with prednisolone. Br J Rheumatol,1996, 35(5):430-5.
    [14]Borowski Lc, Lopes RP, Gonzalez TP, et al. Is steroid resistance related to multidrug resistance-I(MDR-1)in rheumatoid arthritis? Int Immunopharmacol, 2007,7(6):836-44.
    [15]Jorgensen C, Sun R, Rossi JF, et al.Expression of a multidrug resistance gene in human rheumatoid synovium. Rheumatol Int.1995;15(2):83-6.
    [16]Tsujimura S, Saito K, Nawata M,et al. Overcoming drug resistance induced by P-glycoprotein on lymphocytes in patients with refractory rheumatoid arthritis. Ann Rheum Dis,2008,67(3):380-8.
    [17]Farooqui AN, Ahmad SL, Mansuri FA. Efficacy of cyclosporin-A in refractory rheumatoid arthritis. J Coll Physicians Surg Pak,2004,14(3):139-41.
    [18]Johns KR, Littlejohn GO. The safety and efficacy of cyclosporine (Neoral) in rheumatoid arthritis. J Rheumatol,1999,26(10):2110-3.
    [19]Suzuki K, Saito K, Tsujimura S,et al. Tacrolimus, a calcineurin inhibitor, overcomes treatment unresponsiveness mediated by P-glycoprotein on lymphocytes in refractory rheumatoid arthritis. J Rheumatol,2010,37(3): 512-20.
    [20]Honjo K, Takahashi KA, Mazda O, et al. MDRla/lb gene silencing enhances drug sensitivity in rat fibroblast-like synoviocytes.J Gene Med,2010, 12(2):219-27.
    [21]Pawlik A, Wrzesniewska J, Fiedorowicz-Fabrycy I, et al. The MDR1 3435 polymorphism in patients with rheumatoid arthritis. Int J Clin Pharmacol Ther, 2004,42(9):496-503.
    [22]Drozdzik M, Rudas T, Pawlik A, et al. The effect of 3435C>T MDR1 gene polymorphism on rheumatoid arthritis treatment with disease-modifying antirheumatic drugs. Eur J Clin Pharmacol,2006,62(11):933-7.
    [23]蔡静,徐建华,廖卓君等.类风湿关节炎患者转运蛋白基因多态性与甲氨蝶呤疗效及不良反应的相关性研究.安徽医药,2010,14(11):1332-1336
    [24]Hoffmann U, Kroemer HK. The ABC transporters MDR1 and MRP2:multiple functions in disposition of xenobiotics and drug resistance. Drug Metab Rev, 2004,36(3-4):669-701.
    [25]Perez-Tomas R. Multidrug resistance:retrospect and prospects in anti-cancer drug treatment. Curr Med Chem,2006,13(16):1859-76.
    [26]Doherty MM, Michael M. Tumoral drug metabolism:perspectives and therapeutic implications. Curr Drug Metab,2003,4(2):131-49.
    [27]Deeley RG, Cole SP.Substrate recognition and transport by multidrug resistance protein 1 (ABCC1). FEBS Lett,2006,580(4):1103-11.
    [28]Kruh GD, Belinsky MG. The MRP family of drug efflux pumps. Oncogene, 2003,22 (47):7537-7552
    [29]于冬青,易永芬.多药耐药相关蛋白和肺耐药蛋白在胃癌组织中的表达.实用癌症杂志,2003,18(1):4749.
    [30]M. J. Flens, G. J. Zaman, P. van der Valk, et al. Tissue distribution of the multidrug resistance protein. Am J Pathol,1996,148(4):1237-1247.
    [31]黄美兰.多药耐药相关蛋白基因及其在肿瘤耐药中的作用.胃肠病学,2005,10(4):246-249.
    [32]Zeng H, Chen Z S, Belinsky M G, et al. Transport of methotrexate (MTX) and folates by multidrug resistance protein (MRP) 3 and MRP1:Effect of polyglutamylation on MTX transport. Cancer Res,2001,61(19):7225-7232.
    [33]Hooijberg J H, Broxtennan H J, Kool M, et al. Anti-folate resistance mediated by the multidrug resistance protein MRP1 and MRP2. Cancer Res,1999,59(11): 2532-2535.
    [34]Sampath J, Adachi M, Hatse S, et al.. Role of MRP4 and MRP5 in biology and Chemotherapy. AAPS Pharm Sci,2002,4 (3):214-222.
    [35]张春玉,冯源熙,李璞等.介导多药耐药的ABC转运蛋白超家族与MTX耐药性的关系研究.遗传,2006,28(10):1201-1205,
    [36]Wolf J, Stranzl T, Filipits M, et al. Expression of resistance markers to methotrexate predicts clinical improvement in patients with rheumatoid arthritis. Ann Rheum Dis,2005,64(4):564-8.
    [37]Wielinga PR, Reid G, Challa EE, et al. Thiopurine metabolism and identification of the thiopurine metabolites transported by MRP4 and MRP5 overexpressed in human embryonic kidney cells. Mol Pharmacol,2002, 62:1321-31.
    [38]Ross DD, Yang W, Abruzzo LV, et al. Atypical multidrug resistance:breast cancer resistance protein messenger RNA expression in mitoxantrone-selected cell lines. J Natl Cancer Inst,1999,91 (5):429-433
    [39]P.A. Fetsch, A. Abati, T. Litman, et al. Localization of the ABCG2 mitoxantrone resistance-associated protein in normal tissues. Cancer Lett,2005, 235 (1):84-92
    [40]Doyle A, Ross DD. Multidrug resistance mediated by the breast cancer resistance protein BCRP(ABCG2). Oncogene,2003,22(47):7340-58.
    [41]Kis E, Nagy T, Jani M, et al. Leflunomide and its metabolite A771726 are high affinity substrates of BCRP:implications for drug resistance. Ann Rheum Dis, 2009,68(7):1201-7.
    [42]Assaraf YG. The role of multidrug resistance efflux transporters in antifolate resistance and folate homeostasis. Drug Resist Update,2006,9(4-5):227-46.
    [43]Wielinga P, Hooijberg JH, Gunnarsdottir S, et al. The human multidrug resistance protein MRP5 transports folates and can mediate cellular resistance against antifolates. Cancer Res,2005,65(10):4425-30.
    [44]van der Heijden JW, Oerlemans R, Tak PP. Involvement of breast cancer resistance protein expression on rheumatoid arthritis synovial tissue macrophages in resistance to methotrexate and leflunomide. Arthritis Rheum, 2009,60(3):669-77.
    [45]Perez-Tomas R. Multidrug resistance:retrospect and prospects in anti-cancer drug treatment. Curr Med Chem,2006,13(16):1859-76.
    [1]Apostolaki M, Armaka M, Victoratos P, et al. Cellular mechanisms of TNF function in models of inflammation and autoimmunity. Curr Dir Autoimmun,2010, 11:1-26.
    [2]李景怡,方勇飞,邹丽云Thl/Th2细胞因子谱在类风湿关节炎患者外周血和关节积液中的表达及意义.第三军医大学学报,2010,32(18):1922-1924
    [3]Steiner G, Tohidast2Akrad M, Witzmann G. Cytokine production by synovial T cells in rheumatoid art hritis [J]. Rheumatol (Ox ford),1999,38 (3):202 213.
    [4]Bingham CO 3rd.The pathogenesis of rheumatoid arthritis:pivotal cytokines involved in bone degradation and inflammation. J Rheumatol Suppl,2002, 65:3-9.
    [5]Aggarwal BB.Tumour necrosis factors receptor associated signalling molecules and their role in activation of apoptosis, JNK and NF-kappaB. Ann Rheum Dis, 2000,59 Suppl 1:16-16.
    [6]Grayfer L, Belosevic M. Molecular characterization of tumor necrosis factor receptors 1 and 2 of the goldfish (Carassius aurutus L.).Mol Immunol,2009, 46(11-12):2190-9.
    [7]Xu J, Chakrabarti AK, Tan JL, et al. Essential role of the TNF-TNFR2 cognate interaction in mouse dendritic cell-natural killer cell crosstalk. Blood,2007, 109(8):3333-41.
    [8]Cusson N, Oikemus S, Kilpatrick ED, et al. The death domain kinase RIP protects thymocytes from tumor necrosis factor receptor type 2-induced cell death. J Exp Med,2002,196(1):15-26.
    [9]Patial S, Parameswaran N. Tumor Necrosis Factor-α Signaling in Macrophages. Crit Rev Eukaryot Gene Expr,2010,20(2):87-103.
    [10]Rossol M, Meusch U, Pierer M, et al. Interaction between transmembrane TNF and TNFR1/2 mediates the activation of monocytes by contact with T cells. J Immunol,2007,179(6):4239-48.
    [11]Grell M, Douni E, Wajant H, et al. The transmembrane form of tumor necrosis factor is the prime activating ligand of the 80 kDa tumor necrosis factor receptor. Cell,1995,83 (5):793-802.
    [12]Idriss HT, Naismith JH. TNF alpha and the TNF receptor superfamily: structure-function relationship(s). Microsc Res Tech,2000,50(3):184-95.
    [13]Paul AT, Gohil VM, Bhutani KK. Modulating TNF-asignaling with natural products. Drug Discov Today,2006,11 (15/16):725-732.
    [14]Bradley J R. TNF-mediated inflammatory disease. J Pathol,2008, 214(2):149-60.
    [15]Clark J,Vagenas P, Panesar M. What does tumour necrosis factor excess do to t he immune system long term?. Ann Rheum Dis,2005,64 (Suppl 4):70-76.
    [16]Chen PTC, Xu XG, Liu XS, et al. Characterisation of monoclonal antibodies to the TNF and TNF receptor families. Cell Immunol,2005,236 (1-2):78-85.
    [17]Westra J, Kuldo JM, van Rijswijk MH, et al.Chemokine production and E-selectin expression in activated endothelial cells are inhibited by p38 MAPK (mitogen activated protein kinase) inhibitor RWJ 67657'. Int Immunopharmacol, 2005,5(7-8):1259-69.
    [18]Li H, Lin X. Positive and negative signaling componentsinvolved in TNF-α-induced NF-κB activation. Cytokine,2008,41 (1):1-8.
    [19]Deleuran BW, Chu CQ, Field M, et al. Localization of tumor necrosis factor receptors in the synovial tissue and cartilage-pannus junction in patients with rheumatoid arthritis. Implications for local actions of tumor necrosis factor alpha. Arthritis Rheum,1992,35(10):1170-8.
    [20]Youn J, Kim HY, Park JH, et al. Regulation of TNF-alpha-mediated hyperplasia through TNF receptors, TRAFs, and NF-kappaB in synoviocytes obtained from patients with rheumatoid arthritis. Immunol Lett,2002,83(2):85-93.
    [21]H.Matsuno, K.Yudoh, R. Katayama, et al. The role of TNF-α in the pathogenesis of inflammation and joint destruction in rheumatoid arthritis (RA): a study using a human RA/SCID mouse chimera.J Rheumatology,2002, 41(3):329-337.
    [22]G O', D Ireland, S Bord, et al. Joint erosion in rheumatoid arthritis:interactions between tumour necrosis factor a, interleukin 1, and receptor activator of nuclear factor κB ligand (RANKL) regulate osteoclasts. Ann Rheum Dis,2004, 63(4):354-359
    [23]Perlman H, Nguyen N, Liu H, et al. Rheumatoid arthritis synovial fluid macrophages express decreased tumor necrosis factor-related apoptosis-inducing ligand R2 and increased decoy receptor tumor necrosis factor-related apoptosis-inducing ligand R3. Arthritis Rheum,2003, 48(11):3096-101.
    [24]Kim EK, Choi EJ. Pathological roles of MAPK signaling pathways in human diseases. Biochim Biophys Acta,2010,1802(4):396-405.
    [25]Coulombe P, Meloche S. Atypical mitogen-activated protein kinases:structure, regulation and functions. Biochim Biophys Acta,2007,1773(8):1376-87.
    [26]Meyer LH, Pap T.MAPK signalling in rheumatoid joint destruction:can we unravel the puzzle?. Arthritis Res Ther,2005,7(5):177-8.
    [27]Zhang LL, Wei W, Wang QT, et al. Cross-talk between MEK1/2-ERK1/2 signaling and G protein-couple signaling in synoviocytes of collagen-induced arthritis rats. Chin Med J (Engl),2008,121 (22):2278-83.
    [28]Ohshima S, Mima T, Sasai M, et al. Tumour necrosis factor alpha (TNF-alpha) interferes with Fas-mediated apoptotic cell death on rheumatoid arthritis (RA) synovial cells:a possible mechanism of rheumatoid synovial hyperplasia and a clinical benefit of anti-TNF-alpha therapy for RA. Cytokine,2000,12(3): 281-8.
    [29]Sundaram MV.RTK/Ras/MAPK signaling. WormBook,2006,11:1-19.
    [30]孙铁铮,吕厚山,药立波等TNF-α诱导类风湿关节炎滑膜成纤维细胞MAPKs通路的活化.临床免疫学,2000,16(6)329-332
    [31]Kunisch E, Gandesiri M, Fuhrmann R. Predominant activation of MAP kinases and pro-destructive/pro-inflammatory features by TNF alpha in early-passage synovial fibroblasts via TNF receptor-1:failure of p38 inhibition to suppress matrix metalloproteinase-1 in rheumatoid arthritis. Ann Rheum Dis,2007, 66(8):1043-51.
    [32]Barchow sky A, Frleta D, Vincen tiM P. Integration of the NF-kappa B and mitogen activated proteinkinase/AP-1 pathways at the collagenase-1 promoter: divergence of IL-1 and TNF dependent signal transductionin rabbit primary synovial fibroblasts. Cytokine,2000,12(10):1469-79.
    [33]Huang G, Shi LZ, Chi H. Regulation of JNK and p38 MAPK in the immune system:signal integration, propagation and termination. Cytokine,2009, 48(3):161-9.
    [34]Sundarrajan M, Boyle DL, Chabaud-Riou M, et al. Expression of the MAPK kinases MKK-4 and MKK-7 in rheumatoid arthritis and their role as key regulators of JNK. Arthritis Rheum,2003,48(9):2450-60.
    [35]NishikawaM, Myoui A, Tomita T, et al. Prevention of the onset and p rogression of collagen-induced arthritis in rats by the potent p38 mitogen-activated p r otein kinase inhibitor FR167653. Arthritis Rheum,2003,48 (9): 2670-81.
    [36]Papadukis KA, Targan S R. Role of cytokines in the pathogenesisof inflammat or bowel disease. Annu Rev M ed,2002,51(1):289-99.
    [37]Bauer I, Al Sarraj J, Vinson C, et al. Interleukin-1beta and tetradecanoylphorbol acetate-induced biosynthesis of tumor necrosis factor alpha in human hepatoma cells involves the transcription factors ATF2 and c-Jun and stress-activated protein kinases. J Cell Biochem,2007,100(1):242-55.
    [38]Sugden P, Clerk A. Stress-responsive mitogen-activated protein kinase in the myocardium. Circ Res,1998,83 (6):345-52.
    [39]Wei X, Sun W, Fan R, et al. MEF2C regulates c-Jun but not TNF-alpha gene expression in stimulated mast cells. Eur J Immunol,2003,33(10):2903-9.
    [40]Chabaud-Riou M, Firestein GS. Expression and activation of mitogen-activated protein kinase kinases-3 and-6 in rheumatoid arthritis. Am.J.Pathol, 2004,164(1):177-184.
    [41]Nishikawa M, Myoui A, Tomita T, et al. Prevention of the onset and progression of collagen-induced arthritis in rats by the potent p38 mitogen-activated protein kinase inhibitor FR167653. Arthritis Rheum,2003, 48(9):2670-81.
    [42]Okuma-Yoshioka C, Seto H, Kadono Y, et al. Tumor necrosis factor-alpha inhibits chondrogenic differentiation of synovial fibroblasts through p38 mitogen activating protein kinase pathways. Mod Rheumatol,2008, 18(4):366-78.
    [43]Luo SF, Fang RY, Hsieh HL, et al. Involvement of MAPKs and NF-kappaB in tumor necrosis factor alpha-induced vascular cell adhesion molecule 1 expression in human rheumatoid arthritis synovial fibroblasts. Arthritis Rheum, 2010,62(1):105-16.
    [44]Badger AM, Bradbeer JN, Votta B,et al. Pharmacological profile of SB 203580, a selective inhibitor of cytokine suppressive binding protein/p38 kinase, in animal models of arthritis, bone resorption, endotoxin shock and immune function. J Pharmacol Exp Ther,1996,279(3):1453-61.
    [45]Hacker H, Karin M. Regulation and function of IKK and IKK-related kinases.Sci STKE,2006,2006(357):re13.
    [46]Ling L, Cao Z, Goeddel DV. NF-κB-inducing kinase activates IKKa by phosphorylation of Ser-176. Proc Natl Acad Sci USA,1998,95(7):3792-3797
    [47]Maria-Jose Lallena, Maria T. Diaz-Meco, Gary Bren, et al. Activation of IκB Kinaseβ by Protein Kinase C Isoforms. Mol Cell Biol,1999,19(3):2180-2188
    [48]Zhang J, Lei T, Chen X, et al. Resistin up-regulates COX-2 expression via TAK1-IKK-NF-kappaB signaling pathway. Inflammation,2010,33(1):25-33.
    [49]Nakamura K, Kimple AJ, Siderovski DP, et al. PB1 domain interaction of p62/sequestosome 1 and MEKK3 regulates NF-kappaB activation. J Biol Chem, 2010,285(3):2077-89.
    [50]Okamoto H, Cujec TP, Yamanaka H, et al. Molecular aspects of rheumatoid arthritis:role of transcription factors. FEBS J,2008,275(18):4463-70.
    [51]Makarov SS. NF-kappa B in rheumatoid arthritis:a pivotal regulator of inflammation, hyperplasia, and tissue destruction. Arthritis Res, 2001,3(4):200-6.
    [52]Okamoto T. The epigenetic alteration of synovial cell gene expression in rheumatoid arthritis and the roles of nuclear factor kappaB and Notch signaling pathways.Mod Rheumatol,2005,15(2):79-86.
    [53]Pobezinskaya YL, Kim YS, Choksi S, et al. The function of TRADD in signaling through tumor necrosis factor receptor 1 and TRIF-dependent Toll-like receptors. Nat Immunol,2008,9(9):1047-54.
    [54]Shakibaei M, Sung B, Sethi G, et al. TNF-alpha-induced mitochondrial alterations in human T cells requires FADD and caspase-8 activation but not RIP and caspase-3 activation. Antioxid Redox Signal,2010,13(6):821-31.
    [55]Raghav SK, Gupta B, Agrawal C, et al. Expression of TNF-alpha and related signaling molecules in the peripheral blood mononuclear cells of rheumatoid arthritis patients. Mediators Inflamm,2006,2006(3):12682.
    [56]Thakar J, Schleinkofer K, Borner C, et al. RIP death domain structural interactions implicated in TNF-mediated proliferation and survival. Proteins, 2006,63(3):413-23.
    [57]Devin A, Cook A, Lin Y, et al. The distinct roles of TRAF2 and RIP in IKK activation by TNF-R1:TRAF2 recruits IKK to TNF-R1 while RIP mediates IKK activation. Immunity,2000,12(4):419-29.
    [58]Audo R, Combe B, Coulet B, et al. The pleiotropic effect of TRAIL on tumor-like synovial fibroblasts from rheumatoid arthritis patients is mediated by caspases. Cell Death Differ,2009,16(9):1227-37.
    [59]Depuydt B, van Loo G, Vandenabeele P, et al. Inductin of apoptosis by TNF receptor 2 in a T-cell hybridoma is FADD dependent and blocked by caspase-8 inhibitors. J Cell Sci,2005,118(Pt 3):497-504.
    [60]Fotin-Mleczek M, Henkler F, Samel D, et al. Apoptotic crosstalk of TNF receptors:TNF-R2-induces depletion of TRAF2 and IAP proteins and accelerates TNF-R1-dependent activation of caspase-8. J Cell Sci,2002,115(Pt 13):2757-70.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700