激光极化~(129)Xe的核磁共振研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
激光极化(超极化)~(129)Xe,由于其核自旋极化度比热平衡条件下的极化度提高10~4-10~5倍,被广泛应用到众多的自然科学领域中,特别是核磁共振中。因此,本学位论文选用激光极化~(129)Xe的核磁共振(Nuclear Magnetic Resonance, NMR)研究为题,研究涉及激光极化~(129)Xe的产生和存储、NMR辐射阻尼动力学、自旋极化诱导核的Overhauser效应(Spin Polarized-Induced Nuclear Overhauser Effect, SPINOE)和NMR谱仪和探头技术四方面的工作,主要包括以下内容:
     建立了一套在低磁场流动系统下,利用自旋交换光泵(Spin-Exchange Optical Pumping, SEOP)产生激光极化~(129)Xe的实验装置。并首次在无氮气的条件下,利用激光光泵Cs原子的D_2线形成高度极化的Cs原子,随后再与惰性气体~(129)Xe进行自旋交换,获得了比热平衡条件下,极化度增强大于10000倍、5000倍和6000倍的气态、液态和固态的激光极化~(129)Xe的NMR信号。在77 K和2800 Gauss的条件下,激光极化固态~(129)Xe的存储时间超过3小时。
     实验上,首次观测到了低磁场流动系统下,激光极化~(129)Xe的液态和气态NMR辐射阻尼信号,并研究了在不同脉冲反转角的激发下,激光极化液态~(129)Xe的辐射阻尼动力学行为。理论上,拟合得到激光极化液态~(129)Xe的辐射阻尼时间常数,并模拟了在不同脉冲反转角的激发下,当横向弛豫和辐射阻尼相互竞争时,自由感应衰减(Free Induction Decay, FID)信号包络和谱图线形的变化。
     实验上,首次利用激光极化~(129)Xe,通过SPINOE的方法,获得了固态1HCl中增强6倍的质子NMR信号。理论上,推导了在磁偶极—偶极相互作用下,固态的SPINOE极化增强公式,并通过此公式计算出理论增强值为7.1倍,与实验值符合。在实验还获得了,通过SPINOE增强天然丰度~(13)C的NMR信号。
     总结和分析了在上述NMR实验中,Bruker AC-80 NMR谱仪的常见故障,并给出了相应的解决方案。另外,还给出了激光极化~(129)Xe的探头电路,并分析说明了调试中应该注意的问题。
Laser-polarized (hyperpolarized) ~(129)Xe, whose nuclear spin polarization can be increased by four or five orders of magnitude over the equilibrium Boltzmann polarization, has been widely used in many fields of natural sciences, especially in nuclear magnetic resonance (NMR). Therefore, the‘study of laser-polarized ~(129)Xe via NMR’is chosen as the subject of this dissertation, which involves the production and storage of laser-polarized ~(129)Xe, radiation damping of laser-polarized ~(129)Xe in NMR, spin polarized-induced nuclear Overhauser effect (SPINOE) via laser-polarized ~(129)Xe, and the techniques of NMR spectrometer and probe. Significant results are shown as follows:
     An experimental setup for production of laser-polarized ~(129)Xe via spin-exchange optical pumping (SEOP) at low magnetic field in a flow system has been constructed. Based on this setup, in absence of nitrogen gas, production of the laser-polarized ~(129)Xe via spin-exchange with optically pumped Cs atoms at the D2 line was firstly reported. The nuclear polarizations of laser-polarized ~(129)Xe have been enhanced by factors over 10000, 5000 and 6000 for the gaseous, liquid and solid state, respectively, comparing with those at thermal equilibrium. The storage time of solid laser-polarized ~(129)Xe has exceeded three hours at 77 K and 2800 Gauss.
     The NMR radiation damping effects of the gaseous and liquid laser-polarized ~(129)Xe have been firstly observed at low magnetic field in a flow system, and the dynamics of radiation damping has been experimentally studied with different pulse flip angles. The radiation damping time constant of the liquid laser-polarized ~(129)Xe was derived on the basis of the theoretical simulation. The envelopes of the ~(129)Xe free induction decay (FID) and the spectral lineshape have been theoretically simulated, in the presence of both the transverse relaxation and the radiation damping with different pulse flip angles.
     For the first time, the solid NMR signal enhancement of 6 for the proton (~1HCl) has been achieved via SPINOE with laser-polarized ~(129)Xe. The formula for the SPINOE enhancement in solid state has been theoretically deduced on the basis of the spin-spin dipole-dipole interaction, and the theoretical calculated enhancement of about 7.1 is in agreement with the experimental one. The enhanced ~(13)C NMR signal with the
引文
[1] F. Bloch, W. W. Hansen, and M. Packard. Nuclear Induction. Phys. Rev., 1946 (69): 127-127.
    [2] E. M. Purcell, H. C. Torrey, and R. V. Pound. Resonance Absorption by Nuclear Magnetic Moments in a Solid. Phys. Rev., 1946 (69): 37-38.
    [3] J. M. B. Kellogg, I. I. Rabi, N. F. Ramsey, Jr., and J. R. Zacharias. An Electrical Quadrupole Moment of the Deuteron the Radiofrequency Spectra of HD and D2 Molecules in a Magnetic Field. Phys. Rev., 1940 (57): 677-695.
    [4] P. Kusch, S. Millman, and I. I. Rabi. The Radiofrequency Spectra of Atoms Hyperfine Structure and Zeeman Effect in the Ground State of Li6, Li7, K39 and K41. Phys. Rev., 1940 (57): 765-780.
    [5] W. D. Knight. Nuclear Magnetic Resonance Shift in Metals, Phys. Rev., 1949 (76): 1259-1260.
    [6] W. G. Proctor and F. C. Yu. The Dependence of A Nuclear Magnetic Resonance Frequency upon Chemical Compound. Phys. Rev., 1950 (77): 717-717.
    [7] W. C. Dickinson. Dependence of the 19F Nuclear Resonance Position on Chemical Compound, Phys. Rev., 1950, (77): 736-737.
    [8] W. G. Proctor and F. C. Yu. On the Nuclear Magnetic Moments of Several Table Isotope. Phys. Rev., 1951 (81): 20-30.
    [9] H. S. Gutowsky and D. W. McCall. Nuclear Magnetic Resonance Fine Structure in Liquids. Phys. Rev., 1951 (82): 748-749.
    [10] E. L. Hahn and D. E. Maxwell. Chemical Shift and Field Independent Frequency Modulation of The Spin Echo Envelope. Phys. Rev., 1951 (84): 1246-1247.
    [11] R. R. Ernst and W. A. Anderson. Application of Fourier Transform Spectroscopy to Magnetic Resonance. Rev. Sci. Instrum., 1966 (37): 93-102.
    [12] J. Jeener, B. H. Meier, P. Bachmann, and R. R. Ernst. Investigation of Exchange Processes by Two-Dimensional NMR Spectroscopy. J. Chem. Phys. 1979 (71): 4546-4553.
    [13] G. A. Morris and R. Freeman. Enhancement of Nuclear Magnetic Resonance Signals by Polarization Transfer. J. Am. Chem. Soc., 1979 (101): 760-760.
    [14] P. C. Lauterbur. Image Formation by Induced Local Interactions: Examples Employing Nuclear Magnetic Resonance. Nature, 1973 (242): 190-191.
    [15] P. T. Callanghan. Principles of Nuclear Magnetic Resonance Microscopy. Oxford: Clarendon Press, 1991.
    [16] P. J. Barrie and J. Klinowski. ~(129)Xe NMR As a Probe for the Study of Microporous Solids: A Critical Review. Prog. Nucl. Magn. Reson. Spectrosc., 1992 (24): 91-108.
    [17] J. T. Gerig. Fluorine NMR of Proteins. Prog. Nucl. Magn. Reson. Spectrosc., 1994 (26): 293-370.
    [18] D. Raftery and B. F. Chmelka. NMR Basic Principles and Progress. Berlin: Springer-Verlag, 1994 (30): 111-158.
    [19] E. R. Andrew and E. Szczesniak. A Historical Account of NMR in the Solid State. Prog. Nucl. Magn. Reson. Spectrosc. 1995 (28): 11-36.
    [20] J. N. Schoolery. The Development of Experimental and Analytical High Resolution NMR. Prog. Nucl. Magn. Reson. Spectrosc. 1995 (28): 37-52.
    [21] J. S. Cohen, J. W. Jaroszewski, O. Kaplan, J. Ruiz-Cabello and S. W. Collier. A History of the Biological Applications of NMR Spectroscopy. Prog. Nucl. Magn. Reson. Spectrosc. 1995 (28): 53-85.
    [22] F. W. Wehrli. From NMR Diffraction and Zeugmatography to Modern Imaging and Beyond. Prog. Nucl. Magn. Reson. Spectrosc. 1995 (28): 87-135.
    [23] J. W. Emsley and J. Feeney. Milestones in The First Fifty Years of NMR. Prog. Nucl. Magn. Reson. Spectrosc., 1995 (28): 1-9.
    [24] L. Chuang, L. M. K. Vandersypen, X. Zhou, D. W. Leung, S. Lloyd. Experimental Realization of A Quantum Algorithm. Nature, 1998 (393): 143-146.
    [25] E. Knill, R. Laflamme, R. Martinez, C. -H. Tseng. An Algorithmic Benchmark for Quantum Information Processing. Nature 2000 (404): 368–370.
    [26] C. H. Bennett, D. P. Divincenzo. Quantum Information and Computation. Nature, 2000 (404): 247-259.
    [27] L. M. K. Vandersypen, M. Steffen, G. Breyta, C. S. Yannoni, M. H. Sherwood, I. L. Chuang. Experimental Realization of Shor's Quantum Factoring Algorithm Using Nuclear Magnetic Resonance. Nature, 2001 (414): 883-887.
    [28] Abragam. The Principles of Nuclear Magnetism. London: Oxford University Press, 1961.
    [29] K. Frank, W. Pierre-Etienne, L. Jean-Louis et al. Low-Temperature Polarized Helium-3 for MRI Applications. Magn. Reson. Med., 1999 (41): 1084-1087.
    [30] 毛希安. 现代核磁共振实用技术及应用. 北京:科学技术文献出版社, 2000.
    [31] Overhauser. Paramagnetic Relaxation in Metals. Phys. Rev., 1953 (89): 689-700.
    [32] Overhauser. Polarization of Nuclei in Metals. Phys. Rev., 1953 (92): 411-415.
    [33] Solomon. Relaxation Processes in a System of Two Spins. Phys. Rev., 1955 (99): 559-565.
    [34] H. Noggle and R. E. Schirmer. The Nuclear Overhauser Effects. New York: Academic Press, 1971.
    [35] S. R. Hartmann and E. L. Hahn. Nuclear Double Resonance in the Rotating Frame. Phys. Rev., 1962 (128): 2042-2054.
    [36] Pines, M. G. Bibby and J. S. Waugh. Proton-enhanced NMR of Dilute Spins in Solids. J. Chem. Phys., 1973 (59): 569-590.
    [37] H. W. Long, H. C. Gaede, J. Shore, L. Reven. C. R. Bowers, J. Kritzenberger, T. Pietrass, A. Pines, P. Tand and J. A. Reimer. High-field Cross Polarization NMR from Laser-Polarized Xenon to a Polymer Surface. J. Am. Chem. Soc., 1993 (115): 8491-8492.
    [38] H. C. Gaede. Y. –Q. Song, R. E. Taylor, E. J. Munson, J. A. Reimer and A. Pines. High-field Cross Polarization NMR from Laser-polarized Xenon to Surface Nuclei. Appl. Magn. Reson., 1995 (8): 373-384.
    [39] R. Bowera. H. W. Long, T. Pietrass, H. C. Gaede and A. Pines. Cross Polarization from Laser-Polarized Solid Xenon to 13CO2 by Low-Field Thermal Mixing. Chem. Phys. Lett., 1993 (205): 168-170.
    [40] M. Goldman. Spin Temperature and Nuclear Magnetic Resonance in Solids. Oxford: Clarendon Press, 1970.
    [41] Abragam and M. Goldman. Nuclear Magnetism: Order and Disorder. Oxford: Clarendon Press, 1982.
    [42] Cherbini, G. S. Payne, M. O. Leach, A. Bifone. Hyperpolarising 13C for NMRStudies Using Laser-Polarised ~(129)Xe: SPINOE vs Thermal Mixing. Chem. Phys. Lett., 2003 (371): 640-644.
    [43] Cherbini, G. S. Payne, M. O. Leach, A. Bifone. Hyperpolarising 13C for NMR Studies Using Laser-Polarised ~(129)Xe: SPINOE vs Thermal Mixing. Chem. Phys. Lett., 2003 (371): 640-644.
    [44] K. Golman, J. H. Ardenkjaer-Larsen, J. Svensson, O. Axelsson, G. Hansson, L. Hansson, H, Johannesson. I. Leunbach, S. Mansson, J. S. Petersson, G. Pettersson, R. Servin. L. G.Wistrand. 13C-Angiography. Acad. Radiol. 2002 (9) suppl. 2: S507-S517.
    [45] J. H. Ardenkjaer-Larse, B. Fridlund, A. Gram, G. Hansson, L. Hansson, M. H. Lerche, R. Servin, M. Thaning and K. Golman. Increase in Signal-to-Noise Ratio of > 10,000 Times in Liquid-State NMR. Proc. Natl. Acad. Sci. USA, 2003 (100): 10158-10163.
    [46] J. Natterer, J. Bargon. Prog. Parahydrogen induced polarization. Nucl. Magn. Reson. Spectrosc., 1997 (31): 293-315.
    [47] S. B. Duckett, C. J. Sleigh. Prog. Applications of the parahydrogen phenomenon: A chemical perspective. Nucl. Magn. Reson. Spectrosc., 1999 (34): 71-92.
    [48] K. Golman, O. Axelsson, H. Johannesson, S. Mansson, C. Olofsson, J. S. Petersson. Parahydrogen-Induced Polarization in Imaging: 13C angiography. Magn. Reson. Med., 2001 (46): 1-5.
    [49] M. Haake, J. Natterer and J. Bargon. Efficient NMR Pulse Sequences to Transfer the Parahydrogen-Induced Polarization to Hetero Nuclei. J. Am. Chem. Soc., 1996 (118): 8688-8691.
    [50] G. Navon, Y. –Q. Song, T. Room, S. Appelt, R. E. Taylor, A. Pines. Enhancement of Solution NMR and MRI with Laser-Polarized Xenon. Science, 1996 (271): 1848-1851.
    [51] Y. -Q. Song. Spin Polarization-Induced Nuclear Overhauser Effect: An Application of Spin-Polarized Xenon and Helium. Concepts Magn. Reson., 2000 (12): 6-20.
    [52] Y. -Q. Song, B. M. Goodson, R. E. Taylor, D. D. Laws, G. Navon and A. Pines. Selective enhancement of NMR signals for α -cyclodextrin with laser-polarizedxenon. Angew. Chem. Int. Ed., 1997 (36): 2368-2370.
    [53] R. J. Fitzgerald, K. L. Sauer, W. Happer. Cross-Relaxation in Laser-Polarized Liquid Xenon. Chem. Phys. Lett., 1998 (284): 87-92.
    [54] T. Room, S. Appelt, R. Seydoux, E. L. Hahn, A. Pine. Enhancement of surface NMR by laser-polarized noble gas. Phys. Rev. B, 1997 (55): 11604-11610.
    [55] Kastler. J. Phys. Radium., 1950 (11): 225.
    [56] J. Brossel, A. Kastler, J. Winter. J. Phys. Radium., 1952 (13): 668.
    [57] W. Happer. Optical Pumping. Rev. Mod. Phys., 1972 (44): 169-249.
    [58] W. Happer, E. Miron, S. Schaefer, D. Schreiber, W. A. van Wijngaarden and X. Zeng. Polarization of the Nuclear Spins of Noble-Gas Atoms by Spin Exchange with Optically Pumped Alkali-Metal Atoms. Phys. Rev. A, 1984 (29): 3092-3110.
    [59] X. Zeng, Z. Wu, T. Call, E. Miron, D. Schreiber and W. Happer. Experimental Determination of the Rate Constants for Spin Exchange between Optically Pumped K, Rb, and Cs atoms and ~(129)Xe Nuclei in Alkali-metal-Noble-gas Van der Waals Molecules. Phys. Rev. A, 1985 (31): 260-278.
    [60] T. G. Walker, W. Happer. Spin-Exchange Optical Pumping of Noble-Gas Nuclei. Rev. Mod. Phys., 1997 (69): 629-642.
    [61] C. I. Ratcliffe. Xenon NMR. Annual Reports On NMR Spectroscopy. San Diego: Academic Press, 1998 (36): 123-221.
    [62] G. E. Cook. Argon, Helium and the Rare Gases. New York: Interscience Publishers, 1961.
    [63] R. C. Weast. Handbook of Chemistry and Physics. 55th edition. Cleveland: CRC Press, 1974. B1.
    [64] H. L. Clever. Krypton, Xenon and Radon—Gas Solubilities. Oxford: Pergamon Press, 1979.
    [65] J. Wolber, I. J. Rowland, M. O. Leach, X. J. Chen, B. Driehuys, L. W. Hedlund, C. T. Wheeler, G. A. Johnson. Magnetic resonance angiography with hyperpolarized ~(129)Xe dissolved in a lipid emulsion. Magn. Reson. Med., 1999 (41): 1058-1064.
    [66] Bifone. Y. Q. Song, R. Sydoux, R. E. Taylor, B. M. Goodson, T. Pietrass, T. F. Budinger, G. Navon, A. Pines. NMR of laser-polarized xenon in human blood. Proc.Natl. Acad. Sci. USA, 1996 (93): 12932-12936.
    [67] W. G. Proctor, F. C. Yu. On the Nuclear Magnetic Moments of Several Stable Isotopes. Phys. Rev., 1954 (81): 20-30.
    [68] E. Brun, J. Oeser, H. H. Staub, C G. Telschow. The Nuclear Magnetic Moments of Xe129 and Xe131. Phys. Rev., 1954 (93): 904-904.
    [69] R. L. Streever and H. Y. Carr. Nuclear Magnetic Resonance of Xe129 in Natural Xenon. Phys. Rev., 1961 (121): 20-25.
    [70] E. R. Hunt and H. Y. Carr. Nuclear Magnetic Resonance of Xe129 in Natural Xenon. Phys. Rev., 1963 (130): 2302-2305.
    [71] E. Kanegsberg, B. Pass and H. Y. Carr. Temperature and Density Dependence of the Local Magnetic Field in Dense Xenon Gas. Phys. Rev. Lett., 1969 (23): 572-574.
    [72] K. Jameson and C. J. Jameson and H. S. Gutowsky. Density Dependence of ~(129)Xe Chemical Shifts in Mixtures of Xenon and Other Gases. J. Chem. Phys., 1970 (53): 2310-2321.
    [73] K. Jameson. An Empirical Chemical Shielding Function for Interacting Atoms from Direct Inversion of NMR Data. J. Chem. Phys., 1975 (63): 5296-5310.
    [74] J. Jokisaari. NMR of Noble Gases Dissolved in Isotropic and Anisotropic Liquids. Prog. Nucl. Magn. Reson. Spectrosc. 1994 (26): 1-26.
    [75] N. Bloembergen. Nuclear Magnetic Relaxation. Martinus Nijhoff: The Hague, 1948.
    [76] H. C. Torrey. Chemical Shift and Relaxation of Xe129 in Xenon Gas. Phys. Rev., 1963 (130): 2306-2312.
    [77] N. F. Ramsey. Magnetic Shielding of Nuclei in Molecules. Phys. Rev., 1950 (78): 699-703.
    [78] Shizgal. Calculation of the NMR Relaxation Time of Dilute 129 Xe Gas. Chem. Phys., 1974 (5): 464-470. J. M. Fitzpatrick and B. Shizgal. Temperature Relaxation in a Binary Gas. I. Steady State Solution. Chem. Phys., 1975 (63): 131-137.
    [79] M. Pfeffer and O. Lutz. ~(129)Xe Gas NMR Spectroscopy and Imaging with a Whole-Body Imager. J. Magn. Reson. A, 1994 (108): 106-109.
    [80] M. Pfeffer and O. Lutz. Observation of Diffusion in Xenon Gas by NMR. J. Magn.Reson. A, 1995 (113): 108-113.
    [81] Moudrakovski, S. R. Breeze, B. Simard, C. J. Ratcliffe, J. A. Ripmeester, T. Seideman, J. S. Tse, G. Santyr. Gas-phase nuclear magnetic relaxation in ~(129)Xe revisited. J. Chem. Phys., 2001 (114): 2173-2181.
    [82] Chann. I. A. Nelson, L. W. Anderson, B. Driehuys. T. G. Walker. ~(129)Xe-Xe Molecular Spin Relaxation. Phys. Rev. Lett., 2002 (88): 113201.
    [83] W. M. Yen and R. E. Norberg. Nuclear Magnetic Resonance of Xe129 in Solid and Liquid Xenon. Phys. Rev., 1963 (131): 269-275.
    [84] W. W. Warren Jr and R. E. Norberg. Nuclear Quadrupole Relaxation and Chemical Shift of Xe131 in Liquid and Solid Xenon. Phys. Rev., 1966 (148): 402-412.
    [85] Brinkmann and H. Y. Carr. Local Magnetic Field Shift in Liquid and Solid Xenon. Phys. Rev., 1966 (150): 174-179.
    [86] Brinkman. Nuclear Magnetic Resonance Shift of Xe129 in Solid Xenon.Phys. Rev. Lett., 1964 (13): 187-188.
    [87] W. W. Warren Jr and R. E. Norberg. Multiple-Pluse Nuclear-Magnetic-Resonance Transients of Xe129 and Xe131 in Solid Xenon. Phys. Rev., 1967 (154): 277-286.
    [88] D. F. Cowgill and R. E. Norberg. Local-Magnetic-Field Shift in Natural XenonPhys. Rev. B, 1972 (6): 1636-1638.
    [89] R. E. Norberg. Rare Gas Solids. Berlin: Springer-Verlag, 1984. 59.
    [90] P. M. Rentzepis, D. C. Douglass. Xenon as a Solvent. Nature, 1981 (293): 165-166.
    [91] D. B. Marshall, F. Strohbusch, E. M. Eyring. J. Chem. Engng Data, 1981 (26): 333.
    [92] K. L. Sauer. R. J. Fitzgerald. W. Happer. Laser-Polarized Liquid Xenon. Chem. Phys. Lett., 1997 (277): 153-158.
    [93] J. H. Van Vleck. The Dipolar Broadening of Magnetic Resonance Lines in Crystals. Phys. Rev., 1948 (74): 1168-1183.
    [94] J. Jeener. Dynamical Effects of the Dipolar Field Inhomogeneities in High-Resolution NMR: Spectral Clustering and Instabilities. Phys. Rev. Lett., 1999 (82): 1772-1775.
    [95] P. J. Nacher. G. Tastevin, B. Villard, N. Piegay, F. Marion, K. L. Sauer. NMR Instabilities in Spin-Polarised Liquids: 3He, 3He-4He Mixtures and ~(129)Xe. J. LowReson. A, 1995 (113): 108-113.
    [81] Moudrakovski, S. R. Breeze, B. Simard, C. J. Ratcliffe, J. A. Ripmeester, T. Seideman, J. S. Tse, G. Santyr. Gas-phase nuclear magnetic relaxation in ~(129)Xe revisited. J. Chem. Phys., 2001 (114): 2173-2181.
    [82] Chann. I. A. Nelson, L. W. Anderson, B. Driehuys. T. G. Walker. ~(129)Xe-Xe Molecular Spin Relaxation. Phys. Rev. Lett., 2002 (88): 113201.
    [83] W. M. Yen and R. E. Norberg. Nuclear Magnetic Resonance of Xe129 in Solid and Liquid Xenon. Phys. Rev., 1963 (131): 269-275.
    [84] W. W. Warren Jr and R. E. Norberg. Nuclear Quadrupole Relaxation and Chemical Shift of Xe131 in Liquid and Solid Xenon. Phys. Rev., 1966 (148): 402-412.
    [85] Brinkmann and H. Y. Carr. Local Magnetic Field Shift in Liquid and Solid Xenon. Phys. Rev., 1966 (150): 174-179.
    [86] Brinkman. Nuclear Magnetic Resonance Shift of Xe129 in Solid Xenon.Phys. Rev. Lett., 1964 (13): 187-188.
    [87] W. W. Warren Jr and R. E. Norberg. Multiple-Pluse Nuclear-Magnetic-Resonance Transients of Xe129 and Xe131 in Solid Xenon. Phys. Rev., 1967 (154): 277-286.
    [88] D. F. Cowgill and R. E. Norberg. Local-Magnetic-Field Shift in Natural XenonPhys. Rev. B, 1972 (6): 1636-1638.
    [89] R. E. Norberg. Rare Gas Solids. Berlin: Springer-Verlag, 1984. 59.
    [90] P. M. Rentzepis, D. C. Douglass. Xenon as a Solvent. Nature, 1981 (293): 165-166.
    [91] D. B. Marshall, F. Strohbusch, E. M. Eyring. J. Chem. Engng Data, 1981 (26): 333.
    [92] K. L. Sauer. R. J. Fitzgerald. W. Happer. Laser-Polarized Liquid Xenon. Chem. Phys. Lett., 1997 (277): 153-158.
    [93] J. H. Van Vleck. The Dipolar Broadening of Magnetic Resonance Lines in Crystals. Phys. Rev., 1948 (74): 1168-1183.
    [94] J. Jeener. Dynamical Effects of the Dipolar Field Inhomogeneities in High-Resolution NMR: Spectral Clustering and Instabilities. Phys. Rev. Lett., 1999 (82): 1772-1775.
    [95] P. J. Nacher. G. Tastevin, B. Villard, N. Piegay, F. Marion, K. L. Sauer. NMR Instabilities in Spin-Polarised Liquids: 3He, 3He-4He Mixtures and ~(129)Xe. J. Low
    [109] T. Skalinski, Rendiconti S. I. F. XVII Corso 1960: 212-239.
    [110] R. L. de Zafra. Optical Pumping. Am. J. Phys., 1960 (28): 646-654.
    [111] V. Skrotskii and T. G. Izyumova. Soviet Phys. Usp. 1961 (4): 177.
    [112] T. R. Carver. Optical Pumping. Science, 1963 (141): 599-608.
    [113] C. Cohen-Tannoudji and A. Kastler. Progress in Optics, 1966 (5): 3.
    [114] F. G. Major and H. G. Dehmelt. Exchange-Collision Technique for the rf Spectroscopy of Stored Ions. Phys. Rev., 1968 (170): 91-107.
    [115] R. A. Bernheim. Optical Pumping. New York: Benjamin, 1965.
    [116] B. Cagnac and J. Brossel. Magnétisme Nucléaire-Orientation Nucléaire par Pompage des Isotopes 201Hg et 199Hg et Measure de Leurs Moments Magnétiques par Résonance Mangeétique Nucléaire. Compt. Rend., 1958 (249): 77-79. B. Cagnac and J. Brossel. Magn é tisme Nucl é aire-Ph é nom é ns Transitoires et Relaxation Nucléaire de 199Hg orienté Optiquement. Compt. Rend., 1958 (249): 253-255.
    [117] G. K. Walters, F. D. Colegrove, and L. D. Schearer. Nuclear Polarization of He3 Gas by Metastability Exchange with Optically Pumped Metastable He3 Atoms. Phys. Rev. Lett., 1962 (8): 439-442.
    [118] W. H. Butler, M. S. Hammond, J. G. Lynn. F. B. Duning and G. K. Walter. Laser Optical Pumping of Rare-Gas Metastable Atom Beams. Rev. Sci. Instrum., 1988 (59): 2083-2084.
    [119] B. C. Grover. Noble-Gas NMR Detection through Noble-Gas-Rubidium Hyperfine Contact Interaction. Phys. Rev. Lett., 1978 (40): 391-392.
    [120] M. A. Bouchiat, T. R. Carver, and C. M. Varnum. Nuclear Polarization in He3 Gas Induced by Optical Pumping and Dipolar Exchange. Phys. Rev. Lett., 1960 (5): 373-375.
    [121] T. E. Chupp and M. E. Wagshul K. P. Coulter, A. B. McDonald, and W. Happer. Polarized, High-Density, Gaseous 3He Targets. Phys. Rev. C, 1987 (36): 2244–2251.
    [122] B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer. High-Volume Production of Laser-Polarized ~(129)Xe. Appl. Phys. Lett. 1996 (69):1668-1670.
    [123] G. Wang, W. Shao, and E. W. Hughes. High-Polarized 3He by Spin Exchange with Potassium. Phys. Rev. A, 2003 (69): 065402-4.
    [124] R. M. Herman. Theory of Spin Exchange between Optically Pumped Rubidium and Foreign Gas Nuclei. Phys. Rev., 1965 (137): A1062–A1065.
    [125] N. Ramsey, E. Miron, X. Zeng and W. Happer. Formation and Breakup Rates of RbXe van der Waals Molecules in He and N2 Gas. Chem. Phys. Lett., 1983 (102): 340-343.
    [126] X. Zeng, E. Miron, W. A. Van Wijngaarden, David Schreiber and W. Happer. Wall Relaxation of Spin Polarized 129Xe Nuclei. Phys. Lett. A, 1983 (96): 191-194.
    [127] N. D. Bhaskar, W. Happer, M. Larsson, and X. Zeng. Slowing Down of Rubidium-Induced Nuclear Spin Relaxation of 129Xe Gas in a Magnetic Field. Phys. Rev. Lett., 1983 (50): 105-108.
    [128] F. P. Calaprice, W. Happer, D. F. Schreiber, M. M. Lowry, E. Miron, and X. Zeng. Nuclear Alignment and Magnetic Moments of 133Xe, 133Xem, and 131Xem by Spin Exchange with Optically Pumped 87Rb. Phys. Rev. Lett., 1985 (54): 174-177.
    [129] S. Appelt, A. Ben-Amar Baranga, C. J. Erickson, M. V. Romalis, A. R. Young, and W. Happer. Theory of spin-exchange optical pumping of 3He and 129Xe. Phys. Rev. A, 1998 (58): 1412-1439.
    [130] N. R. Newbury, A. S. Barton, G. D. Cates, W. Happer, and H. Middleton. Gaseous 3He-3He Magnetic Dipolar Spin Relaxation. Phys. Rev. A, 1993 (48): 4411-4420.
    [131] N. D. Bhaskar, W. Happer, and T. McClelland. Efficiency of Spin Exchange between Rubidium Spins and 129Xe Nuclei in a Gas. Phys. Rev. Lett., 1982 (49): 25-28.
    [132] N. R. Newbury, A. S. Barton, P. Bogorad, G. D. Cates, M. Gatzke, H. Mabuchi, B. Saam. Polarization-Dependent Frequency Shifts from Rb-3He Collisions. Phys. Rev. A, 1993 (48): 559-568.
    [133] P. L. Anthony, R. G. Arnold, H. R. Band, H. Borel, P. E. Bosted, V. Breton, G. D. Cates, T. E. Chupp, F. S. Dietrich, J. Dunne, R. Erbacher, J. Fellbaum, H. Fonvieille, R. Gearhart, R. Holmes, E. W. Hughes, J. R. Johnson, D. Kawall, C. Keppel, S. E.Kuhn, R. M. Lombard–Nelsen, J. Marroncle, T. Maruyama, W. Meyer, Z.–E. Meziani, H. Middleton, J. Morgenstern, N. R. Newbury, G. G. Petratos, R. Pitthan, R. Prepost, Y. Roblin, S. E. Rock, S. H. Rokni, G. Shapiro, T. Smith, P. A. Souder, M. Spengos, F. Staley, L. M. Stuart, Z. M. Szalata, Y. Terrien, A. K. Thompson, J. L. White, M. Woods, J. Xu, C. C. Young, and G. Zapalac. Determination of the Neutron Spin Structure Function. Phys. Rev. Lett., 1993 (71): 959-962.
    [134] N. R. Newbury, A. S. Barton, P. Bogorad, G. D. Cates, M. Gatzke, B. Saam, L. Han, R. Holmes, P. A. Souder, J. Xu, and D. Benton. Laser Polarized Muonic Helium. Phys. Rev. Lett., 1991 (67): 3219-3222.
    [135] T. E. Chupp, R. J. Hoare, R. L. Walsworth, and Bo Wu. Spin-exchange-pumped 3He and ~(129)Xe Zeeman Masers. Phys. Rev. Lett., 1994 (72): 2363-.2366.
    [136] M. A. Rosenberry, T. E. Chupp. Atomic Electric Dipole Moment Measurement Using Spin Exchange Pumped Masers of ~(129)Xe and 3He. Phys. Rev. Lett., 2000 (86): 22-25.
    [137] K. Thompson, A. M. Bernstein, T. E. Chupp, D. J. DeAngelis, G. E. Dodge, G. Dodson, K. A. Dow, M. Farkhondeh, W. Fong, J. Y. Kim, R. A. Loveman, J. M. Richardson, H. Schmieden, D. R. Tieger, T. C. Yates, M. E. Wagshul, and J. D. Zumbro. Quasielastic Scattering of Polarized Electrons from Polarized He3 and Measurement of the Neutron's Form Factors. Phys. Rev. Lett., 1992 (68): 2901-2904.
    [138] G. L. Jones, T. R. Gentile, A. K. Thompson, Z. Chowdhuri, M. S. Dewey, W. M. Snow and F. E. Wietfeldt. Test of 3He-based neutron polarizers at NIST. Nucl. Instum. Methods Phys. Res. Sect. A, 2000 (440): 772-776.
    [139] W. Xu, D. Dutta, F. Xiong, B. Anderson, L. Auberbach, T. Averett, W. Bertozzi, T. Black, J. Calarco, L. Cardman, G. D. Cates, Z. W. Chai, J. P. Chen, S. Choi, E. Chudakov, S. Churchwell, G. S. Corrado, C. Crawford, D. Dale, A. Deur, P. Djawotho, B. W. Filippone, J. M. Finn, H. Gao, R. Gilman, A. V. Glamazdin, C. Glashausser, W. Gl?ckle, J. Golak, J. Gomez, V. G. Gorbenko, J.-O. Hansen, F. W. Hersman, D. W. Higinbotham, R. Holmes, C. R. Howell, E. Hughes, B. Humensky, S. Incerti, C. W. de Jager, J. S. Jensen, X. Jiang, C. E. Jones, M. Jones, R. Kahl, H.Kamada, A. Kievsky, I. Kominis, W. Korsch, K. Kramer, G. Kumbartzki, M. Kuss, E. Lakuriqi, M. Liang, N. Liyanage, J. LeRose, S. Malov, D. J. Margaziotis, J. W. Martin, K. McCormick, R. D. McKeown, K. McIlhany, Z.-E. Meziani, R. Michaels, G. W. Miller, E. Pace, T. Pavlin, G. G. Petratos, R. I. Pomatsalyuk, D. Pripstein, D. Prout, R. D. Ransome, Y. Roblin, M. Rvachev, A. Saha, G. Salmè, M. Schnee, T. Shin, K. Slifer, P. A. Souder, S. Strauch, R. Suleiman, M. Sutter, B. Tipton, L. Todor, M. Viviani, B. Vlahovic, J. Watson, C. F. Williamson, H. Witala, B. Wojtsekhowski, J. Yeh, and P. Zolnierczuk. Transverse Asymmetry AT' from the Quasielastic 3He-->(e-->,e') Process and the Neutron Magnetic Form Factor. Phys. Rev. Lett. 2000 (85): 2900-2904.
    [140] M. S. Albert, G. D. Cates, B. Driehuys, W. Happer, B. Saam, C. S. Springer, A. Wishnia. Biological Magnetic Resonance Imaging Using Hyperpolarized. Nature, 1994 (370): 199-201.
    [141] Middleton, R. D. Black, B. Saam, G. D. Cates, G. P. Cofer, R. Guenther, W. Happer, L. W. Hedlund, G. A. Johnson, K. Juvan K, and J. Swartz. MR Imaging with Hyperpolarized 3He Gas. Magn. Reson. Med., 1995 (33): 271-275.
    [142] S. D. Swanson, M. S. Rosen, K. P. Coulter, R. C. Welsh, T. E. Chupp. Distribution and Dynamics of Laser-Polarized ~(129)Xe Magnetization in Vivo. Magn. Reson. Med., 1999 (42):1137-1145.
    [143] M. M. Spence, S. M. Rubin, I. E. Dimitrov, E. J. Ruiz, D. E. Wemmer, A. Pines, S. Q Yao, F. Tian, and P. G.. Schultz. Functionalized Xenon as a Biosensor. Proc. Natl. Acad. Sci. U S A, 2001, 98(19): 10654-10657.
    [144] Z. Wu, W. Happer, M. Kitano, and J. Daniels. Experimental Studies of Wall Interactions of Adsorbed Spin-Polarized 131Xe Nuclei. Phys. Rev. A, 1990 (42): 2774-2784.
    [145] D. Raftery, H. Long, T. Meersmann, P. J. Grandinetti, L. Reven, and A. Pines. High-field NMR of Adsorbed Xenon Polarized by Laser Pumping. Phys. Rev. Lett., 1991 (66): 584-587.
    [146] B. M. Goodson, L. Kaiser, A. Pines. NMR and MRI of Laser-polarized Noble Gases in Molecules, Materials and Medicine, Magnetic Resonance and Brain Function:Approaches form Physics. IOP Press, 1999.
    [147] B. M. Goodson. Nuclear Magnetic Resonance of Laser-polarized Noble Gases in Molecules, Materials, and Organisms. J. Magn. Reson. 2002 (155): 157-216.
    [148] V. V. Terskikh, I. L. Moudrakovski, H. Du, C. L. Ratcliffe, J. A. Ripmeester. The ~(129)Xe Chemical Shift Tensor in a Silicalite Single Crystal from Hyperpolarized ~(129)Xe NMR Spectroscopy. J. Am. Chem. Soc., 2001 (123): 10399-10400.
    [149] L. Moudrakovski, L. –Q. Wang, T. Baumann, J. H. Satcher Jr., G. J. Exarhos, C. I. Ratcliffe, J. A. Ripmeester. Probing the Geometry and Interconnectivity of Pores in Organic Aerogels Using Hyperpolarized ~(129)Xe NMR Spectroscopy. J. Am. Chem. Soc., 2004 (126): 5052-5053.
    [150] Dubes, I. L. Moudrakovski, P. Shahgaldian, A. W. Coleman, C. I. Ratcliffe, J. A. Ripmeester. Distribution and Modification of Sorption Sites in Amphiphilic Calixarene-Based Solid Lipid Nanoparticles from Hyperpolarized ~(129)Xe NMR Spectroscopy. J. Am. Chem. Soc., 2004 (126): 6236-6237.
    [151] S. Verhulst, O. Liivak, M. H. Sherwood, H. –M Vieth, I. L. Chuang. Non-thermal Nuclear Magnetic Resonance Quantum Computing Using Hyperpoalrized Xenon. Appl. Phys. Lett. 2001 (79): 2480-2482.
    [152] X. Zhou, J. Luo, X. Sun, X. Zeng, M. Liu, W. Liu. Solid and Liquid ~(129)Xe NMR Signals Enhanced by Spin-exchange Optical Pumping Under Flow. Acta Physica Sinica, 2002 (51): 2221-2224.
    [153] A. Cherubini, G. S. Payne, M. O. Leach, A. Bifone. Hyperpolarising 13C for NMR Studies Using Laser-Polarised ~(129)Xe: SPINOE vs Thermal Mixing. Chem. Phys. Lett., 2003 (371): 640-644.
    [154] M. Haake, B. M. Goodson, D. D. Laws, E. Brunner,M. C. Cyrier, R. H. Havlin, A. Pines. NMR of Supercritical Laser-Polarized Xenon. Chem. Phys. Lett., 1998 (292): 686-690.
    [155] J. C. Leawoods, B. T. Saam, M. S. Conradi. Polarization Transfer Using Hyperpolarized, Supercritical Xenon. Chem. Phys. Lett., 2000 (327): 359-364.
    [156] S. Appelt, F. W. H?sing, S. Baer-Lang, N. J. Shah, B. Blümich. Proton Magnetization Enhancement of Solvents with Hyperpolarized Xenon in VeryLow-Magnetic Fields. Chem. Phys. Lett., 2001 (348): 263-269.
    [157] K. Bartik, M. Luhmer, S. J. Heyes, R. Ottinger and J. Reisse. Probing Molecular Cavities in α -Cyclodextrin Solutions by Xenon. J. Magn. Reson. B, 1995 (109): 164-168.
    [158] E. Brunner, R. Seydoux, M. Haake, A, Pines, and J. A. Reimer. Surface NMR Using Laser-Polarized ~(129)Xe under Magic Angle Spinning Conditions. J. Magn. Reson., 1998 (130): 145-148.
    [159] E. Brunner, M. Haake, A, Pines, J. A. Reimer, R. Seydoux. Enhancement of 13C NMR Signals in Solid C60 and C70 Using Laser-Polarized Xenon. Chem. Phys. Lett., 1998 (290): 112-116.
    [160] T. Pietra?, R. Seydoux, and A. Pines. Surface Selective 1H/29Si CP NMR by NOE Enhancement from Laser Polarized Xenon. J. Magn. Reson., 1998 (133): 299-303.
    [161] J. Smith, K. Knagge, L. J. Smith, E. MacNamara, and D. Raftery. Investigating Hyperpolarized ~(129)Xe and CPMAS for Spin Polarization Transfer to Surface Nuclei: a Model Study. J. Magn. Reson., 2002 (159): 111-125.Low-Magnetic Fields. Chem. Phys. Lett., 2001 (348): 263-269.
    [157] K. Bartik, M. Luhmer, S. J. Heyes, R. Ottinger and J. Reisse. Probing Molecular Cavities in α -Cyclodextrin Solutions by Xenon. J. Magn. Reson. B, 1995 (109): 164-168.
    [158] E. Brunner, R. Seydoux, M. Haake, A, Pines, and J. A. Reimer. Surface NMR Using Laser-Polarized ~(129)Xe under Magic Angle Spinning Conditions. J. Magn. Reson., 1998 (130): 145-148.
    [159] E. Brunner, M. Haake, A, Pines, J. A. Reimer, R. Seydoux. Enhancement of ~(13)C NMR Signals in Solid C60 and C70 Using Laser-Polarized Xenon. Chem. Phys. Lett., 1998 (290): 112-116.
    [160] T. Pietra?, R. Seydoux, and A. Pines. Surface Selective ~1H/~(29)Si CP NMR by NOE Enhancement from Laser Polarized Xenon. J. Magn. Reson., 1998 (133): 299-303.
    [161] J. Smith, K. Knagge, L. J. Smith, E. MacNamara, and D. Raftery. Investigating Hyperpolarized ~(129)Xe and CPMAS for Spin Polarization Transfer to Surface Nuclei: a Model Study. J. Magn. Reson., 2002 (159): 111-125.
    [15] B. C. Grover. Noble-Gas NMR Detection through Noble-Gas-Rubidium Hyperfine Contact Interaction. Phys. Rev. Lett., 1978 (40): 391-392.
    [16] X. Zeng, Z. Wu, T. Call, E. Miron, D. Schreiber and W. Happer. Experimental Determination of the Rate Constants for Spin Exchange between Optically Pumped K, Rb, and Cs atoms and ~(129)Xe Nuclei in Alkali-metal-Noble-gas Van der Waals Molecules. Phys. Rev. A, 1985 (31): 260-278.
    [17] G. D. Cates, R. J. Fitzgerald, A. S. Barton, P. Bogorad, M. Gatzke, N. R. Newbury, and B. Saam. Rb-~(129)Xe Spin-Exchange Rates Due to Binary and Three-Body Collisions at High Xe Pressures. Phys. Rev. A, 1992 (45): 4631-4639.
    [18] R. A. Bernheim. Spin Relaxation in Optical Pumping. J. Chem. Phys., 1962 (36): 135-140.
    [19] R. A. Bernheim. Optical Pumping. New York: Benjamin, 1965.
    [20] C. C. Bouchiat, M. A. Bouchiat, and L. C. L. Pottier. Evidence for Rb-Rare-Gas Molecules from the Relaxation of Polarized Rb Atoms in a Rare Gas. Theory. Phys. Rev., 1969 (181): 144-165.
    [21] M. A. Bouchiat, J. Brossel, and L. C. Pottier. Evidence for Rb-Rare-Gas Molecules from the Relaxation of Polarized Rb Atoms in a Rare Gas. Experimental Results. J. Chem. Phys., 1972 (56): 3703-3714.
    [22] M. E. Wagshul and T. E. Chupp. Laser Optical Pumping of High-Density Rb in Polarized 3He targets. Phys. Rev. A, 1994 (49): 3854-3869.
    [23] W. A. Fitzsimmons and G. K. Walters. Very Long Nuclear Spin Relaxation Times in Gaseous He3 by Suppression of He3-Surface Interactions. Phys. Rev. Lett., 1967 (19): 943-946.
    [24] W. A. Fitzsimmons, L. L. Tankersley, and G. K. Walters. Nature of Surface-Induced Nuclear-Spin Relaxation of Gaseous He3. Phys. Rev., 1969 (179): 156-165.
    [25] X. Zeng, E. Miron, W. A. Van Wijngaarden, David Schreiber and W. Happer. Wall Relaxation of Spin Polarized Xe-129 Nuclei. Phys. Lett. A, 1983 (96): 191-194.
    [26] B. Driehuys, G. D. Cates, and W. Happer. Surface Relaxation Mechanisms of Laser-Polarized ~(129)Xe. Phys. Rev. Lett., 1995 (74): 4943-4946.
    [27] L. D. Schearer and G. K. Walters. Nuclear Spin-Lattice Relaxation in the Presenceof Magnetic-Field Gradients. Phys. Rev., 1065 (139): A1309-A1402.
    [28] G. D. Cates, S. R. Schaefer, and W. Happer. Relaxation of Spins due to Field Inhomogeneities in Gaseous Samples at Low Magnetic Fields and Low Pressures. Phys. Rev. A, 1988 (37): 2877-2885.
    [29] W. J. Mullin, F. Lalo? and M. G. Richards. Longitudinal Relaxation Time for Dilute Quantum Gases. J. Low Temp. Phys., 1990 (80): 1-13.
    [30] N. R. Newbury, A. S. Barton, P. Bogorad, G. D. Cates, M. Gatzke, H. Mabuchi and B. Saam. Phys. Rev. A, 1993 (48): 558-568.
    [31] E. R. Hunt and H. Y. Carr. Nuclear Magnetic Resonance of Xe~(129) in Natural Xenon. Phys. Rev., 1963 (130): 2302-2305.
    [32] H. C. Torrey. Chemical Shift and Relaxation of Xe~(129) in Xenon Gas. Phys. Rev., 1963 (130): 2306-2312.
    [33] D. Brinkman, E. Brun, and H. H. Staub. Helv. Phys. Acta, 1962 (35): 431.
    [34] H. H. Staub. Helv. Phys. Acta, 1956 (29): 246. A. Abragam. The Principles of Nuclear Magnetism. London: Oxford University Press, 1961. 275.
    [35] X. Sun, H. Hu and X. Zeng. Enhanced NMR Signal from the Laser-Polarized ~(129)Xe Produced by Spin Exchange at a High Magnetic Field. Appl. Magn. Reson., 1999 (16): 363-372.
    [36] X. Zeng, C. Wu, M. Zhao, S. Li, L. Li, X. Zhang, Z. Liu and W. Liu. Laser-enhanced Low-pressure Gas NMR Signal from ~(129)Xe. Chem. Phys. Lett., 1991 (182): 538-540.
    [37] X. Sun, H. Hu, X. Zeng, X. A. Mao. ~(129)Xe Magnetic Resonance Imaging Experiments Using Laser Polarization in a High Magnetic Field. Chin. Phys. Lett., 1999 (16): 408-410.
    [38] M. S. Rosen, T. E. Chupp, K. P. Coulter, R. C. Welsh, and S. D. Swanson. Polarized ~(129)Xe Optical Pumping/Spin Exchange and Delivery System for Magnetic Resonance Spectroscopy and Imaging Studies. Rev. Sci. Instum., 1999 (70): 1546-1552.
    [39] H. Middleton, R. D. Black, B. Saam, G. D. Cates, G. P. Cofer, R. Guenther, W.Happer, L. W. Hedlund, G. A. Johnson, K. Juvan, et al. MR Imaging with Hyperpolarized 3He Gas. Magn. Reson. Med., 1995 (33): 271-275.
    [40] S. Zhang, B. H. Meier, S. Appelt, M. Mehring and R. R. Ernst. Transient Oscillations in Phase-Switched Cross-Polarization Experiments. J. Magn. Reson. A, 1993 (101): 60-66.
    [41] D. Levron. D. K. Walter, S. Appelt, R. J. Fitzgerald, D. Kahn, S. E. Korbly, K. L. Sauer, W. Happer, T. L. Earles. L. J. Mawst, D. Botez, M. Harvey, L. Dimarco, J. C. Connolly, H. E. M?ller, X. J. Chen, G. P. Cofer, and G. A. Johnson. Magnetic Resonance Imaging of Hyperpolarized ~(129)Xe Produced by Spin Exchange with Diode-Laser Pumped Cs. Appl. Phys. Lett., 1998 (73): 2666-2668.
    [42] H. J. Jonsch, T. Hof, U. Ruth, J. Schmidt, D. Stahl, and D. Fick. NMR of Surfaces: Sub-monolayer Sensitivity with Hyperpolarized Xe. Chem. Phys. Lett., 1998 (296): 146-150.
    [43] U. Ruth, T. Hof, J. Schmidt, D. Fick and H. J. Jonsch. Production of Nitrogen-Free, Hyperpolarized ~(129)Xe Gas. Appl. Phys. B, 1999 (68): 93-97.
    [44] N. N. Kuzma, B. Patton, K Raman and W. Happer. Fast Nuclear Spin Relaxation in Hyperpolarized Solid ~(129)Xe. Phys. Rev. Lett., 2002 (88): 147602.
    [45] Moudrakovski, S. R. Breeze, B. Simard, C. J. Ratcliffe, J. A. Ripmeester, T. Seideman, J. S. Tse, G. Santyr. Gas-phase Nuclear Magnetic Relaxation in ~(129)Xe Revisited. J. Chem. Phys., 2001 (114): 2173-2181.
    [46] K. L. Sauer. R. J. Fitzgerald. W. Happer. Laser-Polarized Liquid Xenon. Chem. Phys. Lett., 1997 (277): 153-158.
    [47] S. Appelt, F. W. Hosing, S. Baer-Lang, N. J. Shah, B. Blümich. Proton Magnetization Enhancement of Solvents with Hyperpolarized Xenon in Very Low-Magnetic Fields. Chem. Phys. Lett., 2001 (348): 263-269.
    [48] B. Driehuys, G. D. Cates, E. Miron, K. Sauer, D. K. Walter, and W. Happer. High-Volume Production of Laser-Polarized ~(129)Xe. Appl. Phys. Lett. 1996 (69): 1668-1670.
    [1] G. Suryan. Nuclear Magnetic Resonance and the Effect of the Methods of Observation. Current Sci. (indian), 1949 (18): 203.
    [2] N. Bloembergen, R. V. Pound. Radiation Damping in Magnetic Resonance Experiment. Phys. Rev., 1954 (95): 8-12.
    [3] C. R. Bruce, R. E. Norberg and G. E. Pake. Radiation Damping and Resonance Shapes in High Resolution Nuclear Magnetic Resonance. Phys. Rev., 1956 (104): 419-420.
    [4] S. Bloom. Effects of Radiation Damping on Spin Dynamics. J. Appl. Phys., 1957 (28): 800-805.
    [5] A. Szoeke and S. Meiboom. Radiation Damping in Nuclear Magnetic Resonance. Phys. Rev., 1959 (113): 585-596.
    [6] G. Feher, J. P. Gordon, E. Buehler, E. A. Gere, C. D. Thurmond. Spontaneous Emission of Radiation from an Electron Spin System. Phys. Rev., 1958 (109): 221-222.
    [7] P. F. Chester, P. E. Wagner, J. G. Castler, Jr. Two-Level Solid-State Maser. Phys. Rev., 1958 (110): 281-282.
    [8] A.Yariv. J. Appl. Phys., 1960 (31): 740-741.
    [9] P. B?siger, E. Brun and D. Meier. Solid State Nuclear Spin Flip Maser Pumped by Dynamic Nuclear Polarization. Phys. Rev. Lett., 1977 (38): 602-605.
    [10] A. Abragam. The Principles of Nuclear Magnetism. Oxford: Clarendon Press, 1961.
    [11] W. S. Warren, S. L. Hames and J. L. Bates. Dynamics of Radiation Damping in Nuclear Magnetic Resonance. J. Chem. Phys., 1989 (91): 5895-5904.
    [12] M. A. McCoy, W. S. Warren. Three Quantum Nuclear Magnetic Resonance Spectroscopy of Liquid Water. J. Chem. Phys., 1990 (93): 858-862.
    [13] W. S. Warren, Q. He, M.A. McCoy, F. C. Spano. Reply to Comment On: Is Multiple Quantum Nuclear Magnetic Resonance of Water Real? J. Chem. Phys. 1992 (96): 1659-1661.
    [14] J. Jeener, A. Vlassenbroek and P. Broekaert. Unified Derivation of the Dipolar Field and Relaxation Terms in the Bloch-Redfield Equation of Liquid NMR. J. Chem.Phys., 1995 (103): 1309-1332.
    [15] A. Vlassenbroek, J. Jeener and P. Broekaert. Radiation Damping in High Resolution Liquid NMR: A Simulation Study. J. Chem. Phys., 1995 (103): 5886-5897.
    [16] X. A. Mao, D. Wu and C. H. Ye. Radiation Damping Effects on NMR Singal Intensities. Chem. Phys. Lett., 1993 (204): 123-127.
    [17] X. A. Mao and C. H. Ye. J. Line Shape of Strongly Radiation-damped Nuclear Magnetic Resonance Signals. J. Chem. Phys., 1993 (99): 7455 -7462.
    [18] X. A. Mao, J. X. Guo and C. H. Ye. Nuclear-magnetic-resonance Theory in the presence of Radiation Damping. Phys. Rev. B, 1994 (49): 15702 -15711.
    [19] X. A. Mao, J. X. Guo and C. H. Ye. Competition between Radiation Damping and Transverse Relaxation Effects on NMR Signal Intensities. Chem. Phys. Lett., 1994 (218): 249-253.
    [20] X. A. Mao, J. X. Guo and C. H. Ye. Radiation Damping Effects on Spin-lattice Relaxation Time Measurements. Chem. Phys. Lett., 1994 (222): 417-421.
    [21] X. A. Mao, J. X. Guo and C. H. Ye. Radiation Damping Effects on Transverse Relaxation Time Measurements. Chem. Phys. Lett., 1994 (227): 65-68
    [22] J. X. Guo and X. A. Mao. Longitudinal Relaxation Effects on Transverse Magnetization and the Line Shape. Phys. Rev. B., 1994 (50): 13461-13466.
    [23] X. A. Mao and J. H. Chen. Radiation Damping Effects in Solvent Preirradiation Experiments in NMR Spectroscopy. Chem. Phys. Lett., 1996 (202): 357-366.
    [24] X. A. Mao and J. X. Guo. Mechanism of the Harmonic Peaks in Two-Dimensional Nuclear Magnetic Resonance Correlation Spectrum on Liquid Water. J. Phys. D. Appl. Phys., 1996 (29): 1595-1600.
    [25] X. A. Mao and J. X. Guo. Application of Radiation Damping Line Shape Shape Theory to Interpreting the Harmonic Peaks in Two Dimensional Spectra of Liquid Water. Bull. Magn. Reson., 1996 (18): 65-70.
    [26] J. X. Guo and X. A. Mao. Radiation Damping Induced Half-frequency-spaced Harmonic Peaks in Two-dimensional J-resolved NMR Spectrum on Liquid Water. J. Phys. II France, 1996 (6): 1183-1193.
    [27] J. H. Chen, X. A. Mao and C. H. Ye. Fractional-Frequency Peaks in Two-Pulse 2DExperiments under Strong Radiation Damping. J. Magn. Reson. A, 1996 (123): 126-130.
    [28] 陈金鸿, 毛希安. 脉冲梯度场NMR实验中的弛豫和辐射阻尼效应. 波谱学杂志, 1996 (13): 547-556.
    [29] J. H. Chen, X. A. Mao and C. H. Ye. Intensity Jumping and Beating in Inversion-Recovery Experiments of Water Due to Radiation Damping. J. Magn. Reson., 1997 (124): 490-494.
    [30] J. H. Chen and X. A. Mao. Simulation of the radiation damping artifacts in 2D COSY NMR experiments using the Q-switch technique. Chem. Phys. Lett., 1997 (274): 549-553.
    [31] J. H. Chen and X. A. Mao. Measurement of Chemical Exchange Rate Constants with Solvent Protons Using Radiation Damping. J. Magn. Reson., 1998 (131): 358-361.
    [32] P. Berthault, H. Desvaux, G. L. Goff and M. Pétro. A Simple Way to Properly Invert Intense Nuclear Magnetization: Application to Laser-polarized Xenon. Chem. Phys. Lett., 1999 (314): 52-56.
    [33] W. S. Warren, W. Richter, A. H. Andreotti and II B. T. Farmer. Generation of Impossible Cross-Peaks Between Bulk Water and Biomolecules in Solution NMR. Science, 1993 (262): 2005-2209.
    [34] J. Jeener. Dynamical Effects of the Dipolar Field Inhomogeneities in High-Resolution NMR: Spectral Clustering and Instabilities. Phys. Rev. Lett., 1999 (82): 1772-1775.
    [35] K. L. Sauer, F. Marion, P. J. Nacher and G. Tastevin. NMR Instabilities and Spectral Clustering in Laser-Polarized Liquid Xenon. Phys. Rev. B, 2001 (63): 184427-1.
    [36] J. Zhou, M. Susumui, C. M. van Zijl Peter. FAIR Excluding Radiation Damping (FAIRER). Magn. Reson. Med., 1998 (40): 712-719.
    [37] G. P. Wong, C. H. Tseng, V. R. Pomeroy, R. W. Mair, D. P. Hinton, D. Hoffmann, R. E. Stoner, F. W. Hersman, D. G. Cory and R. L. Walsworth. A System for Low Field Imaging of Laser-Polarized Noble Gas. J. Magn. Reson., 1999 (141): 217-227.
    [38] T. R. Gentile, D. R. Rich, A. K. Thompson, W. M. Snow and G. L. Jones.Compressing Spin-Polarized ~3He With a Modified Diaphragm Pump. J. Res. Natl. Inst. Stand. Technol., 2001 (106): 709-729.
    [39] A. Wong-Foy, S. Saxena, A. J. Moulé, H. L. Bitter, J. A. Seeley, R. McDermott, J. Clarke and A. Pines. Laser-Polarized 129Xe NMR and MRI at Ultralow Magnetic Fields. J. Magn. Reson., 2002 (157): 235-241.
    [40] R. E. Stoner, M. A. RosenBerry, J. T. Wrigth. T. E. Chupp. E. R. Oteiza, and R. L. Walsworth. Demonstration of Two Species Noble Gas Maser. Phys. Rev. Lett., 1996 (77): 3971-3974.
    [41] D. Bear, R. E. Stoner, R. L. Walsworth, V. A. Kostelecky and C. D. Lane. Limit on Lorentz and CPT Violation of the Neutron Using a Two-Species Noble-Gase Maser. Phys. Rev. Lett., 2000 (85): 5038-5041. Erratum: Limit on Lorentz and CPT Violation of the Neutron Using a Two-Species Noble-Gase Maser. Phys. Rev. Lett., 2002 (89): 209902-1.
    [42] A. S. Verhulst, O. Liivak, M. H. Sherwood and I. L. Chung. A Rapid and Precise Probe for Measurement of Liquid Xenon Polarization. J. Magn. Reson., 2002 (155): 145-149.
    [43] 毛希安. 核磁共振中的辐射阻尼效应. 北京:科学出版社, 1998.
    [44] K. Chandrasekharan. Classical Fourier Transformation. Berlin: Springer, 1989.
    [45] X. Zeng, Z. Wu, T. Call, E. Miron, D. Schreiber and W. Happer. Experimental Determination of the Rate Constants for Spin Exchange between Optically Pumped K, Rb, and Cs atoms and 129Xe Nuclei in Alkali-metal-Noble-gas Van der Waals Molecules. Phys. Rev. A, 1985 (31): 260-278.
    [46] A. Moschos and J. Reisse. Nuclear Magnetic Relaxation of Xenon-129 Dissolved in Organic Solvents. J. Magn. Reson., 1991 (95): 603-606.
    [47] Stith, T. K. Hitchens, D. P. Hinton, S. S. Berr, B. Driehuys, J. R. Brookeman, R. G. Bryant. Consequences of 129Xe–1H Cross Relaxation in Aqueous Solutions. J. Magn. Reson., 1999 (139): 225-231.
    [48] X. Zhou, J. Luo, X. P. Sun, X. Z. Zeng, S. W. Ding, M. S. Zhan and M. L. Liu. Experiment and Dynamic Simulation of Radiation Damping of Laser-polarized Liquid 129Xe at Low Magnetic Field in a Flow System. Appl. Magn. Reson., 2004(26): 327-337.
    [49] X. Zhou, X. P. Sun, J. Luo, X. Z. Zeng, M. L. Liu and M. S. Zhan. Production of Hyerpolarized ~(129)Xe Gas without Nitrogen by Optical Pumping at ~(133)Cs D)2 Line in Flow System. Chin. Phys. Lett., 2004 (21): 1501-1503.
    [1] X. Zhou, J. Luo, X. Sun, X. Zeng, S. Ding, M. Liu, and M. S. Zhan. Enhancement of Solid-State Proton NMR via SPINOE with Laser-Polarized Xenon. Phys. Rev. B. (resubmitted the revised manuscript).
    [2] R. C. Weast. CRC Handbook of Chemistry and Physics, 55th edition. Cleveland: CRC Press, 1974. B1 and B95.
    [3] N. N. Kuzma, B. Patton, K. Raman, and W. Happer. Fast Nuclear Spin Relaxation in Hyperpolarized Solid ~(129)Xe. Phys. Rev. Lett., 2002 (88): 147602.
    [4] G. Navon, Y. –Q. Song, T. Room, S. Appelt, R. E. Taylor, A. Pines. Enhancement of Solution NMR and MRI with Laser-Polarized Xenon. Science, 1996 (271): 1848-1851.
    [5] A. Abragam. Principles of Nuclear Magnetism. New York: Oxford University Press, 1961. 264-353.
    [6] Y. -Q. Song. Spin Polarization-Induced Nuclear Overhauser Effect: An Application of Spin-Polarized Xenon and Helium. Concepts Magn. Reson., 2000 (12): 6-20.
    [7] I. Solomon. Relaxation Processes in a System of Two Spins. Phys. Rev., 1955 (99): 559-565.
    [8] X. Zhou, J. Luo, X. Sun, X. Zeng, M. Liu, W. Liu. Solid and Liquid ~(129)Xe NMR Signals Enhanced by Spin-exchange Optical Pumping Under Flow. Acta Physica Sinica, 2002 (51): 2221-2224.
    [9] T. Pietrao, R. Seydoux, and A. Pines. Surface Selective 1H/29Si CP NMR by NOE Enhancement from Laser Polarized Xenon. J. Magn. Reson., 1998 (133): 299-303.
    [10] Private communication with Dr. Stephan Appelt.
    [11] R. J. Fitzgerald, K. L. Sauer, W. Happer. Cross-Relaxation in Laser-Polarized Liquid Xenon. Chem. Phys. Lett., 1998 (284): 87-92.
    [12] G. D. Cates, D. R. Benton, M. Gatzke, W. Happer, K. C. Hasson, and N. R. Newbury. Laser Production of Large Nuclear-Spin Polarization in Frozen Xenon. Phys. Rev. Lett., 1991 (65): 2591-2594.
    [13] A. Cherubini, A. Bifone. Hyperolarised Xenon in Biology. Prog. Nucl. Magn. Reson. Spectrosc., 2003 (42): 1-30.
    [14] X. Zhou, X. Sun, J. Luo, X. Zeng, M. Liu, and M. S. Zhan. Production of Hyerpolarized 129Xe Gas without Nitrogen by Optical Pumping at 133Cs D2 line in Flow system. Chin. Phys. Lett., 2004 (21): 1501-1503.
    [1] 遍及全球的布鲁克分析仪器. 激光生物学报, 1998 (7): 76-77.
    [2] 刘朝阳, 谭萍, 裘鉴卿, 叶朝辉. Bruker MSL 系列核磁谱仪的数字化改造. 分析测试技术与仪器, 2000 (6):8-11.
    [3] 刘朝阳, 谭萍, 裘鉴卿, 叶朝辉. 核磁共振谱仪数字化接受机的原理与实现. 波谱学杂志, 2000 (17):161-165.
    [4] 方可, 周建威, 谭萍, 刘朝阳, 曾凡明, 邱衍军, 裘鉴卿, 叶朝辉. 动态核极化谱仪的技术改造. 波谱学杂志, 2000, (17):259-263.
    [5] 谭萍, 刘朝阳, 张岩, 方可, 裘鉴卿. DSP 技术在核磁共振数据系统中的应用. 波谱学杂志, 2000, (17):167-172.
    [6] 王竹云. PC-120 核磁共振谱仪常见故障排除方法. 分析仪器, 2002 (4): 40-41.
    [7] 张承凡. UNITY-400 超导核磁共振波谱仪锁通道故障维修几例. 分析测试技术与仪器, 1999 (5):59-60.
    [8] 张玉良. 核磁共振谱仪中干扰信号的查找与排除. 分析测试仪器通讯, 1997 (4): 247-248.
    [9] Bruker AC (AF) Preliminary Version Installation Manual. Bruker: Rheinstetten- Forchheim, 1989.
    [10] Bruker AC-80 Power Supply. Bruker: Rheinstetten-Forchheim, 1989.
    [11] Bruker Computer ASPECT-3000. Bruker: Rheinstetten-Forchheim, 1989.
    [12] Bruker AC-80 2H-Lock. Bruker: Rheinstetten-Forchheim, 1989.
    [13] Bruker Shim Power Supply BSN-16. Bruker: Rheinstetten-Forchheim, 1989.
    [14] Bruker AC-80 System Control Microprocessor FE. Bruker: Rheinstetten-Forchheim, 1989.
    [15] Bruker AC-80 Wiring Diagram. Bruker: Rheinstetten-Forchheim, 1989.
    [16] Bruker AC-80 Graphic Display Processor. Bruker: Rheinstetten-Forchheim, 1989.
    [17] Bruker AC-80 Pulse Transmitter. Bruker: Rheinstetten-Forchheim, 1989.
    [18] Bruker AC-80 Probehead Preamplifier and Filter. Bruker: Rheinstetten-Forchheim, 1989.
    [19] Bruker AC-80 Buffer and Mixer/ PTS F1/F2 Interface. Bruker: Rheinstetten-Forchheim, 1989.
    [20] D. I. Hoult, R. E. Richards. The Signal-to-Noise Ratio of the Nuclear Magnetic Resonance Experiment. J. Magn. Reson., 1976 (24): 71-85.
    [21] M. E. Stoll, A. J. Vega, and R. W. Vaughan. Simple Single-Coil Double Resonance NMR Probe for Solid State. Rev. Sci. Instrum., 1977 (48): 800-803.
    [22] F. D. Doty, G. Entzminger, Y. A. Yang. Magnetism in High-Resolution NMR Probe Design. I: General methods. Concepts Magn. Reson., 1998 (10): 133-156.
    [23] F. D. Doty, T. J. Connick, X. Z. Ni, M. N. Clingan. Noise in High Power, High Frequency Double Tuned Probes. J. Magn. Reson., 1988 (77): 536-549.
    [24] J. R. Fitzsimmons, H. R. Brooker, B. A. Beck Transformer-Coupled Double-Resonant Probe for NMR Imaging and Spectroscopy. Magn. Reson. Med., 1987 (5): 471-477.
    [25] F. D. Doty, G. Entzminger, C. D. Hauck. Error-Tolerant RF Litz Coils for NMR /MRI. J. Magn. Reson., 1999 (140): 17-31.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700