CD147、MCT1在人脑胶质瘤中的表达及CD147单抗对U251细胞代谢干预的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:
     本研究通过免疫组化方法检测人脑胶质瘤中MCT1和CD147的表达,探讨其表达与肿瘤级别的关系;并在体外试验中使用CD147基因工程单抗影响胶质瘤细胞表面MCT1的表达,观察它对肿瘤细胞内环境的干扰、对糖酵解代谢影响和抑制肿瘤细胞生长的作用。
     方法:
     一.标本来源:收集四川大学华西医院1998年9月至2000年9月间60例脑胶质瘤标本,分为低级别胶质瘤组(28例)和高级别胶质瘤组(32例),对照组10例为内减压术中切除的正常脑组织。体外实验采用U251人胶质母细胞瘤细胞株进行细胞培养。
     二.主要试剂:MCT1,CD147均为鼠抗人单克隆抗体、S-P免疫组化试剂盒、DAB显色试剂盒、FITC羊抗鼠免疫荧光二抗、CD147基因工程单抗。
     三.方法:将胶质瘤和对照脑组织标本制成石蜡切片并进行免疫组化染色,检测低、高级别胶质瘤和对照标本MCT1和CD147的表达水平。U251细胞分为对照组,低剂量组和高剂量组,培养中分别加入不同剂量的CD147基因工程单抗封闭细胞表面CD147分子,用免疫荧光法检测各组细胞膜上MCT1表达分布情况,并用分光光度计检测各组细胞
OBJECTIVE:
    The present study was to explore the expression level of CD147 and MCT1 in human glioma cell,especially the diffirence of expression level between hige and low grade gliomas by using immunohistochemical localization.CD147 genetic engineering antibody is used to influence the expression of MCT1 on u251 cells,so that the lactic acid metabolism will be disturbed and cell growth will be delayed. MATERIALS AND METHODS
    1.specimens: from September 1998 to September 2000,60 surgical specimens were obtained from patients with gliomas,including 34 males and 26 females,ranging in age from 23 to 77 years(mean 58.2).There were 28 low grade and 32 high grade gliomas,according to the WHO classification.All specimens were fixed with 4% paraform and embedded in paraffin,and were routine serial section with the thickness of 4μm.
引文
1. Poole RC, Halestrap AP. Transport of lactate and other monocaboxylates across mammalian plasma membranes. Am J Phsiol 1993, 264(p1):761-782.
    2. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999, 343(P2):281-299.
    3. Kraus M, Wolf B. Implications of acidic tumor microenviroment for neoplastic growth and cancer treatment:a computer analysis. Tumour Biol 1996, 17:133-154.
    4. Bouzier AK, Voisin P, Goodwin R. et al. Glucose and lactate metabolism in C6 glioma cells: evidence for the preferential utilization of lactate for cell oxidative metabolism. Dev Neurosci 1998, 20, :331-338.
    5. Yamagata M, Hasuda K, Stamato T. et al. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 1998, 77:1726-1731.
    6. Wilson MC, Meredith D, Halestrap AP. Fluorescence resonance energy transfer studie, s on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem. 2002 1, 277(5):3666-3672.
    7. Mac M, Nalecz KA. Expression of monocarboxylic acid transporters (MCT) in brain cells. Implication for branched chain alpha-ketoacids transport in neurons. Neurochem Int. 2003 ;43(4-5):305-309.
    8 . Ishibashi Y, Matsumoto T, Niwa M,et al. CD147 and matrix metalloproteinase-2 protein expression as significant prognostic factors in esophageal squamous cell carcinoma. Cancer. 2004;101(9): 1994-2000.
    9. Saier MH. Computer-aided analyses of transport protein sequence-gloaning evidence concerning function,structure,biogenesis and evolution. Microbiology 1994,58(1):71-93.
    10. Brier, S, Schneider, HP, Brier, A,et al. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J 1998, 333: 167-174.
    11. Wilson, MC, Jackson, VN, Heddle C,et al. Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J Biol Chem 1998 ,273:15920-15926.
    12. Jocelyn E. Manning F, David M,et al. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 2000, 529(2): 285-293.
    13. Carsten J, Andrew P.,Halestrap AP. Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. J Physiol 1999, 517(3):633-642.
    14. Price NT,Jackson VN,Halestrap AP. Cloning and sequencing of four new mammalian monocaboxylate transporter(MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J 1998,329(p2):321-328.
    15. Jackson VN,Price NT,Carpenter L,et al. Cloning of the monocaboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissue is species-specific and may involve post-transcriptional regulation. Biochem J. 1997,324(p2):447-453.
    16. Fishbein WN, Merezhinskaya N, Foellmer JW. Relative distribution of three major lactate transporters in frozen human tissues and their localization in unfixed skeletal muscle. Muscle Nerve. 2002 ,26(1): 101-112.
    17. Sepponen K, Koho N, Puolanne E,et al. Distribution of monocarboxylate transporter isoforms MCT1, MCT2 and MCT4 in porcine muscles. Acta Physiol Scand. 2003 ,177(1):79-86.
    18. Rafiki A, Boulland JL, Halestrap AP,et al. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience. 2003,122(3):677-688.
    19. Baud O, Fayol L, Gressens P,et al. Perinatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain. J Comp Neurol. 2003;20:465(3):445-454.
    20. Bergersen L, Rafiki A, Ottersen OP. Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem Res. 2002 ,27(1-2):89-96.
    21. Leino RL, Gerhart DZ, Drewes LR. Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res Dev Brain Res. 1999 12,113(1-2):47-54.
    22. Hajduch E, Heyes RR, Watt PW,et al. Lactate transport in rat adipocytes: identification of monocarboxylate transporter 1 (MCT1) and its modulation during streptozotocin-induced diabetes. FEB S Lett. 2000 A18;479(3):89-92.
    23. Gladden LB. Muscle as a consumer of lactate. Med Sci Sports Exerc. 2000, 32(4):764-71.
    24. McCullagh, KJA., Poole, RC., Halestrap, AR, et al. Role of the lactate transporter (MCT1) in skeletal muscles. Am J Physiol, 1996, 271: 143-150.
    25. Bonen A, McCullagh KJA, Putman CT, et al. Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate. Am J Physiol 1998, 274: 102-107.
    26. Bouzier AK, Voisin P, Goodwin R. et al. Glucose and lactate metabolism in C6 glioma cells: evidence for the preferential utilization of lactate for cell oxidative metabolism. Dev Neurosci 1998, 20,:331-338.
    27. Kraus M, Wolf B. Implications of acidic tumor microenviroment for neoplastic growth and cancer treatment:a computer analysis. Tumour Biol 1996, 17:133-154.
    28. Isidoro, Antonio, Casado,et al. Breast carcinomas fulfill the Warburg hypothesis and provide metabolic markers of cancer prognosis Carcinogenesis. 2005;26(12):2095-104.
    29. Yamagata M, Hasuda K, Starnato T, et al. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer. 1998;77(11): 1726-31.
    30. Wahl ML, Owen JA, Burd R, et al. Regulation of intracellular pH in human melanoma: potential therapeutic implications. Mol Cancer Ther. 2002;1(8):617-28.
    31.杨光华,李甘地。肿瘤生长的生物学。《病理学》人民卫生出版社 1998年6月
    32. Froberg MK, Gerhart DZ, Enerson BE, et al. Expression ofmonocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. Neuroreport. 2001, 12(4):761-765
    33.吴承远,许如军,陈立云等。胶质瘤。《临床神经外科学》人民卫生出版社,2001年3月。
    34. Kuno N, Kadomatsu K, Fan QW, et al. Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEBS Lett. 1998;27:425(2): 191-194.
    35. Berditchevski F, Chang S, Bodorova J,et al. Generation of monoclonal antibodies to integrin-associated proteins. Evidence that alpha3betal complexes with EMMPRIN/basigin/OX47/M6. J Biol Chem. 1997;14:272(46):29174-29180.
    36. Pushkarsky T, Zybarth G, Dubrovsky L, et al. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A. 2001;22:98(11):6360-6365.
    37. Chen Z, Mi L, Xu J, et al. Function of HAblSG/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis. 2005; 1:191(5):755-760.
    38. Koch C, Staffler G, Huttinger R, et al. T cell activation-associated epitopes of CD147 in regulation of the T cell response, and their definition by antibody affinity and antigen density. Int Immunol. 1999;11(5):777-786.
    39. Bauer EA, Pentland AP, Kronberger A,et al. Kerotinocyte and tumor-derived inducer of collagenase. J. Ann NY. Acad. Sci. 1988; 548: 174—179.
    40. Guo H, Zucker S, Gordon MK, et al. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem. 1997; 3;272(1):24-27.
    41. Lira M, Martinez T, Jablons D, et al. Tumor-derived EMMPRIN (extracellular matrix metalloproteinase inducer) stimulates collagenase transcription through MAPK p38. FEBS Lett. 1998; 11;441(1):88-92.
    42. Guo H, Li R, Zucker S,et al. EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res. 2000; 15:60(4):888-891.
    43. Halestrap AP, Wang X, Poole RC, et al. Lactate transport in heart in relation to myocardial ischemia. Am J Cardiol. 1997;80(3A): 17A-25A.
    44. Gerhart DZ, Leino RL, Drewes LR. Distribution of monocarboxylate transporters MCT1 and MCT2 in rat retina. Neuroscience. 1999;92(1):367-75.
    45. Kirk P, Wilson MC, Heddle C,et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 2000;19(15):3896-904.
    46. Sameshima T, Nabeshima K, Toole BP, et al. Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Virchows Arch. 2003;442(6):577-84.
    47. Sameshima T, Nabeshima K, Toole BP, et al. Expression of emmprin (CD147), a cell surface inducer of matrix metalloproteinases, in normal human brain and gliomas. Int J Cancer. 2000;88(1):21-7.
    48.大星章一,管野晴夫主编。人癌细胞培养。科学出版社1979年2月。
    49.司徒镇强,吴军正主编。细胞培养。世界图书出版社 1996年12月。
    50. Pilegaard, H, Juel, C, Wibrand F. Lactate transport studied in sarcolemmal giant vesicles from rats: effect of training. Am J Physiol 1993, 264:156-160.
    51. Pilegaard H, Mohr T, Kjor M,et al. Lactate/H+ transport in skeletal muscle from spinal cord injured patients. Sc J Med and Sci in Sports 1998, 8:98-101.
    52. Fanelli A, Grollman EF, Wang D,et al. MCT1 and its accessory protein CD147 are differentially regulated by TSH in rat thyroid cells. Am J Physiol Endocrinol Metab. 2003, 285(6):1223-1229.
    53. Wang Y, Tonouchi M, Miskovic D,et al. T3 increases lactate transport and the expression of MCT4, but not MCT1, in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2003, 285(3):622-628.
    54.陈忠平,周旺宁。我国胶质瘤诊断治疗现状和努力方向。中国肿瘤2005年02期4—6。
    55.黄勇,窦科峰,蒋建利等。肝癌相关抗原HAbl8G对小鼠成纤维细胞分泌基质金属蛋白酶2、9的影响。中华外科杂志2004年24期33—37。
    56. Barklay A, Brown M, Law S, et al. The leukocyte antigen factsbook. 2nd edu Academic Press, London, 1997.
    57. Billat VL, Sirvent P, Py G,,et al. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med. 2003, 33(6):407-26.
    58.黄桂君,钱桂生,成党校。单羧酸转运蛋白基因对肿瘤细胞内pH值及生长特性的调节作用。中华结核和呼吸杂志2001年11期41—46。
    59. Mathupala SP, Parajuli P, Sloan AE. Silencing of monocarboxylate transporters via small interfering ribonucleic acid inhibits glycolysis and induces cell death in malignant glioma: an in vitro study. Neurosurgery. 2004;55(6): 1410-9.
    60. Ochrietor J, Moroz M, Kadamatsu K, et al. Retinal degeneration following failed photoreceptor maturation in 5A11/Basigin null mice. Exp-Eye-Res. 2001;72(4): 467-77.
    61. Coss RA, Storck CW, Daskalakis C, et al. Intracellular acidification abrogates the heat shock response and compromises survival of human melanoma cells. Mol Cancer Ther. 2003;2(4):383-8.
    62.张桂芝,黄桂君,成党校等。抑制人肺腺癌细胞MCT1基因的表达对其增殖、凋亡的影响 中国肿瘤生物治疗杂志 2002年02期56—60。
    1. Poole RC, Halestrap AP. Transport of lactate and other monocaboxylates across mammalian plasma membranes. Am J Phsiol 1993, 264(p1):761-782.
    2. Gould G W, Holman GD. The glucose transporter family:structure, function and tissue-specific expression. Biochem J 1993, 295(2):329-341.
    3. Saier MH. Computer-aided analyses of transport protein sequence-gloaning evidence concerning function, structure, biogenesis and evolution. Microbiology 1994,58(1):71-93.
    4. Price NT,Jackson VN,Halestrap AP. Cloning and sequencing of four new mammalian monocaboxylate transporter(MCT) homologues confirms the existence of a transporter family with an ancient past. Biochem J 1998,329(p2):321-328.
    5. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999,343( P2):281-299.
    6. Jackson VN,Price NT,Carpenter L,et al. Cloning of the monocaboxylate transporter isoform MCT2 from rat testis provides evidence that expression in tissue is species-specific and may involve post-transcriptional regulation. Biochem J. 1997,324(p2):447-453.
    7. Fishbein WN, Merezhinskaya N, Foellmer JW. Relative distribution of three major lactate transporters in frozen human tissues and their localization in unfixed skeletal muscle. Muscle Nerve. 2002 ,26(1):101-112.
    8. Sepponen K, Koho N, Puolanne E,et al. Distribution of monocarboxylate transporter isoforms MCT1, MCT2 and MCT4 in porcine muscles. Acta Physiol Scand. 2003 ,177(1):79-86.
    9. Rafiki A, Boulland JL, Halestrap AP,et al. Highly differential expression of the monocarboxylate transporters MCT2 and MCT4 in the developing rat brain. Neuroscience.2003,122(3):677-688.
    10. Baud O, Fayol L, Gressens P,et al. Perinatal and early postnatal changes in the expression of monocarboxylate transporters MCT1 and MCT2 in the rat forebrain. J Comp Neurol. 2003;20:465(3):445-454.
    11. Bergersen L, Rafiki A, Ottersen OP. Immunogold cytochemistry identifies specialized membrane domains for monocarboxylate transport in the central nervous system. Neurochem Res. 2002 ,27(l-2):89-96.
    12. Billat VL, Sirvent P, Py G,et al. The concept of maximal lactate steady state: a bridge between biochemistry, physiology and sport science. Sports Med. 2003,33(6):407-26.
    13. Leino RL, Gerhart DZ, Drewes LR. Monocarboxylate transporter (MCT1) abundance in brains of suckling and adult rats: a quantitative electron microscopic immunogold study. Brain Res Dev Brain Res. 1999 12,113(1-2):47-54.
    14. Gladden LB. Muscle as a consumer of lactate. Med Sci Sports Exerc. 2000,32(4):764-71.
    15. McCullagh, KJA., Poole, RC, Halestrap, AP.,et al. Role of the lactate transporter (MCT1) in skeletal muscles. Am J Physiol ,1996,271: 143-150.
    16. Kraus M,Wolf B. Implications of acidic tumor microenviroment for neoplastic growth and cancer treatment:a computer analysis. Tumour Biol 1996,17:133-154.
    17. Bouzier AK, Voisin P, Goodwin R. et al. Glucose and lactate metabolism in C6 glioma cells: evidence for the preferential utilization of lactate for cell oxidative metabolism.Dev Neurosci 1998,20:331-338.
    18. Yamagata M, Hasuda K, Stamato T. et al. The contribution of lactic acid to acidification of tumours: studies of variant cells lacking lactate dehydrogenase. Br J Cancer 1998, 77:1726-1731.
    19. Froberg MK, Gerhart DZ, Enerson BE,et al. Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. Neuroreport. 2001,12(4):761-765.
    20. 黄桂君,钱桂生,成党校等。中华结核和呼吸杂志20014, 24 (11): 666- 670。
    21. Brier, S, Schneider, HP, Brier, A,et al. Characterization of the monocarboxylate transporter 1 expressed in Xenopus laevis oocytes by changes in cytosolic pH. Biochem J 1998, 333: 167-174.
    22. Wilson, MC, Jackson, VN, Heddle C,et al. Lactic acid efflux from white skeletal muscle is catalyzed by the monocarboxylate transporter isoform MCT3. J Biol Chem 1998 ,273:15920-15926.
    23. Jocelyn E. Manning F, David M,et al. Characterisation of human monocarboxylate transporter 4 substantiates its role in lactic acid efflux from skeletal muscle. J Physiol 2000, 529(2): 285-293.
    24. Carsten J, Andrew P.,Halestrap AP. Lactate transport in skeletal muscle - role and regulation of the monocarboxylate transporter. J Physiol 1999, 517(3):633-642.
    25. Pilegaard, H, Juel, C, Wibrand F. Lactate transport studied in sarcolemmal giant vesicles from rats: effect of training. Am J Physiol 1993, 264:156-160.
    26. Juel C, Pilegaard H. Lactate/H+ transport kinetics in rat skeletal muscle related to fibre type and changes in transport capacity. Pfliigers Archiv 1998 436:560-564.
    27. Bonen A, McCullagh KJA, Putman CT,et al. Short-term training increases human muscle MCT1 and femoral venous lactate in relation to muscle lactate. Am J Physiol 1998, 274: 102-107.
    28. Pilegaard H, Mohr T, Kjor M,et al. Lactate/H+ transport in skeletal muscle from spinal cord injured patients. Sc J Med and Sci in Sports 1998, 8:98-101.
    29. Wilson MC, Meredith D, Halestrap AP. Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem. 2002 l,277(5):3666-3672.
    30. Kirk P, Wilson MC, Heddle C,et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 2000 1,19(15):3896-3904.
    31. Fanelli A, Grollman EF, Wang D,et al. MCT1 and its accessory protein CD147 are differentially regulated by TSH in rat thyroid cells. Am J Physiol Endocrinol Metab. 2003 ,285(6):1223-1229.
    32. Wang Y, Tonouchi M, Miskovic D,et al. T3 increases lactate transport and the expression of MCT4, but not MCT1, in rat skeletal muscle. Am J Physiol Endocrinol Metab. 2003 ,285(3):622-628.
    1.陈志南,杨志,米力。肝癌相关因子HAb18G结构和功能分析。细胞与分子免疫学杂志1999年01期12-15。
    2. Bauer EA,Pentland AP,Kronberger A,et al. Kerotinocyte and tumor-derived inducer of collagenase. J.Ann NY.Acad.Sci. 1988; 548: 174-179
    3. Guo H, Zucker S, Gordon MK,et al. Stimulation of matrix metalloproteinase production by recombinant extracellular matrix metalloproteinase inducer from transfected Chinese hamster ovary cells. J Biol Chem. 1997; 3;272(1):24-27.
    4. Lim M, Martinez T, Jablons D,et al. Tumor-derived EMMPRIN (extracellular matrix metalloproteinase inducer) stimulates collagenase transcription through MAPK p38. FEBS Lett. 1998; 11;441(1):88-92.
    5. Guo H, Li R, Zucker S,et al. EMMPRIN (CD147), an inducer of matrix metalloproteinase synthesis, also binds interstitial collagenase to the tumor cell surface. Cancer Res. 2000; 15:60(4):888-891.
    6. Sameshima T, Nabeshima K, Toole BP,et al. Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Lett. 2000; 1:157(2): 177-184.
    7. Froberg MK, Gerhart DZ, Enerson BE,et al. Expression of monocarboxylate transporter MCT1 in normal and neoplastic human CNS tissues. 2001;26:12(4):761-765.
    8. Wilson MC, Meredith D, Halestrap AP. Fluorescence resonance energy transfer studies on the interaction between the lactate transporter MCT1 and CD147 provide information on the topology and stoichiometry of the complex in situ. J Biol Chem. 2002 l;277:(5):3666-3672.
    9. Kirk P, Wilson MC, Heddle C,et al. CD147 is tightly associated with lactate transporters MCT1 and MCT4 and facilitates their cell surface expression. EMBO J. 2000;1:19(15):3896-3904.
    10. Halestrap AP, Price NT. The proton-linked monocarboxylate transporter (MCT) family: structure, function and regulation. Biochem J. 1999;343:( P2):281-299.
    11. Kuno N, Kadomatsu K, Fan QW,et al. Female sterility in mice lacking the basigin gene, which encodes a transmembrane glycoprotein belonging to the immunoglobulin superfamily. FEBS Lett. 1998 ;27:425(2):191-194.
    12. Berditchevski F, Chang S, Bodorova J,et al. Generation of monoclonal antibodies to integrin-associated proteins. Evidence that alpha3betal complexes with EMMPRIN/basigin/OX47/M6. J Biol Chem. 1997 ;14:272(46):29174-29180.
    13. DeCastro R, Zhang Y, Guo H,et al. Human keratinocytes express EMMPRIN, an extracellular matrix metalloproteinase inducer. J Invest Dermatol. 1996;106:(6):1260-1265.
    14. Fan QW, Yuasa S, Kuno N,et al. Expression of basigin, a member of the immunoglobulin superfamily, in the mouse central nervous system. Neurosci Res. 1998;30:(1):53-63.
    15. Pushkarsky T, Zybarth G, Dubrovsky L,et al. CD147 facilitates HIV-1 infection by interacting with virus-associated cyclophilin A. Proc Natl Acad Sci U S A. 2001;22:98(11):6360-6365.
    16. Chen Z, Mi L, Xu J,et al. Function of HAb18G/CD147 in invasion of host cells by severe acute respiratory syndrome coronavirus. J Infect Dis. 2005;1:191(5):755-760.
    17 . Friedman SL. Cytokines and fibrogenesis. Semin Liver Dis. 1999;,19(2):129-140.
    18. Koziel MJ. Cytokines in viral hepatitis. Semin Liver Dis. 1999; 19(2): 157-169.
    19. Koch C, Staffler G, Huttinger R,et al. T cell activation-associated epitopes of CD147 in regulation of the T cell response, and their definition by antibody affinity and antigen density. Int Immunol. 1999; 11 (5): 777-786.
    20. Sameshima T, Nabeshima K, Toole BP, et al. Glioma cell extracellular matrix metalloproteinase inducer (EMMPRIN) (CD147) stimulates production of membrane-type matrix metalloproteinases and activated gelatinase A in co-cultures with brain-derived fibroblasts. Cancer Lett. 2000; 157(2): 177-184.
    21. Wang XH, Xu J, Zhang Y, et al. Inducible expression of Bcl-XL inhibits sodium butyrate-induced apoptosis in hybridoma, resulting in enhanced antibody production. Cell Biol Int. 2004; 28(3): 185-191.
    22.黄勇,窦科峰,蒋建利等。肝癌相关抗原HAb18G对小鼠成纤维细胞分泌基质金属蛋白酶2、9的影响。中华外科杂志 2004年24期33—37。
    23.陈志南,刘彦仿,隋延仿等。~(131)I标记肝癌单克隆抗体对裸鼠肝癌移植瘤的实验性导向治疗。第四军医大学学报 1991年03期23—28。
    24.骞爱荣,商澎,李郁等。HAb18g/CD147拮抗肽抗肝癌转移作用的体外实验。世界华人消化杂志 2003;11(3):255—259。
    25.商澎,骞爱荣,李郁等。HAb18g/CD147拮抗肽对荷瘤裸鼠的实验治疗作用。肿瘤 2003;23(4):279—282。
    26.李郁,陈志南,邢金良等。肝癌相关抗原HAb18G反义RNA表达质粒的构建及克隆鉴定。第四军医大学学报 2002;23(16):1501—1504。

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700