纳米晶体熔化温度的尺寸和压力依赖性
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文根据Lindemann熔化准则和Mott方程推导出尺寸依赖的熔化温度模型,该模型简单且无自由参数,能够预测不同化学键类型纳米晶体的熔化,既能解释具有自由表面的纳米晶体的过冷现象,又能解释镶嵌于基体的纳米晶体的过热现象,还能应用于不同维数的低维晶体。并通过纳米晶体熔化模型和扩散公式推导出了尺寸依赖的扩散模型。该模型能够很好的解释纳米材料的扩散比大块材料要更加迅速,并且随着纳米材料的尺寸减少,扩散系数逐步增加。并通过模型分析了影响纳米材料扩散的各方面因素。此外,本文还根据表面应力模型和上述尺寸依赖的熔化温度模型,应用Clapeyron方程计算了相变温度的压力效应,建立了氧化物的温度-压力相图。以上各模型的预测结果与实验以及其它理论结果具有良好的一致性。
As the size of low-dimensional materials decreases to nanometer size range, electronic, magnetic, optic, catalytic and thermodynamic properties of the materials are significantly altered from those of either the bulk or a single molecule. Takagi in 1954 demonstrated for the first time that ultrafine metallic particles melt below their corresponding bulk melting temperature. It is now known that the melting temperature of all low dimensional crystals, including metal, semiconductor and organic crystals, depends on their sizes. Although there are relatively extensive investigations on the size-dependent melting of nanocrystals, it has not been accompanied by the necessary investigation of the size-dependent thermodynamics of nanocrystals. Such an investigation should deepen our understanding of the size effect of melting. In particular, a complete understanding of the melting transition in nanocrystals cannot be obtained without a clear understanding of the enthalpy of melting, which is an important property of melting. Recently, a simple model without adjustable parameters for size-dependent melting temperature of nanocrystals under ambient pressure is established based on Lindemann′s criterion for the melting and Mott′s expression for the vibrational entropy at the melting temperature. In comparison with other model conventions, this model covers all the essential considerations of early models and it has wider size range suitability.
     With further research of nanomaterial, its diffusion problem gradually becomes one of interesting domains of scientists. Experience results show nanomaterial diffuses much faster than bulk, namely, diffusion of materials is size-dependent. Combining the thermodynamic size-dependent melting temperature model that is based on the Lindemann criterion on melting and Arrhenius diffusion equation, one can obtain size-dependent diffusion equation. The article gives free parameter model with a universal model ,which predicts diffusion coefficient of different nanocyrstal.
     As the pressure increases, the structural phase transition under pressure has been a subject of considerable experimental and theoretical research activity in recent years, especially for oxides crystals. The study of temperature-pressure phase diagram for both bulk material and nanocrystals may extend phase transition theory and possible industry applications and enrich the knowledge on the aspect of the structure. Moreover, the pressure effect on the phase transition temperatures is considered according to the Clapeyron equation, and thus, bulk and size-dependent temperature-pressure phase diagrams are calculated. The concrete contents are listed as follows:
     1. The size-dependent melting temperature model for nanocrystals is summarized systematically. In terms of such model, the melting temperature of a free nanocrystal decreases as its size decreases while nanocrystals embedded in a matrix can melt below or above the melting point of corresponding bulk crystals. If the bulk melting temperature of nanocrystals is lower than that of the matrix, the atomic diameter of nanocrystals is larger than that of the matrix, and the interfaces between them are coherent or semi-coherent, an enhancement of the melting point is present. Otherwise, there is a depression of the melting point.
     2. F. G. Shi theoretically presented a model for size-dependent melting temperature based on Lindemann criterion. The model can perfectly interpret melting behaviour of nanocrystals, it is applicable both for melting depression and for superheating. For free-standing nanocrystals, the fraction of surface atoms increases with size decreasing and the thermal vibration of surface atoms is larger than that of internal atoms, mean square displacement increases with size decreasing, thus the melting temperature decreases with size decreasing. For nanocrystals embedded in a matrix, the melting temperature will decrease when the interface between nanocrystals and matrix is incoherent. When the interface is coherent or semi-coherent, the amptute of surface atoms is less than that of internal atoms leading to mean square displacement of nanocrystals decrease, the melting temperature increases with size decreasing. But this model has drawback for it including a undefined parameter which is obtained through experiment.
     3. Whether diffusion coefficient of bulk and that of corresponding nanomaterial essentially is equal at melting temperature, namely, size-independent. According to the assumption, combining the thermodynamic size-dependent melting temperature model that is based on the Lindemann criterion on melting and Arrhenius diffusion equation, one can obtain size-dependent diffusion equation. In our model, we know diffusion coefficient of nanocrystals increases, when its size decreases, the model predicts an exponent relation between the diffusion coefficient and reciprocal radius of nanocrystals. Diffusion coefficient is related to atom size, vibration entropy and dimension of material. We deeply realize the important reason that the reduce of activation energy induces increase of diffusion coefficient is that the excess surface free energies of nanocrystals with the large surface/volume ratio make atoms easily break away and migrate. The predictions of the model are in agreement with the experimental results of Ag diffusing into Au nanoparticles and N diffusing into Fe particle. The article gives free parameter model with a universal model ,which predicts diffusion coefficient of different nanocyrstal.
     4. Although the updated temperature-pressure phase diagrams of oxides crystals have been developed experimentally, further theoretical works are still needed due to the limited measuring accuracy of high-temperature and high-pressure experiments. The classic Clapeyron equation governing all first-order phase transitions of pure substances may be useful to determine the temperature-pressure curve theoretically. However, in order to know the relation between the equilibrium values of the pressure and the temperature, only approximate methods can be used in carrying out the integration of the Clapeyron since both the transition enthalpy and the transition volume are functions of pressure and temperature. To find a solution of the Clapeyron equation, as a first-order approximation, two reasonable simplifications that the transition enthalpy is a weak function of the pressure while the transition volume is a weak function of the temperature are assumed. Moreover, the pressure effect on the phase transition temperatures is considered according to the Clapeyron equation, and thus, bulk and size-dependent temperature-pressure phase diagrams are calculated. The model predictions are found to be consistent with the present experimental and other theoretical results. Since the Clapeyron equation may govern all first-order phase transitions, the Clapeyron equation supplies a new way to determine the temperature-pressure phase diagram of materials.
引文
[1] J. G. Dash, History of the search for continuous melting, Rev. Mod. Phys. 1999, 71, 1737.
    [2] J. W. Christian, The Theory of Transformations in Metals and Alloy, 2nd edition, Part I, Equilibrium and General Kinetic Theory, Oxford, Pergamon Press, 1975, pp. 418-475.
    [3] H. Gleiter, Nanocrystalline materials, Prog. Mater. Sci. 1989, 33, 223.
    [4] L. Lu, M. L. Sui, K. Lu, Superplastic extensibility of nanocrystalline copper at room temperature, Science 2000, 287, 1463.
    [5] F. A. Lindemann, üder die berechnung molekularer eigenfrequenzen, Phys. Z. 1910, 11, 609.
    [6] M. Born, Thermodynamics of crystals and melting, J. Chem. Phys. 1939, 7, 591.
    [7] T. Gorecki, Vacancies for solid krypton bubble copper, nickel and gold particles, Z. Metall. 1974, 65, 426.
    [8] A. Rubcic, J. B. Rubcic, Fizika 1978, 10 (Suppl. 2), 294.
    [9] L. Graback, J. Bohr, Superheating and supercooling of lead precipitates in aluminum, Phys. Rev. Lett. 1990, 64, 934.
    [10] K. Lu, Y. Li, Homogeneous nucleation catastrophe as a kinetic stability limit for superheated crystals, Phys. Rev. Lett. 1998, 80, 4474.
    [11] C. J. Rossouw, S. E. Donnelly, Superheating of small solid–argon bubbles in aluminum, Phys. Rev. Lett. 1985, 55, 2960.
    [12] M. Takagi, Electron-diffraction study of liquid-solid transition of thin metal films, J. Phys. Soc. Japan 1954, 9, 359.
    [13] P. A. Buffat, J. P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A 1976, 13, 2287.
    [14] G. L. Allen, R. A. Bayles, W. W. Giles, W. A. Jesser, Small particle melting of pure metals, Thin Solid Films 1986, 144, 297.
    [15] C. J. Coombes, The melting of small particles of lead and indium, J. Phys. F 1972, 2, 441.
    [16] V. P. Skripov, V. P. Koverda, V. N. Skokov, Size effect on melting of small particles, Phys. Status Solidi A 1981, 66, 109.
    [17] J. Peppiatt, J. R. Sambles, The melting of small particles. II. Bismuth, Proc. R. Soc. London Ser. A 1975, 345, 387.
    [18] R. Kofman, P. Cheyssac, R. Garrigos, From the bulk to clusters: solid-liquid phase transitions and precursor effects, Phase Transit. 1990, 24, 283.
    [19] T. Castro, R. Reifenberger, E. Choi, R. P. Andres, Size-dependent melting temperature of individual nanometer-sized metallic clusters, Phys. Rev. B 1990, 42, 8548.
    [20] J. P. Borel, Thermodynamical size effect and the structure of metallic clusters, Surf. Sci. 1981, 106, 1.
    [21] C. Solliard, Debye-Waller factor and melting temperature in small gold particles realted size effect, Solid State Commun. 1984, 51, 947.
    [22] J. H. Evens, D. J. Mazey, Evidence for solid krypton bubbles in copper, nickel and gold at 293K, J. Phys. F 1985, 15, L1.
    [23] T. L. Beck, J. Jellinek, R. S. Berry, Rare gas clusters: solids, liquids, slush, and magic numbers, J. Chem. Phys. 1987, 87, 545.
    [24] A. N. Goldstein, C. M. Echer, A. P. Alivisatos, Melting in semiconductor nanocrystals, Science 1992, 256, 1452.
    [25] A. N. Goldstein, The melting of silicon nanocrystals submicro thin–film structuters derived from nanocrystal precursors, Appl. Phys. A 1996, 62, 33.
    [26] S. L. Lai, J. Y. Guo, V. Petrova, G. Ramanath, L. H. Allen, Size dependent melting properties of small Tin particles: nanocalorimetric measurements, Phys. Rev. Lett. 1996, 77, 99.
    [27] D. L. Zhang, B. Cantor, Melting behaviour of In and Pb particles embedded in an Al matrix, Acta Mater. 1991, 39, 1595.
    [28] R. Goswami, K. Chattopadhyay, The superheating and the crystallography of embedded Pb particles in f.c.c. Al, Cu and Ni matrices, Acta Metall. Mater. 1995, 43, 2837.
    [29] H. W. Sheng, G. Ren, L. M. Peng, Z. Q. Hu, K. Lu, Superheating and melting-point depression of Pb nanoparticles embedded in Al matrixes, Phil. Mag. Lett. 1996, 73, 179.
    [30] R. Goswami, K. Chattopadhyay, The superheating of Pb embedded in a Zn matrix: the role of interface melting, Phil. Mag. Lett. 1993, 68, 215.
    [31] H. H. Andersen, E. Johnson, Structure, morphology and melting hysteresis of ion-implanted nanocrystals, Nucl. Inst. Methods in Phys. Res. B 1995, 106, 480.
    [32] V. K. Semenchenko, Surface Phenomena in Metals and Alloys, Oxford, Pergamon, 1961, p. 281.
    [33] J. R. Sambles, The extrusion of liquid between highly elastic solid, Proc. R. Soc. A 1971, 324, 339.
    [34] P. R. Couchman, W. A. Jesser, Thermodynamic theory of size dependence of melting temperature in metals, Nature 1977, 269, 481.
    [35] G. L. Allen, W. W. Gile, W. A. Jesser, The melting temperature of microcrystals embedded in a matrix, Acta Metall. 1980, 28, 1695.
    [36] J. Eckert, J. C. Holzer, C. C. Ahn, Z. Fu, W. L. Johnson, Melting behavior of nanocrystalline aluminum powders, Nanostr. Mater. 1993, 2, 407.
    [37] F. G. Shi, Size dependent thermal vibrations and melting in nanocrystals, J. Mater. Res. 1994, 9, 1307.
    [38] T. B. David, Y. Lereah, G. Deutscher, R. Kofmans, P. Cheyssac, Solid-liquid transition in ultra-fine lead particles, Phil. Mag. A 1995, 71, 1135.
    [39] G. P. Johari, Thermodynamic contributions from pre-melting or pre-transformation of finely dispersed crystals, Phil. Mag. A 1998, 77, 1367.
    [40] K. F. Peters, J. B. Cohen, Y. W. Chung, Melting of Pb nanocrystals, Phys. Rev. B 1998, 57,13430.
    [41] K. Morishige, K. Kawano, Freezing and melting of methyl chloride in a single cylindrical pore: anomalous pore-size dependence of phase-transition temperature, J. Phys. Chem. B 1999, 103, 7906.
    [42] Q. Jiang, H. X. Shi, M. Zhao, Melting thermodynamics of organic nanocrystals, J. Chem. Phys. 1999, 111, 2176.
    [43] Z. Zhang, J. C. Li, Q. Jiang, Modeling for size-dependent and dimension-dependent melting of nanocrystals, J. Phys. D: Appl. Phys. 2000, 33, 2653.
    [44] Z. Wen, M. Zhao, Q. Jiang, The melting temperature of molecular nanocrystals at the lower bound of mesoscopic size range, J. Phys.: Condens. Matter 2000, 12, 8819.
    [45] Z. Zhang, M. Zhao, Q. Jiang, Melting temperature of semiconductor nanocrystals in the mesoscopic size range, Semicond. Sci. Technol. 2001, 16, L33.
    [46] P. Pawlow, über die abn?ngikeit des schmelzpunktes von der oberfl?chenenergie eines festen k?rpers, Z. Phys. Chem. 1909, 65, 545.
    [47] K. J. Hanszen, The melting points of small spherules. The thermodynamics of boundary layers, Z. Phys. 1960, 157, 523.
    [48] D. R. H. Jones, Review: The free energies of solid-liquid interfaces, J. Mater. Sci. 1974, 9, 1.
    [49] H. Saka, Y. Nishikawa, T. Imura, Melting temperature of In particles embedded in an Al matrix, Phil. Mag. A 1988, 57, 895.
    [50] H. W. Sheng, G. Ren, L. M. Peng, Z. Q. Hu, K. Lu, Melting process of nanometer-sized In particles embedded in an Al matrix synthesized by ball milling, J. Mater. Res. 1996, 11, 2841.
    [51] K. Chattopadhyay, R. Goswami, Melting and superheating of metals and alloys, Prog. Mater. Sci. 1997, 42, 287.
    [52] L. Zhang, Z. H. Jin, L. H. Zhang, M. L. Sui, K. Lu, Superheating of confined Pb thin films, Phys. Rev. Lett. 2000, 85, 1484.
    [53] Q. Jiang, Z. Zhang, J. C. Li, Size-dependent superheating of nanocrystals embedded in matrix, Chem. Phys. Lett. 2000, 322, 549.
    [54] Q. Jiang, Z. Zhang, J. C. Li, Melting thermodynamics of nanocrystals embedded in matrix, Acta Mater. 2000, 48, 4791.
    [55] Q. Jiang, L. H. Liang, J. C. Li, Thermodynamic superheating and relevant interface stability of low-dimensional metallic crystals, J. Phys.: Condens. Matter 2001, 13, 565.
    [56] H. Reiss, I. B.Wilson, The effects of size on melting point, J. Colloid. Sci. 1948, 3, 551.
    [57] Q. Jiang, H. X. Shi, M. Zhao, Free energy of crystal-liquid interface, Acta Mater. 1999, 47, 2109.
    [58] Z. Wen, M. Zhao, Q. Jiang, Size range of solid-liquid interface free energy of organic crystals, J. Phys. Chem. B 2002, 106, 4266.
    [59] H. Jones, The solid-lquid interfacial energy of metals: calculation versus measurements, Mater. Lett. 2002, 53, 364.
    [60] N. F. Mott, The resistance of liquid metals, Proc. R. Soc. A 1934, 146, 465.
    [61] A. R. Regel′, V. M. Glazov, Entropy of melting of semiconductors, Semiconductors 1995, 29, 405.
    [62] Q. Jiang, L. H. Liang, M. Zhao, Modeling of the melting temperature of nano-ice in MCM-41 pores, J. Phys.: Condens. Matter 2001, 13, L397.
    [63] R. C. Cammarata, K. Sieradzki, Surface and interface stresses, Annu. Rev. Mater. Sci. 1994, 24, 215 and reference therein..
    [64] J. Weissmüller, J.W. Cahn, Mean stresses in microstructures due to interface stresses: a generalization of a capillary equation for solids, Acta Mater. 1997, 45, 1899.
    [65] F. Spaepen, Interfaces and stresses in thin films, Acta Mater. 2000, 48, 31.
    [66] A. Mujica, A. Rubio, A. Mu?oz, R. J. Needs, High-pressure of group-IV, III-V, and II-VI compounds, Rev. Mod. Phys. 2003, 75, 863.
    [67] R. J. Hemley, Effects of high pressure on molecules, Annu. Rev. Phys. Chem. 2000, 51, 763.
    [68] J. Wang, D. Wolf, S. R. Philpot, H. Gleiter, Computer simulation of the structure and thermo-elastic properties of a model nanocrystalline material, Phil. Mag. A 1996, 73, 517.
    [69] M. J. Stowell, T. J. Law and J. Smart, The growth, structure, melting and solidification of lead deposits on molybdenite and carbon substrates, Proc. R. Soc. London, Ser. A., 1970, 318, 231.
    [70] M. Schmidt, R. Kusche, W. Kronmuller, B. von Issendorff and J. Jaberland, Experimental determination of the melting point and heat capacity for a free cluster of 139 sodium atoms, Phys. Rev. Let., 1997, 79, 99.
    [71] B. Pluis, A. W. Denier van der Gon, J. W. M. Frenken and J. F. van der Veen, Crystal-Face sependence of surface melting, Phys. Rev. Lett., 1987, 59, 2678.
    [72] C. R. M. Wronski, Thermodynamic study on the melting of nanometer-sized gold particles on graphite substrate, J. Appl. Phys., 1975, 18, 1731.
    [73] F. Ercolessi, W. Andreoni, E. Tosatti, Melting of small gold particles: Mechanism and size effects, Phys. Rev. Lett., 1991, 66, 911.
    [74] H. P. Chen, R. S. Berry, Surface melting of clusters and implications for bulk matter, Phys. Rev. A., 1992, 45, 7969.
    [75] H. K. King, Physical Metallurgy, edited by Cahn R W North-Holland Pub. Co. 1970, pp. 59-63.
    [76] M. G. Mitch, S. J. Chase, J. Fortner, R. Q. Yu, J. S. Lannin, Phase transition in ultrathin Bi films, Phys. Rev. Lett., 1991, 67, 875.
    [77] Table of periodic properties of the elements, Sargent-Welch Scientific Company, Skokie,1980.
    [78] P. Buffat, J.-P. Borel, Size effect on the melting temperature of gold particles, Phys. Rev. A.,1976, 13, 2294.
    [79] J.R. Sambles, An electron microscope study of evaporating gold particles: the Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles, Proc. Roy. Soc. Lond. A.,1971, 324, 339.
    [80] K. Dick, T. Dhanasekaran, Z.Y. Zhang, and D. Meisel, Size-dependent melting of silica-encapsulated gold nanoparticles, J. Am. Chem. Soc., 2002, 124, 2316.
    [81] F. Celestini, R.J-M. Pellenq , P. Bordarier , B. Rousseau, Melting of Lennard-Jones clusters in confined geometries, Z. Phys. D., 1996, 37, 49.
    [82] A.R. Ubbelohde, Melting and Crystal Structure, Clarendon Press, Oxford, United Kingdom, 1965, p.171.
    [83] T. Ben-David, Y. Lereah, G. Deutscher, R. Kofman and P. Cheyssac, Phil. Mag. A., 1995, 71, 1135.
    [84] G. L. Allen, W. W. Gile, W. Jesser, The melting temperature of microcrystals embedded in a matrix, Acta. Metall., 1980, 28, 1695.
    [85] W. P. Tong, N. P. Tao, Z. B. Wang, J. Lu and K. Lu, Nitriding iron at lower temperatures, Science, 2003, 299, 686.
    [86] T. Shibata, B. A. Bunker, Z. Zhang, D. Meisel, C. F. Vardeman II and J. D. Gezelter, Size-Dependent Spontaneous Alloying of Au-Ag Nanoparticles, J. Am. Chem. Soc., 2002, 124, 11989.
    [87] Q. Jiang, X. H. Zhou and M. Zhao, Nucleation temperature of elements, J. Chem. Phys., 2002, 117, 10269.
    [88] A. E. Kaloyeros and E. Eisenbraun, Ultrathin diffusion barriers/liners for gigascale copper metallization, Annu. Rev. Mater. Sci., 2000, 30, 363.
    [89] R. Würschum, P. Farber, R. Dittmar, P. Scharwaechter, W. Frank and H.-E. Schaefer, Thermal Vacancy Formation and Self-Diffusion in Intermetallic Fe3Si Nanocrystallites of Nanocomposite Alloys, Phys. Rev. Lett., 1997, 24, 4919.
    [90] J. Unnam, D. R. Tenney and R. Houska, An X-ray study of diffusion in the Cu-Au system, 1981, Metall. Trans., 12A, 1147.
    [91] W. Gasior and Z. Moser, Chemical diffusion coefficients in solid Al-Li alloys at low Li concentrations, Scand. J. Metall., 2002, 31, 353.
    [92] R. C. Weast, M. J. Astle and W. H. Beyer, CRC Handbook of Chemistry and Physics, 69th edition, CRC Press Inc., Boca Raton, Florida, 1988, p. F49-F52.
    [93] J. Horváth, R. Birringer and H. Gleiter, Diffusion in nanocrystalline material, Solid State Commun., 1987, 62, 319.
    [94] H.W. King, in: R.W. Cahn, P. Haasen (Eds.), Physical Metallurgy, 3rd edition, North-Holland Physics Publishing, Amsterdam, 1983, p. 59 - 63.
    [95] A. R. Ubbelohde, Melting and Crystal Structure, Clarendon Press, Oxford, 1965, p. 171.
    [96] C. Herzig, D. Wolter, Isotope-effect for diffusion of silver in gold, Z. Metallkd., 1974, 65, 273.
    [97] A. E. Berkowitz, J. L. Walter, Spark erosion: a method for producing rapidly quenched fine powders, J. Mater. Res., 1987, 2, 277.
    [98] J.G. Dash, History of the search for continuous melting, Rev. Mod. Phys., 1999, 71, 1737.
    [99] G. Shen, N. Sata, M. Newville, M. L. Rivers, S. R. Sutton, Determination of the structure and density of melts at the high pressures and high temperatures, Appl. Phys. Lett. 2001, 78, 3208 .
    [100] M. Nishioka, S. Hirai, K. Yanagisawa and N. Yamasaki, Solidification of glass powder with simulated high-level radioactive waste during hydrothermal hot-pressing, J. Am. Ceram. Soc. 1990, 73, 477.
    [101] B. Holm, R. Ahuja, Y. Yourdshahyan, B. Johansson, and B. I. Lundqvist, Elastic and optical properties of Al2O3, Phys. Rev. B 1999, 59, 12777.
    [102] F. H. Streitz, J. W. Mintmire, Energetics of aluminum vacancies in gamma alumina, Phys. Rev. B 1999, 60, 773.
    [103] M. Catti, A. Pavese, Equation of State of Corundum from Quasi-Harmonic atomistic simulations, Acta Crystallogr, Sect. B: Struct. Sci. 1998, 54, 741.
    [104] L. Dubrovinsky, N. Dubrovinskaia, S. Saxena, T. LiBehan, X-ray diffraction under non-hydrostatic conditions in experiments with diamond anvil cell: FeO as an example, Mat. Sci. Eng. A, 2000, 288, 187.
    [105] A. R. Oganov, M. J. Gillan, G. D. Price, Ab initio lattice dynamics and structural stability of MgO, J. Chem. Phys. 2003, 118, 22.
    [106] Y. D. Glinka, S.-H. Lin, L.-P. Hwang, Y.-T. Chen, N. H. Tolk, Size effect in self-trapped exciton photoluminescence from SiO2-based nanoscale materials, Phys. Rev. B 2001, 64, 085421.
    [107] H. Fu, A. Zunger, Local-density-derived semiempirical nonlocal pseudopotentials for InP with applications to large quantum dots, Phys. Rev. B 1997, 55, 1642.
    [108] V. Albe, C. Jouanin, D. Bertho, Confinement and shape effects on the optical spectra of small CdSe nanocrystals, Phys. Rev. B 1998, 58, 4713.
    [109] I. Mi?i?, H. M. Cheong, H. Fu, A. Zunger, J. R. Sprague, A. Mascarenhas, A. J. Nozik, Size-dependent spectroscopy of InP quantum dots, J. Phys. Chem. B 1997, 101, 4904.
    [110] A. D. Yoffe, Semiconductor quantum dots and related systems: electronic, optical, luminescence and related properties of low dimensional systems, Adv. Phys. 2001, 50, 1.
    [111] V. Ranjan, V. A. Singh, G. C. John, Effective exponent for the size dependence of luminescence in semiconductor nanocrystallites, Phys. Rev. B 1998, 58, 1158.
    [112] Y. Kanemitsu, H. Uto, Y. Masumoto, T. Matsumoto, T. Futagi, H. Mimura,Microstructure and optical properties of free-standing porous silicon films: size dependence of absorption spectra in Si nanometer-sized crystallites, Phys. Rev. B 1993, 48, 2827.
    [113] H. Takagi, H. Ogawa, Y. Yamazaki, A. Ishizaki, T. Nakagiri, Quantum size effects on photoluminescence in ultrafine Si particles, Appl. Phys. Lett. 1990, 56, 2379.
    [114] L. Pavesi, G. Giebel, F. Ziglio, G. Mariotto, F. Priolo, S. U. Campisano, C. Spinella, Nanocrystal size modifications in porous silicon by preanodization ion implantation, Appl. Phys. Lett. 1994, 65, 2182.
    [115] S. Schuppler, S. L. Friedman, M. A. Marcus, D. L. Adler, Y.-H. Xie, F. M. Ross, Y. J. Chabal, T. D. Harris, L. E. Brus, W. L. Brown, E. E. Chaban, P. F. Szajowski, S. B. Christman, P. H. Citrin, Size, shape, and composition of luminescent species in oxidized Si nanocrystals and H-passivated porous Si, Phys. Rev. B 1995, 52, 4910.
    [116] B. Garrido, M. Lopez, O. Gonzalez, A. Perez-Rodryguez, J. R. Morante, C. Bonafos, Correlation between structural and optical properties of Si nanocrystals embedded in SiO2: the mechanism of visible light emission, Appl. Phys. Lett. 2000, 77, 3143.
    [117] A. Tomasulo, M. V. Ramakrishna, Quantum confinement effects in semiconductor clusters. II, J. Chem. Phys. 1996, 105, 3612 and references therein.
    [118] D.-S. Chuu, C.-M. Dai, Quantum size effects in CdS thin films, Phys. Rev. B 1992, 45, 11805.
    [119] C. N. R. Rao, G. U. Kulkarni, P. J. Thomas, P. P. Edwards, Size-dependent chemistry: properties of nanocrystals, Chem. Eur. J. 2002, 8, 29.
    [120] C. Q. Sun, S. Li, B. K. Tay, T. P. Chen, Upper limit of blue shift in the photoluminescence of CdSe and CdS nanosolids, Acta Mater. 2002, 50, 4687 and references therein.
    [121] S. Sapra, D. D. Sarma, Evolution of the electronic structure with size in II-VI semiconductor nanocrystals, Phys. Rev. B 2004, 69, 125304.
    [122] Y. Nakaoka, Y. Nosaka, Electron spin resonance study of radicals produced by photoirradiation on quantized and bulk ZnS particles, Langmuir 1997, 13, 708.
    [123] R. Rossetti, R. Hull, J.M. Gibson, L.E. Brus, Excited electronic states and optical spectra of ZnS and CdS crystallites in the ≈ 15 to 50 ? size range: Evolution from molecular to bulk semiconducting properties, J. Chem. Phys. 1985, 82, 552.
    [124] H. Inoue, N. Ichiroku, T. Torimoto, T. Sakata, H. Mori, H. Yoneyama, Photoinduced electron transfer from zinc sulfide microcrystals modified with various alkanethiols to methyl viologen, Langmuir 1994, 10, 4517.
    [125] S. Yanagida, T. Yoshiya, T. Shiragami, C. Pac, Semiconductor photocatalysis. Quantitative photoreduction of allphatic ketones to alcohols using defect-free ZnS quantum crystallites, J. Phys. Chem. 1990, 94, 3104.
    [126] J. Nanda, S. Sapra, D. D. Sarma, N. Chandrasekharan, G. Hodes, Size-selected zinc sulfide nanocrystallites: synthesis, structure, and optical studies, Chem. Mater. 2000, 12, 1018.
    [127] F. T. Quinlan, J. Kuther, W. Tremel, W. Knoll, S. Risbud, P. Stroeve, Reverse micelle synthesis and characterization of ZnSe nanoparticles, Langmuir 2000, 16, 4049.
    [128] M. A. Hines, P. Guyot-Sionnest, Bright UV-blue luminescent colloidal ZnSe nanocrystals, J. Phys. Chem. B 1998, 102, 3655.
    [129] J. Mazher, A. K. Shrivastav, R. V. Nandedkar, R. K. Pandey, Strained ZnSe nanostructures investigated by x-ray diffraction, atomic force microscopy, transmission electron microscopy and optical absorption and luminescence spectroscopy, Nanotechnology 2004, 15, 572.
    [130] Y.-W. Jun, C.-S. Choi, J. Cheon, Size and shape controlled ZnTe nanocrystals with quantum confinement effect, Chem. Commun. 2001, 2001, 101.
    [131] Y. Mastai, G. Hodes, Size quantization in electrodeposited CdTe nanocrystalline films,J. Phys. Chem. B 1997, 101, 2685.
    [132] Y. Masumoto, K. Sonobe, Size-dependent energy levels of CdTe quantum dots, Phys. Rev. B 1997, 56, 9734.
    [133] V. N. Soloviev, A. Eichh?fer, D. Fenske, U. Banin, Molecular limit of a bulk semiconductor: size dependence of the ′′band gap′′ in CdSe cluster molecules, J. Am. Chem. Soc. 2000, 122, 2673.
    [134] T. T. M. Palstra, B. Batlogg, R. B. van Dover, L. F. Schneemeyer, J. V. Waszczak, Dissipative flux motion in high-temperature superconductors, Phys. Rev. B 1990, 41, 6621.
    [135] R. Zallen, The Physics of Amorphous Solids, Wiley-Interscience, New York, 1983, p. 277.
    [136] J. C. Jamieson, Crystal structures at high pressures of metallic modifications of silicon and germanium, Science 1963, 139, 762.
    [137] A. Jayaraman, W. Klement JR., G. C. Kennedy, Melting and polymorphism at high pressures in some group IV elements and III-V compounds with the diamond/zincblende structure, Phys. Rev. 1963, 130, 540.
    [138] F. P. Bundy, Phase diagrams of silicon and germanium to 200 kbar, 1000 °C, J. Chem. Phys. 1964, 41, 3809.
    [139] J. Lees, B. H. J. Williamson, Combined very high pressure/high temperature calibration of the tetrahedral anvil apparatus, fusion curves of zinc, aluminium, germanium and silicon to 60 kilobars, Nature 1965, 208, 278.
    [140] J. A. van Vechten, Quantum dielectric theory of electronegativity in covalent systems. III. Pressure-temperature phase diagrams, heats of mixing, and distribution coefficients, Phys. Rev. B 1973, 7, 1479.
    [141] J. F. Cannon, Behavior of the elements at high pressures, J. Phys. Chem. Ref. Data 1974, 3, 781.
    [142] M. T. Yin, M. L. Cohen, Theory of static structural properties, crystal stability, and phase transformations: application to Si and Ge, Phys. Rev. B 1982, 26, 5668.
    [143] R. J. Needs, R. M. Martin, Transition from β–tin to simple hexagonal silicon under pressure, Phys. Rev. B 1984, 30, 5390.
    [144] J. Z. Hu, I. L. Spain, Phases of silicon at high pressure, Solid State Commun. 1984, 51, 263.
    [145] K. J. Chang, M. L. Cohen, Solid-solid phase transitions and soft phonon modes in highly condensed Si, Phys. Rev. B 1985, 31, 7819.
    [146] J. Z. Hu, L. D. Merkle, C. S. Menoni, I. L. Spain, Crystal data for high-pressure phases of silicon, Phys. Rev. B 1986, 34, 4679.
    [147] M. I. McMahon, R. J. Nelmes, New high-pressure phase of Si, Phys. Rev. B 1993, 47, 8337.
    [148] S. H. Tolbert, A. B. Herhold, L. E. Brus, A. P. Alivisatos, Pressure-induced structural transformations in Si nanocrystals: surface and shape effects, Phys. Rev. Lett. 1996, 76, 4384.
    [149] K. Gaál-Nagy, A. Bauer, M. Schmitt, K. Karch, P. Pavone, D. Strauch, Temperature and dynamical effects on the high-pressure cubic-diamond ? β-Tin phase transition in Si and Ge, Phys. Status Solidi B 1999, 211, 275.
    [150] K. Gaál-Nagy, M. Schmitt, P. Pavone, D. Strauch, Ab initio study of the high-pressure phase transition from the cubic-diamond to the β–tin structure of Si, Comput. Mater. Sci. 2001, 22, 49.
    [151] S. K. Deb, M. Wilding, M. Somayazulu, P. F. McMillan, Pressure-induced amorphization and an amorphous-amorphous transition in densified porous silicon, Nature 2001, 414, 528.
    [152] P. F. McMillan, New materials from high-pressure experiments, Nature Mater. 2002, 1,19.
    [153] L. Liu, Dry ice II, a new polymorph of CO2, Nature 1983, 303, 508.
    [154] K. Aoki, H. Yamawaki, M. Sakashita, Y. Gotoh, K. Takemura, Crystals structure of the high-pressure phase of solid CO2, Science 1994, 263, 356.
    [155] V. Iota, C. S. Yoo, Phase diagram of carbon dioxide: Evidence for a new associated phase, Phys. Rev. Lett. 2001, 86, 5922.
    [156] S. A. Bonev, F. Gygi, T. Ogitsu, G. Galli, High-pressure molecular phases of solid carbon dioxide, Phys. Rev. Lett. 2003, 91, 065501.
    [157] V. Iota, J-H. Park, C. S. Yoo, Phase diagram of nitrous oxide: Analogy with carbon dioxide, Phys. Rev. B 2004, 69, 064106.
    [158] H. Olijnyk, H. D?ufer, H.-J. Jodl, H. D. Hochheimer, Effect of pressure and temperature on the Raman spectra of solid CO2, J. Chem. Phys. 1988, 88, 4204.
    [159] H. Shimizu, T. Kitagawa, S. Sasaki, Acoustic velocities, refractive index, and elastic constants of liquid and solid CO2 at high pressures up to 6 GPa, Phys. Rev. B 1993, 47, 11567.
    [160] K. Aoki, H. Yamawaki, M. Sakashita, Phase study of solid CO2 to 20 GPa by infrared-absorption spectroscopy, Phys. Rev. B 1993, 48, 9231.
    [161] R. Span, W. Wagner, A new equation of state for carbon dioxide covering the fluid region from the triple-point temperature to 1100 K at pressures up to 800 Mpa, J. Phys. Chem. Ref. Data 1996, 25, 1509.
    [162] C. S. Yoo, H. Cynn, F. Gygi, G. Galli, V. Iota, M. Nicol, S. Carlson, D. H?usermann, C. Mailhiot, Crystal structure of carbon dioxide at high pressure: ′′superhard′′ polymeric carbon dioxide, Phys. Rev. Lett. 1999, 83, 5527.
    [163] V. Schettino, R. Bini, Molecules under extreme conditions: Chemical reactions at high pressure, Phys. Chem. Chem. Phys. 2003, 5, 1951.
    [164] W. Kauzmann, The nature of the glassy state and the behavior of liquids at low temperatures, Chem. Rev. 1948, 43, 219.
    [165] Q. Jiang, J. C. Li, J. Tong, Cp measurements around the martensitic transformation temperature of a CuAlNi alloy, Mat. Sci. Eng. A 1995, 196, 165.
    [166] J. M. Soler, M. R. Beltrán, K. Michaelian, I. L. Garzón, P. Ordejón, D. Sánchez-Portal, E. Artacho, Metallic bonding and cluster structure, Phys. Rev. B 2000, 61, 5771.
    [167] W. Rhim, K. Ohsaka, Thermophysical properties measurement of molten silicon by high-temperature electrostaic levitator: density, volume expansion, specific heat capacity, emissivity, surface tension and viscosity, J. Cryst. Growth 2000, 208, 313.
    [168] L. Q. Lobo, A. G. M. Ferreira, Phase equilibria from the exactly integrated Clapeyron equation, J. Chem. Thermodyn. 2001, 33, 1597.
    [169] R. C. Cammarata, Surface and interface stress effects in thin films, Prog. Surf. Sci. 1994, 46, 1.
    [170] W. Haiss, Surface stress of clean and adsorbate-covered solids, Rep. Pro. Phys., 2001, 64, 591.
    [171] F. H. Streitz, R. C. Cammarata, K. Sieradzki, Surface-stress effects on elastic properties. I. Thin metal films, Phys. Rev. B 1994, 49, 10699.
    [172] F. H. Streitz, R. C. Cammarata, K. Sieradzki, Surface-stress effects on elastic properties. II. Metallic multilayers, Phys. Rev. B 1994, 49, 10707.
    [173] J. Weissmüller, in Nanomaterials: Systhesis, properties and applications, A. S. Edelstein and R. C. Cammarata (Eds.), Institute of Physics Publishing, Bristol and Philadelphia, 1996, p. 219.
    [174] W. D. Nix, H. Gao, An atomistic interpretation of interface stress, Acta Mater. 1998, 39, 1653.
    [175] R. C. Cammarata, K. Sieradzki, F. Spaepen, Simple model for interface stresses withapplication to misfit dislocation generation in epitaxial thin films, J. Appl. Phys. 2000, 87, 1227.
    [176] Q. Jiang, L. H. Liang, D. S. Zhao, Lattice contraction and surface stress of fcc nanocrystals, J. Phys. Chem. B 2001, 105, 6275.
    [177] Q. Jiang, D. S. Zhao, M. Zhao, Size-dependent interface energy and related interface stress, Acta Mater. 2001, 49, 3143.
    [178] Q. Jiang, D. S. Zhao, M. Zhao, Intrinsic surface (interface) stress of low-dimensional crystals, Int. J. Mod. Phys. B (International conference on materials for advanced technologies, 1-6 July 2001, Singapore) 2002, 16, 64.
    [179] H. Müller, Ch Opitz, K. Strickert, L. Skala, Absch?tzung von eigenschaften der materie im hochdispersen zustand-praktische anwendungen des anylytischen clustermodells, Z. Phys. Chemie Leipzig 1987, 268, 634.
    [180] L. Vitos, A. V. Ruban, H. L. Skriver, J. Kollar, The surface energy of metals, Surf. Sci. 1998, 411, 186.
    [181] J. Weissmüller, Alloy effects in nanostructures, Nanostructured Mater. 1993, 3, 261.
    [182] R. L. Davidchack, B. B. Laird, Simulation of the hard-sphere crystal-melt interface, J. Chem Phys. 1998, 108, 9452.
    [183] R. L. Davidchack, B. B. Laird, Direct calculation of the hard-sphere crystal/melt interfacial free energy, Phys. Rev. Lett. 2000, 85, 4751.
    [184] K. Koga, G. T. Gao, H. Tanaka, X. C. Zeng, Formation of ordered ice nanotubes inside carbon nanotubes, Nature 2001, 412, 802.
    [185] R. D. Meade, D. Vanderbilt, Adatoms on Si (111) and Ge (111) surfaces, Phys. Rev. B 1989, 40, 3905.
    [186] J. W. Cahn, R. E. Hanneman, (111) Surface tensions of III-V compounds and their relationship to spontaneous bending of thin crystals, Surf. Sci. 1964, 1, 387.
    [187] M. M. Nicholson, Surface tension in ionic crystals, Proc. R. Soc. A 1955, 228, 490.
    [188] G. C. Benson, K. S. Yun, Surface tension of the {100} face of alkali halide crystals, J. Chem. Phys. 1965, 42, 3085.
    [189] D. M. Heyes, M. Barber, and J. H. R. Clarke, Molecular dynamics computer simulation f surface properties of crystalline potassium chloride, J. Chem. Soc. 1977, 10, 1485.
    [190] E. A. Brandes (Ed.), Smithells Metals Reference Book, 6th ed., Butterworth & Co Ltd, London, 1983, p. 15-2
    [191] J. D. Hoffman, Thermodynamic driving force in nucleation and growth processes, J. Chem. Phys. 1958, 29, 1192.
    [192] C. C. Yang, G. Li, Q. Jiang, Effect of pressure on melting temperature of silicon, J. Phys.: Condens. Matter 2003, 15, 4961.
    [193] Z. W. Wang, H. H. Mao, S. K. Saxena, X-ray diffraction study of magnesite at high pressure and high temperature. J. Alloy. Compd. 2000, 299, 287.
    [194] S. Ansell, S. Krishnan, J. K. R. Weber, Structure of liquid aluminum oxide, Phy. Rev. Lett., 1997, 78, 464.
    [195] C. J. Smithells, Metals Reference Book, 15th ed., R.J. Acford, Ltd.,London&Boston, 1976, pp. 279; pp. 252, pp.258.
    [196] N. A. Dubrovinskaya, L. S. Dubrovinsky, S. K. Saxena, Systematics of thermodynamic data on solids: Thermochemical and pressure-volume-temperature properties of some minerals, Geo. Et Cosm. Acta, 1997, 61, 4151.
    [197] C. C. Yang, J. C. Li, Q. Jiang, Effect of pressure on melting temperature of silicon determined by Clapeyron equation, Chem. Phys. Lett., 2003, 372, 156.
    [198] Z. W. Wang, P. Lazor, S. K. Saxena, The analysis on high pressure melting temperature dependence of the thermodynamic parameters of solids, Mater. Lett. 2001, 49, 287.
    [199] M. Jiang, F. Zhong, Coupling of phase transitions in langmuir monolayers, Phy. Rev. B 1999, 59, 762.
    [200] R. L. Nancy, The equation of state and high-pressure behavior of magnesite, Phy. Rev. B 1997, 82, 682.
    [201] A. Zerr, R. Boehler, Constrains on the melting temperature of the lower mantle from high-pressure experiments on MgO and magnesioüstite, Nature (London) 1994, 506, 371 .
    [202] V. N. Zharkov, On the dependence of the coefficient of thermal expansion on density, Phys. Earth plane. Inter. 1998, 109, 79.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700