双峰聚乙烯的相分离及聚偏二氯乙烯构象特征的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
  • 英文题名:Theory Studies of Phase Separation in Bimodal Molecular Weight High Density Polyethylene and Conformational Properties of Poly (Vinyl Fluoride)
  • 作者:张志杰
  • 论文级别:博士
  • 学科专业名称:物理化学
  • 学位年度:2008
  • 导师:吕中元 ; 李泽生
  • 学科代码:070304
  • 学位授予单位:吉林大学
  • 论文提交日期:2008-04-01
摘要
本文主要包括三部分内容。
     I以聚偏二氯乙烯为研究对象,采用2,2,4,4-四氯戊烷与2,2,4,4,6,6-六氯庚烷为模型分子,利用量子化学计算方法,研究其不同旋转异构体的几何构型与构象能量。研究结果表明,由于氯原子具有很强的电负性,模型分子旋转异构态的CCCC骨架二面角发生很大的偏转。另外,由于静电效应的影响,模型分子中旁式构象比对式构象稳定。
     II利用第一部分量化计算结果,构建聚偏二氯乙烯分子的旋转异构理论模型。研究结果表明,由于模型分子中骨架二面角的偏转角较大,常用的三阶统计权重矩阵无法准确的表达模型分子的构象特征,因此需要建立六阶统计权重矩阵。在此基础上进一步研究聚偏二氯乙烯分子的构象分布以及特征比,得到与实验值接近的结果。
     III以高密度双峰聚乙烯为研究对象,结合分子动力学与介观动力学方法研究支链含量以及混合比例对体系相容性的影响。研究结果表明,当体系支链含量较高(每100个骨架原子中支链的数量大于10时),体系趋于相分离。另外,支链含量较低时(每100个骨架原子中支链的数量小于4时),由于支链分布的不均匀,体系也可能发生相分离。
The thesis includes there parts:
     I. Denpending on ab initio calculations, the conformational properties of poly (vinylidene chloride) (PVDC) have been investigated. The following is the main results:
     The geometries and conformational energies of model segments for PVDC are determined at MP2 level using a 6-311++g** basis set. Vibriational frequences are calculated in order to verify the stationary points at the same level. All quantum chemistry calculations are performed with the quantum chemistry package Gaussian 03. By fully optimizing the original molecule geometries, we obtained 4 stationary conformers for 2, 2, 4, 4-tetrachloropentane (TCP) and 13 stationary conformers for 2, 2, 4, 4, 6, 6-hexachloroheptane (HCH). Other conformers having higher energies are not stable. All the conformational energies are given with respect to the lowest energy conformation of each model molecule.
     For PVDC, the energies of trans (t) conformation are higher than gauche (g) conformation due to the electronstatic repulsion basing on quantum chemisty calculations. Additionally, the strong electronic effects of -CH2- group influenced by Cl atom makes the conformer unstable. The center dihedral angles deviate from the standard values in order to alleviate the steric and electrostatic repulsion, which make the model segement become a helix.
     II. According to the results of quantum chemistry calculations, the conformational populations and characteristic ratio ( C∞) for poly (vinylidene chloride) have been studies based on the rotational isomer state theory.
     Recently, with the development of electronic structure theory, the studies on the rotational isomerc state (RIS) model attract the extensive attention again. In past, because of the restriction of the computer and electronic structure theory, it is popular to study conformational energies and geometry properties of model molecules by molecular mechanics (MM) calculations. But the MM calculations do not explicitly treat the electrons in a molecular system. Therefore, the MM method can not accurately describe the molecule systems where the electronic effects are predominant. In order to better quantify the conformational energies and geometry properties, many researchers try to employ ab initio electronic structure (quantum chemistry) calculations on the model segment of polymer where electronic effects are important. In this part, the geometry properties and conformational energies of model molecules TCP and HCH for PVDC are used to construct a rotational isomeric state model. According to RIS theory, The conformational population and C∞can be determined using the rotational isomeric state model. Furthermore, we analyze the influences of the statistical weight parameters on C∞. The calculated characteristic ratio is in agreement with available experimental values. The following is the main results:
     Based on the quantum chemistry calculations, we have obtained the average of C-C skeleton bond length and C-C-C skeleton valence angle of model molecules for PVDC, which will be used in RIS model. Because of the C-C-C-C skeleton torsion angles deviate generally from the standard values, a six-order statistical weight matrix is required for PVDC according to RIS theory.
     By means of the geometry properties and conformational energies of stationary conformers of TCP and HCH, we can obtain the interaction energies and then get the statistical weight parameters. Fist, we represent the RIS energies of the stationary conformers using interaction energies. Through the comparison between the RIS representation energies and the quantum calculation energies of stationary conformers, the interaction energies can be determined. The interaction energies obtained basing on quantum calculations show that steric and electrostatic repulsion are both important in PVDC. Generally, MM method can not treat the electrostatic interacitons.
     According to the interaction energies, we can obtain statistical weight parameters and then construct the six-order statistical weight matrices for PVDC. Using the statistical weight matrices, we have calculated C∞and the conformational populations for PVDC with–CH2- center or -CCl2- centers, respectively. The values of C∞are in reasonable agreement with theoretical values.
     Additionally, it is worth to calculate the values of ?C∞?lnw, where w denotes the parameter that is being varied, and all the other parameters keep constant values. According to the values of ?C∞?lnw, it can be seen that Cl-CH2 pentane interaction and Cl-Cl long range interaction are important in second-order interactions. However, the influences of first-second order interactions are all small.
     III. The phase behaviors of bimodal molecular weight high density polyethylene (BHDPE) have been studies by molecular dynamics simulations. Polyethylene has been widely used and studies. In this part, BHDPE has been chosen as molecular models. The blends composed with a series of the branch polyethylene with different branch content and linear polyethylene have been studies by molecular dynamics and mesodyn simulations. The main results are shown as following.
     Hildebrand solubility parameters (δ) are calculated for the models of higher molecular weight branch polyethylene (HBPE) with different branch content and lower molecular weight linear polyethylene (LLPE), respectively, by using molecular dynamics simulations. Theseδvalues are then used to calculate the corresponding Flory-Huggins interaction parameter (χ) between HBPE and LLPE models. The influences of branch content on the HBPE and LLPE blends are studied according toχobtained above.
     In order to better understand the influences of compositions on the compatibility between LLPE and HBPE, Mesodyn simulations are used to give the density profiles of the blends at different compositions. The results indicate that the phase behavior of BHDPE is influenced by both the global branch content of the system and the local branch content, i.e., the branch content of HBPE.
引文
[1]. 何曼君,陈维孝,董西侠,高分子物理,复旦大学出版社,1998
    [2]. 刘凤歧,汤心颐,高分子物理,高等教育出版社,1995
    [3]. 马德柱,何平笙,徐种德,周漪琴,高聚物的结构与性能,1999,科学出版社
    [4]. 殷敬华,莫志深,现代高分子物理学,科学出版社,2001
    [5]. Mandelkern L., Crystallization of Polymers, McGraw Hill, New York, 1964
    [6]. Wundrlich B., Macromolecluar Physics, Academic Press, New York, 1973
    [7]. Bor M., Oppenheimer R., Quantum Theory of the Molecules, Ann. Phys., 1927, 84, 457
    [8]. Hehre W. J., Radom L., Schleyer P. V. R., et al., Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986
    [9]. McQuarrie D. A., Quantum Chemistry, University Science Books, Mill Vally. CA. 1983
    [10]. 唐敖庆, 杨忠志, 李前树, 量子化学, 北京科学出版社, 1982
    [11]. 徐光宪, 黎乐民, 王德民, 量子化学基本原理和从头计算法, 北京科学出版社, 1985
    [12]. Lowdin P. O., Correlation problem in many-electron quantum mechanics, Adv. Chem. Phys., 1959, 2, 207
    [13]. Pople J. A., Seeger R., R. Krishnan, Variational Configuration interaction methods and comparison with perturbation theory, Int. J. Quant. Chem. Symp., 1977, 11, 149
    [14]. Foresman J. B., Head-Gordon M., Pople J. A., M. Frisch J., Toward a systematic molecular orbital theory for excited states, J. Phys. Chem., 1992, 96, 135
    [15]. Krishnan R., Schlegel H. B., Pople J. A., Derivate studies in configuration interaction theory, J. Chem. Phys., 1980, 46, 54
    [16]. Brooks B. R., Laidig W. D., Saxe P., Goddard J. D., Yamaguchi Y., Schaefer H. F., Analytic gradient from correlated wave functions via the two-particle density matrix and the unitary group approach, J. Chem. Phys., 1980, 72, 4652
    [17]. Salter E. A., Trucks G. W., Bartlett R. J., Analytic energy derivatives in many-body methods I. First derivatives, J. Chem. Phys., 1989, 90, 1752
    [18]. Raghavachari K., Pople J. A., A two dimensional chart of quantum chemistry, Int. J. Quant. Chem., 1981, 20, 167
    [19]. Pople J. A., Head-Gordon M., Raghavachari K., Quadratic configuration interaction. A general technique for determining electron correlation energies, J. Chem. Phys., 1987, 87, 5968
    [20]. Cioslowski J., A new robust algorithm for fully automated determination of attactor interaction lines in moleclues, Chem. Phys. Lett., 1994, 219, 151
    [21]. Ermer O., Calculation of molecular properties using. Force fields applications in organic chemistry, Structure and Bonding, 1976, 27, 161
    [22]. Brown D., Clarke J. H. R., A comparison of constantenergy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids, Molecular Physics, 1984, 51, 1243
    [23]. Haggler A. T., Dauber P., Lifson S., Consistent force field studies ofintermolecular forces in hydrogen-bonded crystals. 3. The C:O.cntdot., cntdot.,cntdot.H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids, J. Am. Chem. Soc., 1979, 101, 5131
    [24]. S. W. Homans, A molecular mechanical force-field for the conformational- analysis of oligosaccharides—comparison of theoretical and crystal- structures of MAN-alpha-l-3 MAN-beta-l-4 GLCNAC, Biochemistry, 1990, 29, 9110
    [25]. Karasawa N., Goddard W.A., Force fields, structures, and properties of poly(vinylidene fluoride) crystals, Macromolecules, 1992, 25, 7268.
    [26]. Hill J. R., Sauer J., Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica, J. Phys. Chem., 1994, 98, 1238
    [27]. Halgren T. A., Nachbar R. B., Merck molecular force field. 4. Conformational energies and geometries for MMFF94, J. Comput. Chem., 1996, 19, 587
    [28]. Bor M., Oppenheimer R., Quantum Theory of the Molecules, Ann. Phys., 1927, 84, 457
    [29]. Casewit C. J., Colwell K.S., Rappe A. K., Application of a universal force field to organic molecules, J. Am. Chem. Soc., 1992, 114, 10035
    [30]. Kohler A. E., Garofalini S. H., Effect of composition on the penetration of inert gases adsorbed onto silicate glass surfaces, Langmuir, 1994, 10, 4664
    [31]. Rosenthal A. B., Garofalini S. H., Molecular dynamics study of amorphous titanium silicate, A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Non-Cryst. Solids,1988, 107, 65
    [32]. Weiner S. J., Kollman P. A., Case D. A., Singh U. C., Ghio C., Alagona G., Profeta S. Jr., Weiner P., A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc., 1984, 106, 765
    [33]. Reichl L. E., A Mordern Course in Statistical Physics, Univ. Texas Press, Austin, 1980
    [34]. Heermann D. W., Computer Simulation Methods in Theoretical Physics, Springer-Verlag, Berlin, 1990
    [35]. Allen M. P., Tildesley D. J., Computer Simulation of Liquids, Oxford University Press, Oxford, 1987
    [36]. Alder B. J., Wainwright T. E., Decay of the Velocity Autocorrelation Function, Physical Review A, 1970, 1, 18
    [37]. Dauber-Osguthorpe P., Osguthorpe D. J., Partitioning the motion in molecular dynamics simulations into characteristic modes of motion, J. Comput. Chem., 1993, 14, 1259
    [38]. Fincham D., Heyes D. M., Integration Algorithms in Molecular Dynamics, CCP5 Quarterly, 1982, 6, 4
    [39]. Verlet L., Experiments' on classical fluids. I.Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967, 159, 98
    [40]. Beeman D., Some multistep methods for use in molecular dynamics calculations. J. Comput. phys., 1976, 20, 130
    [41]. Nose S., A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys, Molecular Physics, 1984, 53, 255
    [42]. Nose S., Klein M. L., Constant pressure molecular dynamics for molecular systems, Molecular Physics, 1983, 50, 380
    [43]. Hoover W. G., Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A., 1985, 31, 1695
    [44]. Nose S., Yonezawa F., Isothermal-isobaric computer simulations of melting and crystallization of a LennardJones system, J. Chem. Phys., 1986, 84, 1803
    [45]. MSI manual, Forcefield-Based Simulations General Theory & Methodology, 1997
    [46]. Andrew R. L., Molecular Modeling: Principles and Applications, Addison Wesley Longman Limited, London, 1996
    [47]. Maitland G. C., Rigby M., Smith E. B., Wakeham W. A., Intermolecular Forces, Clarendon Press, Oxford, 1981.
    [48]. Buckingham A. D., Permanent and induced molecular moments and long-range intermolecular forces, Adv. Chem. Phys., 1967, 12, 107
    [49]. Meyer M., Pontikis V., Computer Simulation in Materials Science, Kluwer Academic Publishers, Dordrecht, 1991
    [50]. Andrew R. L., Molecular Modelling: Principles and Application, Addison Wesley Longman, London, 1996.
    [51]. 陈凯先,蒋华良,嵇汝运,计算机辅助药物设计─原理、方法及应用,2000,上海科学技术出版社,76页.
    [52]. 刘光恒,戴树珊,化学应用统计力学, 科学出版社, 2001
    [53]. 陈良恒,热力学与统计物理学,吉林大学出版社, 1987
    [54]. 李如生,平衡和非平衡统计力学,清华大学出版社, 1995
    [55]. Woodcock L. V., Isothermal molecular dynamics calculations for liquid salts, Chem. Phys. Lett., 1970, 10, 257
    [56]. Haile J. M., Gupta S., Extensions of the molecular dynamics simulation method. II. Isothermal systems, J. Chem. Phys., 1983, 79, 3067
    [57]. van Swol F., Woodcock L. V., Cape J. N., Melting in two-dimensions: determination of phase transition boundaries, J. Chem. Phys., 1980, 75, 913
    [58]. Broughton J. Q., Gilmer G. H., Weeks J. D., Constant pressure molecular dynamics simulation of the 2D R-12 system: comparison with isochors and isotherms, J. Chem. Phys., 1981, 75, 5128
    [1]. Bor M., Oppenheimer R., Quantum Theory of the Molecules, Ann. Phys., 1927, 84, 457
    [2]. Hehre W. J., Radom L., Schleyer P. V. R., et al., Ab Initio Molecular Orbital Theory, John Wiley &Sons, Inc., 1986
    [3]. McQuarrie D. A., Quantum Chemistry, University Science Books, Mill Vally. CA. 1983
    [4]. 唐敖庆, 杨忠志, 李前树, 量子化学, 北京科学出版社, 1982
    [5]. 徐光宪, 黎乐民, 王德民, 量子化学基本原理和从头计算法, 北京科学出版社, 1985
    [6]. Lowdin P. O., Correlation problem in many-electron quantum mechanics, Adv. Chem. Phys., 1959, 2, 207
    [7]. Pople J. A., Seeger R., R. Krishnan, Variational Configuration interaction methods and comparison with perturbation theory, Int. J. Quant. Chem. Symp., 1977, 11, 149
    [8]. Foresman J. B., Head-Gordon M., Pople J. A., M. Frisch J., Toward a systematic molecular orbital theory for excited states, J. Phys. Chem., 1992, 96, 135
    [9]. Krishnan R., Schlegel H. B., Pople J. A., Derivate studies in configuration interaction theory, J. Chem. Phys., 72, 1980, 46, 54
    [10]. Brooks B. R., Laidig W. D., Saxe P., Goddard J. D., Yamaguchi Y., Schaefer H. F., Analytic gradient from correlated wave functions via the two-particle density matrix and the unitary group approach, J. Chem. Phys.,1980, 72, 4652
    [11]. Salter E. A., Trucks G. W., Bartlett R. J., Analytic energy derivatives in many-body methods I. First derivatives, J. Chem. Phys., 1989, 90, 1752
    [12]. Raghavachari K., Pople J. A., A two dimensional chart of quantum chemistry, Int. J. Quant. Chem., 1981, 20, 167
    [13]. Pople J. A., Head-Gordon M., Raghavachari K., Quadratic configuration interaction. A general technique for determining electron correlation energies, J. Chem. Phys., 1987, 87, 5968
    [14]. Cioslowski J., A new robust algorithm for fully automated determination of attactor interaction lines in moleclues, Chem. Phys. Lett., 1994, 219, 151
    [15].Schlegel H. B., Robb M. A., MCSCF gradient optimization of the H2CO→H2+CO transition structure, Chem. Phys. Lett., 1982, 93, 43
    [16]. Eade R. H. E., Robb M. A., Direct Minimization in MCSCF Theory. The Quasi-Newton Method, Chem. Phys. Lett., 1981, 83, 362
    [17]. Hegarty D., Robb M. A., Application of unitary group methods to configuration interaction calculations, Mol. Phys., 1979, 38, 1795
    [18]. Hegarty D., Robb M. A., Application of unitary group-methods to configuration-interaction calculations, Mol. Phys., 1979, 38, 1795
    [19]. R. H. E. Eade and M. A. Robb, Direct minimization in MCSCF theory. The quasi-newton method, Chem. Phys. Lett., 1981, 83, 362
    [20]. Schlegel H. B., Robb M. A., MCSCF gradient optimization of the H2CO→H2 + CO transition structure, Chem. Phys. Lett., 1982, 93, 43
    [21]. Bernardi F., Bottini A., McDougall J. J. W., Robb M. A., Schlegel H. B., MC-SCF gradient calculations of transition Structures in organic reactions,Far. Symp. Chem. Soc. 1984, 19, 137
    [22]. Yamamoto N., Vreven T., Robb M. A., Frisch M. J., Schlegel H. B., A direct derivative MC-SCF procedure, Chem. Phys. Lett., 1996, 250, 373
    [23]. Frisch M. J., Ragazos I., RobN. M. A. B., Schlegel H. B., An evaluation of 3 direct MCSCF orocedures, Chem. Phys. Lett., 1992, 189, 524
    [24]. Hohenberg P., Kohn W., Inhomogeneous electron gas, Phys. Rev., 1964, 136, B864
    [25]. Kohn W., Sham L. J., Self-consistent equations including exchange and correlation effects, Phys. Rev., 1965, 140, A1133
    [26]. Slater J. C., Quantum Theory of Molecular and Solids. Vol. 4: The Self-Consistent Field for Molecular and Solids, McGraw-Hill: New York, 1974
    [27]. Salahub D. R., Zerner M.C., eds., The Challenge of d and f Electrons, ACS: Washington, D.C., 1989.
    [28]. Parr R.G., Yang W., Density-Functional Theory of Atoms and Molecules, Oxford Univ. Press: Oxford, 1989.
    [29]. Pople J. A., Gill P. M. W., Johnson B. G., Kohn-Sham density-functional theory within a finite basis set, Chem. Phys. Lett., 1999, 199, 557
    [30]. Johnson B. G., Frisch M. J., An implementation of analytic second derivatives of the gradient-corrected density functional energy, J. Chem. Phys., 1994, 100, 7429
    [31]. Labanowski J. K., Andzelm J. W., Density Functional Methodsin Chemistry, Springer-Verlag: New York, 1991
    [32]. Woon D. E., Dunning Jr. T. H., Gaussian basis sets for use in correlatedmolecular calculations. III. The second-row atoms, Al-Ar, J. Chem. Phys., 1993 98, 1358
    [33]. Kendall R. A., Dunning Jr. T. H., Harrison R. J., Electron affinities of the first-row atoms revisited. Systematic basis sets and wave functions, J. Chem. Phys., 1992, 96, 6796
    [34]. Dunning Jr. T. H., Gaussian basis sets for use in correlated molecular calculations. I. The atoms boron through neon and hydrogen, J. Chem. Phys., 1989, 90, 1007
    [35]. Peterson K. Woon A., D. E., Dunning Jr. T. H., Gaussian basis sets for use in correlated molecular calculations. IV. Calculation of static electrical response properties, J. Chem. Phys., 1994, 100, 7410
    [36]. Wilson A. K., Mourik T. van, Dunning Jr. T. H., Gaussian basis sets for use in correlated molecular calculations. VI. Sextuple zeta correlation consistent basis sets for boron through neon, J. Mol. Struct. (Theochem), 1996, 388, 339
    [37]. Ermer O., Calculation of molecular properties using. Force fields applications in organic chemistry, Structure and bonding, 1976, 27, 161
    [38]. Brown D., Clarke J. H. R., A comparison of constantenergy, constant temperature and constant pressure ensembles in molecular dynamics simulations of atomic liquids, Molecular Physics, 1984, 51, 1243
    [39]. Haggler A. T., Dauber P., Lifson S., Consistent force field studies of intermolecular forces in hydrogen-bonded crystals. 3. The C:O.cntdot., cntdot.,cntdot.H-O hydrogen bond and the analysis of the energetics and packing of carboxylic acids, J. Am. Chem. Soc., 1979, 101, 5131
    [40]. S. W. Homans, A molecular mechanical force-field for the conformational- analysis of oligosaccharides—comparison of theoretical and crystal- structures of MAN-alpha-l-3 MAN-beta-l-4 GLCNAC, Biochemistry, 1990, 29, 9110
    [41]. Karasawa N., Goddard W.A., Force fields, structures, and properties of poly(vinylidene fluoride) crystals, Macromolecules, 1992, 25, 7268.
    [42]. Hill J. R., Sauer J., Molecular mechanics potential for silica and zeolite catalysts based on ab initio calculations. 1. Dense and microporous silica, J. Phys. Chem., 1994, 98, 1238
    [43]. Halgren T. A., Nachbar R. B., Merck molecular force field. 4. Conformational energies and geometries for MMFF94, J. Comput. Chem., 1996, 19, 587
    [44]. Bor M., Oppenheimer R., Quantum Theory of the Molecules, Ann. Phys., 1927, 84, 457
    [45]. Casewit C. J., Colwell K.S., Rappe A. K., Application of a universal force field to organic molecules, J. Am. Chem. Soc., 1992, 114, 10035
    [46]. Kohler A. E., Garofalini S. H., Effect of composition on the penetration of inert gases adsorbed onto silicate glass surfaces, Langmuir, 1994, 10, 4664
    [47]. Rosenthal A. B., Garofalini S. H., Molecular dynamics study of amorphous titanium silicate, A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Non-Cryst. Solids,1988, 107, 65
    [48]. Weiner S. J., Kollman P. A., Case D. A., Singh U. C., Ghio C., Alagona G., Profeta S. Jr., Weiner P., A new force field for molecular mechanical simulation of nucleic acids and proteins, J. Am. Chem. Soc., 1984, 106, 765
    [49]. Reichl L. E., A Mordern Course in Statistical Physics, Univ. Texas Press, Austin, 1980
    [50]. Heermann D. W., Computer Simulation Methods in Theoretical Physics, Springer-Verlag, Berlin, 1990
    [51]. Allen M. P., Tildesley D. J., Computer Simulation of Liquids, Oxford University Press, Oxford, 1987
    [52]. Alder B. J., Wainwright T. E., Decay of the Velocity Autocorrelation Function, Physical Review A, 1970, 1, 18
    [53]. Dauber-Osguthorpe P., Osguthorpe D. J., Partitioning the motion in molecular dynamics simulations into characteristic modes of motion, J. Comput. Chem., 1993, 14, 1259
    [54]. Fincham D., Heyes D. M., Integration Algorithms in Molecular Dynamics, CCP5 Quarterly, 1982, 6, 4
    [55]. Verlet L., Experiments' on classical fluids. I.Thermodynamical properties of Lennard-Jones molecules, Physical Review, 1967, 159, 98
    [56]. Beeman D., Some multistep methods for use in molecular dynamics calculations. J. Comput. phys., 1976, 20, 130
    [57]. Nose S., A molecular dynamics method for simulations in the canonical ensemble. Mol. Phys, Molecular Physics, 1984, 53, 255
    [58]. Nose S., Klein M. L., Constant pressure molecular dynamics for molecular systems, Molecular Physics, 1983, 50, 380
    [59]. Hoover W. G., Canonical dynamics: equilibrium phase-space distributions, Phys. Rev. A., 1985, 31, 1695
    [60]. Nose S., Yonezawa F., Isothermal-isobaric computer simulations ofmelting and crystallization of a LennardJones system, J. Chem. Phys., 1986, 84, 1803
    [61]. MSI manual, Forcefield-Based Simulations General Theory & Methodology, 1997
    [62]. Andrew R. L., Molecular Modeling: Principles and Applications, Addison Wesley Longman Limited, London, 1996
    [63]. Maitland G. C., Rigby M., Smith E. B., Wakeham W. A., Intermolecular Forces, Clarendon Press, Oxford, 1981.
    [64]. Buckingham A. D., Permanent and induced molecular moments and long-range intermolecular forces, Adv. Chem. Phys., 1967, 12, 107
    [65]. Meyer M., Pontikis V., Computer Simulation in Materials Science, Kluwer Academic Publishers, Dordrecht, 1991
    [66]. Andrew R. L., Molecular Modelling: Principles and Application, Addison Wesley Longman, London, 1996.
    [67]. 陈凯先,蒋华良,嵇汝运,计算机辅助药物设计─原理、方法及应用,2000,上海科学技术出版社,76页.
    [68]. 刘光恒,戴树珊,化学应用统计力学, 科学出版社, 2001
    [69]. 陈良恒,热力学与统计物理学,吉林大学出版社, 1987
    [70]. 李如生,平衡和非平衡统计力学,清华大学出版社, 1995
    [71]. Woodcock L. V., Isothermal molecular dynamics calculations for liquid salts, Chem. Phys. Lett., 1970, 10, 257
    [72]. Haile J. M., Gupta S., Extensions of the molecular dynamics simulation method. II. Isothermal systems, J. Chem. Phys., 1983, 79, 3067
    [73]. van Swol F., Woodcock L. V., Cape J. N., Melting in two-dimensions:determination of phase transition boundaries, J. Chem. Phys., 1980, 75, 913
    [74]. Broughton J. Q., Gilmer G. H., Weeks J. D., Constant pressure molecular dynamics simulation of the 2D R-12 system: comparison with isochors and isotherms, J. Chem. Phys., 1981, 75, 5128
    [1]. Foresman J. B., Frisch E., Exploring Chemistry with Electronic Structure Methods, Gaussian Inc., Pittsburgh, 1996
    [2]. Smith G. D., Jaffe R. L., Quantum chemistry study of conformational energies and rotational energy barriers in n-alkanes, J. Phys. Chem., 1996, 100,18718
    [3]. Byutner O. G., Smith G. D., Conformational properties of poly (vinylidene fluoride). Aquantum chemistry study of model compounds, macromolecules, 1999, 32, 8376
    [4]. Mattice W. L., Clancy T. C., Unperturbed dimensions and local stiffness of poly (vinyl chloride) with stereochemical sequences composed of repeating units, macromolecules, 1999, 32,5444
    [5]. Smith G. D., Jaffe R. L., Yoon D. Y., Conformational characteristics of 1,3-dimethoxypropane and poly (oxytrimethylene) based upon ab initio electronic structure calculations, J. Phys. Chem., 1996, 100, 13439
    [6]. Smith G. D., Jaffe R. L., Yoon D. Y., Conformations of perfluoropoly (oxyethylene) from ab initio electronic structure calculations on model molecules, Macromolecules, 1995, 28, 5804
    [7]. Smith G. D., Ludovice P. J., Jaffe R. L., Yoon D. Y., Conformations of 2,4-dichloropentane and 2,4,6-trichloroheptane and a force field for poly (vinyl chloride) based upon ab initio electronic structure calculations, J. Phys. Chem., 1995, 99, 164
    [8]. Smith G. D., Jaffe R. L., Yoon D. Y., Conformational characteristics of poly(oxymethylene) based upon ab initio electronic structure calculations on model molecules, J. Phys. Chem., 1994, 98, 9078
    [9]. Jaffe R. L., Smith G. D., Yoon D. Y., Conformations of 1,2-dimethoxyethane from ab initio electronic structure calculations, J. Phys. Chem., 1993,97,12745
    [10]. Smith G. D., Yoon D. Y., Jaffe R. L., A third order rataional isomeric state model for poly (oxyethylene) based upon ab initio electronic structure analyses of model molecules, Macromolecules, 1993, 26, 5213
    [1]. Khanarian G., Schilling F.C., Cais R. E., Tonelli A. E., Kerr effect and dielectric study of poly (vinyl chloride) and its oligomers, Macromolecules, 1983, 16, 287
    [2]. Smith G. D., Jaffe R. L., Quantum chemistry study of conformational energies and rotational energy barriers in n-alkanes, J. Phys. Chem., 1996, 100,18718
    [3]. Byutner O. G., Smith G. D., Conformational properties of poly (vinylidene fluoride). Aquantum chemistry study of model compounds, macromolecules, 1999, 32, 8376
    [4]. Mattice W. L., Clancy T. C., Unperturbed dimensions and local stiffness of poly (vinyl chloride) with stereochemical sequences composed of repeating units, macromolecules, 1999, 32,5444
    [5]. Smith G. D., Jaffe R. L., Yoon D. Y., Conformational characteristics of 1,3-dimethoxypropane and poly (oxytrimethylene) based upon ab initio electronic structure calculations, J. Phys. Chem., 1996, 100, 13439
    [6]. Smith G. D., Jaffe R. L., Yoon D. Y., Conformations of perfluoropoly (oxyethylene) from ab initio electronic structure calculations on model molecules, Macromolecules, 1995, 28, 5804
    [7]. Smith G. D., Ludovice P. J., Jaffe R. L., Yoon D. Y., Conformations of 2,4-dichloropentane and 2,4,6-trichloroheptane and a force field for poly (vinyl chloride) based upon ab initio electronic structure calculations, J. Phys. Chem., 1995, 99, 164
    [8]. Smith G. D., Jaffe R. L., Yoon D. Y., Conformational characteristics of poly (oxymethylene) based upon ab initio electronic structure calculations on model molecules, J. Phys. Chem., 1994, 98, 9078
    [9]. Jaffe R. L., Smith G. D., Yoon D. Y., Conformations of 1,2-dimethoxyethane from ab initio electronic structure calculations, J. Phys. Chem., 1993,97,12745
    [10]. Smith G. D., Yoon D. Y., Jaffe R. L., A third order rataional isomeric state model for poly (oxyethylene) based upon ab initio electronic structure analyses of model molecules, Macromolecules, 1993, 26, 5213
    [11]. Carballeira L., Pereiras A. J., Rios M. A., Conformational properties of poly (vinylidene bromide) and poly (vinylidene fluoride), Macromolecules, 1990, 23, 1309
    [12]. Carballeira L., Pereiras A. J., Rios M. A., Conformational properties of poly (vinyl bromide) and poly (viny fluoride), Macromolecules, 1989, 22, 2668
    [13]. Tonelli A. E., Conformational characteristics of poly (vinyl fluoride), poly (fluoromethylene), and poly (trifluoroethylene), Macromolecules, 1980, 13, 734
    [14]. Tonelli A. E., Conformational characteristics of poly (vinylidene fluoride), Macromolecules, 1976, 9, 547
    [15]. Matsuo K., Stockmayer W. H., Solution viscosities and unperturbed dimensions of poly (vinylidene chloride), Macromolecules, 1975, 8, 660
    [16]. Flory P. J., Sundararajan P. R., Debolt L. C., Configurational statistics of vinyl polymer chains, J. Am. Chem. Soc., 1974. 96, 5015
    [17]. Boyd R. H., Breitling S. M., Conformational properties of polyisobutylene, Macromolecules, 1972, 5, 1
    [18]. Boyd R. H., Kesner L., Conformational properties of polar polymers. Ⅱ. poly (vinylidene chloride), J. Pol. Sci.: Pol. Phys. Ed., 2003, 19, 393.
    [19]. Zhang Z. J., Lu Z. Y., Li Z. S., Sun C. C., Conformational properties of poly (vinyl fluoride) based upon ab initio electronic structure calculations, Chem. Phys. Lett., 2005, 406, 504
    [1]. Liu H. T., Davey C. R., Shirodkar P. P., Bimodal polyethylene products from UNIPOLTM single gas phase reactor using engineered catalysts, Macromol. Symp., 2003, 195, 309
    [2]. Oh S. J., Lee J. Park S., Prediction of pellet properties for an industrial bimodal high-density polyethylene process with Ziegler-Natta catalysts, Ind. Eng. Chem. Res., 2005, 44, 8
    [3]. Alt F. P., Bohm L. L., Enderle H. F., Berthold J., Bimodal polyethylene-interplay of catalyst and process, Macromol. Symp., 2001, 163, 135.
    [4]. 王瑞棠, 吴东昆,吴政龙,陈荣裕,陈武隆,张子峰,合成树脂极塑料,2005,22,79.
    [5]. Hubert L., David L., Seguela, R., Vigier G., Degoulet, C., Germain Y., Physical and mechanical properties of polyethylene for pipes in relation to molecular architecture. Ⅰ .Microstructure and crystallization kinetics, Polymer, 2001, 42, 8425
    [6]. Krumme A., Lehtinen A., Viikna A., Crystallisation behaviour of high density polyethylene blends with bimodal molar mass distribution 1.Basic characteristics and isothermal crystallisation, Euro. Polym. j., 2004, 40, 359
    [7]. Hussein I. A., Hameed T., Abu Sharkh B. F., Mezghani K., Miscibility of hexane-LLDPE and LDPE blends: influence of branch content and composition distribution, Polymer, 2003, 44, 4665
    [8]. Mayo S. L., Olafson B. D., Goddard Ⅲ W. A., Dreiding: A generic forcefield for molecular simulations, J. Phys. Chem., 1990, 94, 8897
    [9]. Zhao L. Y., Choi P., Computer simulation studies of the miscibility of poly (3-hydroxybutyrate)-based blends, Polymer, 2004, 45, 1349
    [10]. Choi P., Molecular dynamics studies of the thermodynamics of HDPE/ butane-based LLDPE blends, Polymer, 2000, 41, 8741
    [11]. Hill M. J., Barham P. J., Interpretation of phase behaviour of blends containing linear low-density polyethylenes using a ternary phase diagram, Polymer, 1994, 35, 1802
    [12]. Graessley N, Fetters L. J., Lohse D. J., Schulz D. N., Sissano J. A., Effect of deuterium substitution on thermodynamic interactions in polymer blends, Macromolecules, 1993, 26, 1137
    [13]. Wignall G.D., Alamo R.G., Londono J.D., et al., Small-angle neuton scattering investigations of liquid-liquid phase separation in heterogeneous linear low-density polyethylene, Macromolecules, 1996, 29, 5332
    [14]. Hill M.J., Barham P.J., Ruiten J.V., Liquid-liquid phase segregation in blends of a linear polyethylene with a series of octane copolymers of differing branch content, Polymer, 1993, 34, 2975
    [15]. Alamo R.G., Londono J.D., Mandelkern L., et al., Small angle neutron scattering investigations of melt miscibility and phase segregation in blends of linear and branched polyethylenes as a function of the branch content, Macromolecules, 1997, 30, 561
    [16]. Barham P. J., Hill M. J., Goldeck-wook G., van Ruiten J. A qualitative scheme for the liquid phase separation inblends of homopolymers with their branched copolymers, Polymer, 1993, 34, 2981
    [17]. Wignall G.D., Alamo R.G., Londono J.D., et al., Morphology of blends of linear and short-chain branched polyethylenes in the solid state by small-angle neutron and X-ray scattering, differential scanning calorimetry, and transmission electron microscopy, Macromolecules, 2000, 33, 55
    [18]. Agamalian M., Alamo R. G., Kim M. H., Londono J. D., Mandelkern L, Wignall G. D., Phase behavior of blends of linear and branched polyethylenes on micron length scales via ultra-small-angle neutron scattering, Macromolecules, 1999, 32, 3093.
    [19]. Krishnamoorti R., Graessley W. W., Dee G. T., Walsh D. J., Fetters L. J., Lohse D. J., Pure component properties and mixing behavior in polyolefin blends, Macromolecules, 1996, 29, 367.
    [20]. Graessley W. W., Krishnamoorti R., Balsara N. P., Butera R. J., Fetters L. J., Lohse L. J., Schulz D. N., Sissano J. A., Thermodynamics of mixing for blends of model ethylene-butene copolymers, Macromolecules, 1994, 27, 3896.
    [21]. Jawalkar S.S., Adoor S.G., Sairam M., Nadagouda M. N., Aminabhavi T. M., Molecular modeling on the binary blend compatibility of poly (vinyl alcohol) and poly (methyl methacrylate): An atomistic simulation and thermodynamic approach, J. Phys. Chem. B, 2005, 109, 15611
    [23]. Faller R., Correlation of static and dynamic inhomogeneities in polymer mixtures: A computer simulation of polyisoprene and polystyrene Macromolecules, 2004, 37, 1095
    [24]. Jawalkar S.S., Raju K.V.S.N., Halligudi S.B., et al., Molecular modeling simulations to predict compatibility of poly (vinyl alcohol) and chitosanblends: A comparison with experiment, J. Phys. Chem. B, 2007, 111, 2431
    [25]. Jawalkar S.S., Aminabhavi T.M., Molecular modeling simulations and thermodynamic approaches to investigate compatibility/incompatibility of poly (L-lactide) and poly (vinyl alcohol) blends, Polymer, 2006, 47, 8061
    [26]. Spyriouni T., Vergelati C., A molecular modeling study of binary blend compatibility of polyamide 6 and poly (vinyl acetate) with different degrees of hydrolysis: An atomistic and mesoscopic approach, Macromolecules, 2001, 34, 5306

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700