含有铱、釕金属有机化合物参与反应的机理理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在本文中,我们用密度泛函理论(DFT)中的B3LYP方法,研究了如下两个方面的问题,主要目的是研究相关金属有机化合物参与的反应的反应机理及反应中各物质的分子结构及成键特征。
     首先在实验事实的基础上,为了深入探讨酮的直接氢化反应机理,我们借助密度泛函理论的B3LYP方法,用模型化合物IrH3[(Me2PC2H4)2NH],研究了IrH3[(iPr2PC2H4)2NH]催化下的具有代表性的3-戊酮与与H2直接氢化反应的机理,展示了在整个催化循环过程中,过渡金属配合物的几何构型转变,反应的催化剂是模型化了的铱的化合物IrH3[(Me2PC2H4)2NH],主要是研究了反应中提到的各物质的键能、键长,反应性能及与反应性能有关的热力学、动力学参数。另外还比较了五配位含铱化合物Int4与H2配位又重新生成原始催化剂的过程中的两种路径,一种路径是经历一个三元环的过渡态,第二种路径是经历四元环的过渡态,理论预测,催化剂的再生(Int4与H2反应)经历一个四元环过渡态而不是经历一个三元环过渡态。另外还比较了转移氢化和直接氢化两种过程的不同,发现转移氢化在动力学上更有利,直接氢化决速步骤需要克服的能垒高,比转移氢化更难进行,需要实验条件提供一定的压力才能顺利进行。文中还运用过渡金属化合物的分子轨道理论研究了在整个催化循环中,催化剂由八面体到Y-型又到八面体的几何构型改变。
     其次应用同样的方法,在密度泛函理论的方法的指导下我们利用模型化合物μ-苯醌二钌化合物{CpRu(μ-H)}2(μ-η2:η2-C6H4O2),研究了实验物质{Cp*Ru(μ-H)}2(μ-η2:η2-C6H3RO2) (R=HorR=Me,Cp*=η5-C5Me5)与乙炔分别在非质子溶剂和质子溶剂中的反应机理。计算结果表明质子溶剂(甲醇)主要是对乙炔与金属中心配位的过程产生影响,另外还讨论了在质子溶剂和非质子溶剂中的两种反应机理,通过分析可知由于在甲醇和苯醌之间形成了氢键,使得从Ru金属中心到苯醌的π*轨道的电子转移被加强。为了探究乙炔为何更容易在甲醇溶剂中配位,我们又做了能量分解分析(EDA),双核多聚氢化物中包含的氢键导致了金属Ru的酸性增加是反应速率在质子溶剂中加快的原因。
Density functional theory (DFT) calculations at the B3LYP level of theory are carried out to study and analyze the following two projects. Our major purpose is to investigate the molecular structures, bonding, and mechanisms of the reactions in the three different projects in which most of the species are organometallic compounds.
     First,with the aid of the density functional theory calculations, the detailed catalytic mechanisms on pressure hydrogenation of ketones are explored by employing the representative reaction of 3-pentanone and hydrogen catalyzed by the model complex IrH3[(Me2PC2H4)2NH], derived from the initial catalytic complex IrH3[('Pr2PC2H4)2NH]. The geometrical transformation involved in the catalytic cycle is also clarified. We also compare the two paths in the process of pentacoordinate iridium complex Int4 coordinating with hydrogen to regenerate the original catalyst. One undergoes a three-membered ring transition state, the other possesses a four-membered ring transition state. As the four-membered ring of the ring strain is less than three-membered ring, the second path possesses a lower reaction energy barrier, reaction will according to the second path. In addition, differences between transfer hydrogenation and pressure hydrogenation are also elucidated, finding that transfer hydrogenation is more favorable since the reaction energy barrier of pressure hydrogenation is higher than the other one. Then experimental conditions required to provide a certain degree of pressure. The geometrical transformation from an octahedron to a Y-type involved in the catalytic cycle is also elucidated in terms of molecular theory of transition metal complexes.
     Then,by the aid of density functional theory (DFT) calculations we studied the reaction mechanisms of a modelμ-benzoquinone diruthenium complex{CpRu(μ-H)}2(μ-η2:η2-C6H4O2), derived from the experimental compound{Cp*Ru(μ-H)}2(μ-η:η-C6H3RO2) (R=H or R=Me, Cp*=η5-C5Me5), with acetylene both in aprotic and protic solvents. Results of calculations show that the influence of the solvent methanol on the reaction is mainly on the step of acetylene coordination. Enhanced hydrogen bonding is the reason for acceleration of the reaction in protic solvent, which is supported by NBO charge analysis.
引文
[1]何仁编著.配位催化与金属有机化学.北京:化学工业出版社,2002.
    [2]A.W.Parkins,et a, An Introduction to Orgnometallic chemistry, Houndmills; Macmillan Publish Ltd,1986,1-10
    [3]白明章.金属有机化学[J].自然杂志,1983,(2):116-118.
    [4]黄耀曾,钱延龙等.金属有机化学进展[M].北京:化学工业出版社,1987.1-10.
    [5]黄耀曾.《漫谈金属有机化学》[J].大学化学,1990,第5卷1期.
    [6]杜灿屏,唐晋.《我国金属有机化学的研究已进入世界前沿》[J].化学进展.1999,441.
    [7]白明章,自然杂志,1983,6(2):116-118.
    [8]夏巨松,广西师范大学学报,1990,增刊:70-76.
    [9]S. Aloisio; P. E. Hintze; V. Vaida. The Hydration of Formic Acid [J]. J. Phys. Chem. A. 2002, (106):363-370.
    [10]R. Hoffmann. Theoretical Organometallic Chemistry. [J]. Science,1981, (211):995-1002.
    [11]S. Aloisio, P. E. Hintze. The Hydration of Formic Acid. [J]. J. Phys. Chem. A.,2002, (106): 363-370.
    [12]B. T. Mmereki; D. J. Donaldson. Ab Initio and Density Functional Study of Complexes between the Methylamines and Water [J]. J. Phys. Chem. A2002, (106):3185-3190.
    [13]Shuqiang Niu, H. B. Michael. Theoretical Studies on Reactions of Transition-Metal Complexes [J]. Chem. Rev.2000, (100):353-406.
    [14]K. Koga, K. Morokuma. Ab initio molecular orbital studies of catalytic elementary reactions and catalytic cycles of transition-metal complexes [J]. Chem. Rev.,1991, (91):823-842.
    [15]D. G. Musaev, K. Morokuma. In Advances in Chemical Physics; S. A. Rice, I. Prigogine. Eds.; New York:John Wiley & Sons,1996, Vol. XCV, p 61.
    [16]P. E. M. Siegbahn, M. R. A Blomberg. In Theoretical Aspects of Homogeneous Catalysts, Applications of Ab Initio Molecular Orbital Theory; van P. W. N. M. Leeuwen, van J. H. Lenthe, K. Morokuma. Eds.; ingham:Kluwer Academic Publishers, MA,1995.
    [17]T. Ziegler. Approximate density functional theory as a practical tool in molecular energetics and dynamics [J]. Chem. Rev.,1991, (91):651-667.
    [18]D. R Salahub, M. Castro, R. Fournier, P. Calaminici, N. Godbout, A. Goursot, C. Jamorski, H. Kobayashi, A. Martinez, I. Papai, E. Proynov, N. Russo, S. Sirois, J. Ushio, A. Vela. In Theoretical and Computational Approaches to Interface Phenomena; H. Sellers, J. Olab. Eds.; New York:Plenum Press,1995, p 187.
    [19]刘靖疆.《基础量子化学与应用》[M].高等教育出版社,2004.7.
    [20]J. B. Foresman, M. J. Frisch. Exploring Chemistry with Electrinic Structure Methods,1993; W. J. Hehre, P. V. R. Schleyer, J. A. Pople, Ab Initio Molecular Orbital Theory,1986.
    [21]廖沐真等.《量子化学从头计算方法》.[M].清华大学出版社,1984
    [22]F. B. Vanduijneveldt, C. M. Van Duijneveldt-Vande Rijdt, J. H. Van Lenthe. State of the Art in Counterpoise Theory [J]. Chem. Rev.,1994, (94):1873-1885.
    [23]陈凯先,蒋华良,嵇汝运,计算机辅助药物设计——原理、方法及应用,上海:上海科学技术出版社,2000.
    [24]D. P. Chong. Recent Advances in Density Functional Methods. Part Ⅰ. Singapore:World Scientific,1995.
    [25]W. J. Hehre, L. Radom, P. V. R. Schleyer. et al. Ab initio Molecular Orbital Theory [Z]. New York:John Wiley&sons,1986.
    [26]D. P. Chong. Recent Advances in Density Functional Methods. Part Ⅱ. Singapore:World Scientific,1995.
    [27]W. Kohn, A. D. Becke, R. G. Parr. Density Functional Theory of Electronic Structure [J]. J. Phys. Chem.,1996, (100):12974-12980.
    [28]G. T. Velde, F. M. Bickelhaupt. Chemistry with ADF [J]. Chem.,2001, (22):931-967
    [29]W. Koch, M. C. Holthausen. A Chemist's Guide to Density Functional Theory; Weinheim, Germany:Wiley-VCH,2001.
    [30]P. E. M. Siegbahn, M. R. A. Blomberg. Density functional theory of biologically relevant metal centers [J]. Annu. Rev, Phys. Chem.,1999, (50):221-249.
    [31]M. Springborg. Density Functional Methods in Chemistry and Materials Science. New York: Wiley,1997.
    [32]C. Daul, E. J. Baerends, P. Vernooijs. A Density Functional Study of the MLCT States of [Ru(bpy)3]2+ in D3 Symmetry [J]. Inorg, Chem.,1994, (33):3538-3543.
    [33]J. Li, L. Noodleman. Electronic Structure Calculations, Density Functional Methods for Spin Polarization, Charge Transfer and Solvent Effects in Transition Metal Complexes. In Solomon, E. I.; Hodgson, K. O., Ed., ACS Symposium Series 692:Spectroscopic Methods in Bioinorganic Chemistry, American Chemical Society:Washington, DC,1998.179-197
    [34]D. M. Adams, L. Noodleman, D. N. Hendrickson. Density Functional Study of the Valence-Tautomeric Interconversion Low-Spin [CoIII(SQ)(Cat)(phen)](?) High-Spin [CoII(SQ)2(phen)] [J]. Inorg. Chem.,1997, (36):3966-3984.
    [35]L. Noodleman, E. J. Baerends. Electronic structure, magnetic properties, ESR, and optical spectra for 2-iron ferredoxin models by LCAO-X.alpha. valence bond theory [J]. J. Am. Chem. Soc.,1984, (106):2316-2327.
    [36]S. J. A Gisbergen, J. A. Groeneveld, A. Rosa, J. Snijders. Excitation Energies for Transition Metal Compounds from Time-Dependent Density Functional Theory. Applications to MnO4-, Ni(CO)4, and Mn2(CO)10 [J]. J. Phys. Chem. A.,1999, (103):6835-6844.
    [37]A. D. Becke. Density-functional exchange-energy approximation with correct asymptotic behavior [J]. Phys. Rev. A.,1988, (38):3098-3100.
    [38]C. Le, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys Rev B.,1988, (37):785-789.
    [39]J. P. Perdew. Density-functional approximation for the correlation energy of the inhomogeneous electron gas [J]. Phys. Rev. B,1986, (33):8822-8824.
    [40]X. F. Zhou; R. F. Liu. Density functional theory study of vibrational spectra,6:assignment of fundamental vibrational frequencies of benzene isomers:Dewar benzene, benzvalene, trimethylenecyclopropane, prismane, and 3,4-dimethylenecyclobutene [J]. Spectrochim. Acta. Part A.1997, (53):259-269.
    [41]O. Nwobi; J. Higgins; X. F. Zhou; R. F. Liu. Density functional calculation of phenoxyl radical and phenolate anion:an examination of the performance of DFT methods. Chem. Phys. Lett.1997, (272):155-161.
    [42]A. P. Fu, D. M. Du, Z. Y. Zhou. Molecular dynamics study of early events during photooxidation of eye lens protein yB-crystallin [J]. J. Mol. Struct. (Theochem).,2003, (623):315-325.
    [43]张瑞勤,步宇翔,李述汤.一种选择从头算基函数的有效方法Science in China(Series B)(中国科学)2000,VOL30,No 5.419-427.
    [44](a) P. Pyykko. Relativistic effects in structural chemistry [J]. Chem. Rev.1988,88,563-594.
    (b)E. M. Wezenbeek, E. J. Baerends, T. Ziegler, Inorg. Chem.1995,34,238.
    [45](a) P. J. Hay, W. R. Wadt. Ab initio effective core potentials for molecular calculations for the transition metal atoms Sc to Hg [J]. J. Chem. Phys.,1985, (82):270-283.
    (b)W. R. Wadt, P. J. Hay. Wadt W R and Hay P J. Ab initio effective core
    potentials for molecular calculations, potentials for main group elements Na to Bi [J]. J. Chem. Phys.,1985, (82):284-298.
    (c)P. J. Hay, W. R. Wadt. Hay P J and Wadt W R. Ab initio effective core potentials for molecular calculations, potentials for K to Au including the outermost core orbitals [J]. J. Chem. Phys.,1985, (82):299-310.
    (d)M. S.Gordon, T. R. Effective Core Potential Studies of Transition Metal Chemistry [J]. Cundari. Coord. Chem. Rew.1996, (147):87-115.
    (e)G. Frenking, I. Antes, M. Boehme, S. Dapprich, A. W. Ehlers, V. Jonas, A. Arndt Neuhaus, M. Otto, R. Stegmann, S. F. Vyboishchikov. In Reviews in Computational Chemistry, Lipkowitz, K. B., Boyds, D. B., Eds., VCH:New York:1996, (Vol.8):p 63.
    [46]P. E. M. Siegbahn, In Advances in Chemical Physics; S. A.Rice, I. Prigogine, Eds. New York:John Wiley & Sons.1996, Vol. XCIII, p 333.
    [47](a) C. Lee, W. Yang, R. G. Parr. Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density [J]. Phys. Rev. B 1988, (37): 785-789.
    (b)A. D. Becke. A new mixing of Hartree-Fock and local density-functional theories [J]. J. Chem. Phys.1993, (98):1372-1377.
    (c)A. D. Becke. Density-functional thermochemistry. Ⅲ. The role of exact exchange [J]. J. Chem. Phys.1993, (98):5648-5652..
    [48]F. A. Cotton, X.-J. Feng. Density Functional Theory Study of Transition-Metal Compounds Containing Metal-Metal Bonds.1. Molecular Structures of Dinuclear Compounds by Complete Geometry Optimization [J]. J. Am. Chem. Soc.1997, (119):7514-7520.
    [49]M. J.Frisch; G. W. Trucks; H. B. Schlegel; G. E. Seuseria. et. al. Gaussian, Inc., Pittsbergh PA,1995.
    [50]J. A. Pople, L. A. Curtiss. Gaussian-1 Theory:A General Procedure for Prediction of Molecular Energies [J]. J. Chem. Phys.,1989, (90):5622-5629.
    [51]A. Bhattacharya, R. Shukla. Function implications of postural disequilibrium due to lead exposure [J]. Neurotoxicology,1993, (14):179-190.
    [52]S. Niu; B. H. Michael. Theoretical Studies on Reactions of Transition-Metal Complexes [J]. Chem. Rev.2000, (100):353-405.
    [53]Brown, H. C.; Krishnamurthy, S. Tetrahedron 1979,35,567-607.
    [54]Hudlickf, M. Reduction in Organic Chemistry; EllisHorwood Limited:Chichester,1984.
    [55]Greeves, N. In ComprehensiveOrganic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press:Oxford,1991; Vol.8, pp 1-24.
    [56]Keinan, E.; Greenspoon, N. In Comprehensive Organic Synthesis; Trost, B. M., Fleming, I., Eds.; Pergamon Press:Oxford,1991; Vol.8, pp 523-578.
    [57]Seyden-Penne, J. Reductions by theAluminoand Borohydrides in Organic Synthesis; VCH: New York,1991
    [58]T. Ohkuma, M. Koizumi, K. Muniz, G. Hilt, C. Kabuto and R.Noyori, J. Am. Chem. Soc., 2002,124,6508
    [59]K. Mikami, T. Korenaga,M. Terada, T. Ohkuma, T. Pham and R. Noyori, Angew. Chem. Int. Ed.,1999,38,495-497
    [60]H. Doucet, T. Ohkuma, K. Murata, T. Yokozawa M. Kozawa, E. Katayama, A. F. England, T. Ikariya and R. Noyori,Angew. Chem. Int. Ed,.,1998,37,1703-1707
    [61]Jiang, Q.; Jiang, Y.; Xiao, D.; Cao, P.; Zhang, X. Angew. Chem., Int. Ed.1998,37, 1100-1103
    [62]Bakos, J.; To'th, I.; Heil, B.; Marko', L. J. Organomet. Chem.1985,279,23-29
    [63]Zhang, X.; Taketomi, T.; Yoshizumi, T.; Kumobayashi, H.;Akutagawa, S.; Mashima, K. Takaya, H. J. Am. Chem. Soc.1993,115,3318
    [64]T. Ohkuma, M. Koizumi, H. Doucet, T. Pham, M. Kozawa, K.Murata, E. Katayama, T. Yokozawa, T. Ikariya and R. Noyori, J. Am.Chem. Soc.,1998,120,13529-13530
    [65]Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am.Chem. Soc.1995,117, 2675-2676
    [66]Giroir-Fendler, A.; Richard, D.; Gallezot, P.Catal. Lett 1990.5,175-181.
    [67]Nitta, Y.; Hiramatsu, Y.; Imanaka, T. J.Catal.1990,126,235-245.
    [68]Grosselin, J. M.; Mercier, C.; Allmang,G.; Grass, F. Organometallics 1991,10,2126-2133.
    [69]T. Ohkuma, H. Ooka,T. Ikariya and R. Noyori, J. Am. Chem. Soc.,1995,117,10417-10418
    [70]R. Abbel, K. Abdur-Rashid, M. Faatz, A. Hadzovic, A. J. Lough and R. H. Morris, J. Am. Chem. Soc.,2005,127,1870-1882
    [71]K. Abdur-Rashid, S. E. Clapham, A. Hadzovic, A. J. Lough and R. H. Morris,J. Am. Chem. Soc.,2002,124,15104-15118
    [72]K. Abdur-Rashid, M.Faatz, A. J. Lough and R. H. Morris, J. Am. Chem. Soc.,2001, 123,7473-7474
    [73]Z.R.Dong,Y.Y.Li,J.S.Chen,B.Z.Li,Y.Xing,J.X.Gao[J]Org.Lett.,2005,7,1043-1045
    [74]C.Bianchini,E.Farnetti,L.Glendenning,M.Graziani,G..Nardin,M.Peruzzini,E.Rocchini,F. Zanobini. [J].Organometallics,1995,14,1489-1502
    [75]S.Park, A.J.Lough,R. H. Morris [J].Inorg.Chem.,1996,35,3001-3006
    [76]Y Xu, G. F. Docherty,G. Woodward and M. Wills, Tetrahedron:Asymmetry,2006,17,2925
    [77]Y Shvo, D. Czarkie, Y Rahamim and D. F. Chodosh,J. Am. Chem. Soc.,1986,108, 7400-7402
    [78]Ohkuma, T.; Ooka, H.; Hashiguchi, S.; Ikariya, T.; Noyori, R. J. Am. Chem. Soc.1995,117,2675-2676
    [79]Ohkuma, T.; Ooka, H.; Yamakawa, M.; Ikariya, T.; Noyori, R. J. Org.Chem.1996,61, 4872-4873
    [80]Ohkuma, T.; Koizumi, M.; Ikehira, H.; Yokozawa, T.; Noyori, R. Org.Lett.2000,2,659-662
    [81]Noyori, R.; Yamakawa, M.; Hashiguchi, S. J. Org. Chem.2001,66,7931-7944
    [82]Ohkuma, T.; Koizumi, M.; Muniz, K.; Hilt, G.; Kabuto, C.; Noyori, R. J.Am. Chem. Soc. 2002,124,6508-6509
    [83]Noyori, R.; Ohkuma, T. Angew. Chem., Int. Ed.2001,40,40-73.
    [84]K. Abdur-Rashid, A. J. Lough and R. H. Morris, Organometallics,2001,20,1047-1049
    [85]K. Abdur-Rashid, S. E. Clapham, A. Hadzovic, A. J. Lough and R. H. Morris,J. Am. Chem. Soc.,2002,124,15104-15118
    [86]K.Abdur-Rashid,A.Lough,D.G.Gusev,R.H.Morris.,Organometallics,2000,19,834-843
    [87]V.Rautenstrauch,X.Hoang-Cong,R.Churlaud,K.Abdur-Rashid,R.H.Mirris.Chem.Eur.J.,2003, 9,4954-4967
    [88]K.Abdur-Rashid,R.Guo,A.J.Lough,R.H.Morris.AdV,Synth.Catal.,2005,347,571-579
    [89]Z. E. Clarke, P. T. Maragh, T. P. Dasgupta, D. G. Gusev, A. J. Lough and K. Abdur-Rashid, Organometallics,2006,25,4113-4117
    [90]Siwei Bi*,Qingming Xie,Xiaoran Zhao,Yanyun Zhao,Xiaojian Kong.J.Organomet. Chem.,2008,693,633-638
    [91]Xuanhua Chen,Wenli Jia,Rongwei Guo,Todd W.Graham,Meredith A.Gullons and Kamaluddin Abdur-Rashid* Dalton Trans.,2009,1407-1410
    [92]C.Le,W.Yang,R.G,Parr.Development of the Colle-Salvetti correlation-energy formula into a functional of the electron density Phys Rev B.,1988,37,785-789
    [93]B.Miehlich,A.Savin,H.Stoll,H.Preuss.Rseults obtained with the correlation energy density functionals of becke and Lee,YangandParrChem Phys Lett.,1989,157,200-206
    [94]P.J.Hay,W.R.Wadt.Ab initio effective core potentialsfor molecular calculations.Potentials for Kto Au including the outermost core orbitals J Chem Phys.,1995,82,299-310
    [95]Hehre,W.; Radom, J. L.; Schleyer, P. R.. Ab initioMolecular Orbital Theory, New York: Wiley Press,1986
    [96]Huzinaga, S. Gaussian Basis Sets for Molecular Calculations, Amsterdam:Elsevier Science Press,1984
    [97]Davidson, E. R. Chem. Rev.,2000,100,351
    [98]K.Fukui. Formulation of the reaction coordinate.J. Phys.Chem.,1970,74,4161-4164
    [99]K.Fukui. The path of chemical reactions-the IRC approach Acc.Chem.Res.,1981,14,363-368
    [100]Frisch, M. J.;Trucks, G. W.; Schlegel, H. B. Gaussian 98, Revision A.9,Gaussian, Inc., Pittsburgh:PA,1998
    [101]Bi, S. W; Lin, Z. Y. Jordan, R. F. Organometallics.,2004,23(21),4882
    [102]Bi, S. W.; Ariafard, A. Jia, G. C. Organometallics.,2005,24(4):680
    [103]Xue, P.; Bi, S. W.; Sung, H. Y. Organometallics.,2004,23(20):4735
    [104]Ariafard, A.; Bi, S. W.; Lin, Z. Y. Organometallics.,2005,24(10):2241
    [105]Zhu X F, Zhao B, Bi S W. Chem.Phys. Lett,2006,422(1-3):6-10
    [106]Bi, S. W.; Wang, B.; Gao, Y.Z. Chin. J. Inorg. Chem,2006,22(1):13-19[毕思玮,王宾,高一箴.化学学报(Huaxue Xuebao),2006,22(1):13-19]
    [107]Muetterties,E.L.,Ed.Transition Metal Hydrides;Marcel Dekker:New York,1971.
    [108]Green,M.L.H.;Ohare,D.Pure Appl.Chem.1985,57,1897
    [109]Toshiro Takao, Makoto Moriya, and Hiroharu Suzuki* Organometallics 2007,26, 1349-1360
    [110]Okazaki, M.; Ohtani, T.;Takano, M.; Ogino, H. Organometallics 2004,23,4055-4061
    [111]M.A.Green, J.C.Huffman, K.G.Caulton, J. Am.Chem. Soc.104 (1982) 2319-2320.
    [112]J.D. Allison, R.A. Walton, J. Am. Chem. Soc.106 (1984) 163-168.
    [113]T.M.Gillbert, R.G. Bergman, J. Am. Chem. Soc.107 (1985) 3502-3507.
    [114]GG Hlatky, R.H. Crabtree, Coordination Chemistry Reviews,65 (1985) 1-48.
    [115]A.E. Shilov, The Activation of Saturated Hydrocarbons by Transition Metal Complexes, D. Reidel Publishing Co.:Dordrecht,1984.
    [116]R.H.Crabtree, Chem. Rev.85 (1985) 245-269.
    [117]M.L.H.Green, D. O'Hare, Pure Appl. Chem.57 (1985) 1897-1910.
    [118]J. Halpern, Inorg. Chim. Acta 100 (1985) 41-48.
    [119]R.R. Burch, E.L. Muetterties, R.G. Teller, J.M. Williams, J. Am. Chem. Soc.104 (1982) 4257-4258.
    [120]S.Tanaka, C. Dubs, A.Inagaki, M. Akita, Organometallics 24 (2005)163-184.
    [121]S. Bhaduri, B.F.G. Johnson, J.W. Kelland, J. Lewis, P.R. Raithby, S. Rehani, G.M. Sheldrick, K.J. Wong, Chem. Soc., Dalton Trans. (1979) 562-568.
    [122]J.B. Keister, J.R. Shapley, J. Organomet. Chem.85 (1975) C29-C31.
    [123]M.D. Fryzuk, T. Jones, F.W.B. Einstein, Organometallics 3 (1984) 185-191.
    [124]J.W. Faller, H. Felkin, Organometallics 4 (1985) 1488-1490.
    [125]M.V. Baker, L.D. Field, J. Am. Chem. Soc.108 (1986) 7433-7436.
    [126]P.O. Stoutland, R.G. Bergman, J. Am. Chem. Soc.107 (1985) 4581-4582.
    [127]H. Suzuki, Organometallics 13 (1994)1129-1146.
    [128]R. Gonzalez-Hernandez, J. C.R. Charles, O. Perez-Camacho, S. Kniajanski, S. Collins, Organometallics 25 (2006) 5366-5373.
    [129]C. White, A.J. Oliver, P.M. Maitlis, J. Chem. Soc. Dalton Trons. (1973) 1901-1907.
    [130]M.B. Sponsler, B.H. Weiller, P.O. Stoutland, R.G.. Bergman, J. Am. Chem. Soc. 111 (1989) 6841-6843.
    [131]R.A. Perians, R.G. Bergman, J. Am. Chem. Soc.108 (1986) 7332-7346.
    [132]W.D. Jones, F.J. Feher, J. Am. Chem. Soc.108 (1986) 4814-4819.
    [133]M.V. Baker, L.D. Field, J. Am.Chem. Soc.108 (1986) 7436-7438.
    [134]Davies, S. G.; Moon, S. D.; Simpson, S. J. J. Chem. SOC.C, hem.Commun.1983,1278.
    [135]Baird, G. J.; Davies, S. G.; Moon, S. D.;Simpson, S. J.; Jones, R. H. J. Chem. SOC.D, alton
    Trans.1985,1479.
    [136]H. Suzuki, H. Omori, D.H. Lee, Y. Yoshida, Y. Moro-oka. organometallics 7 (1988) 2243-2245.
    [137]H. Suzuki, H. Omori, Y. Moro-oka. organometallics 7 (1988) 2579-2581.
    [138]T. Takao, K. Akiyoshi, H. Suzuki. organometallics 27 (2008) 4199-4206.
    [139]E. Orgaz, J. Phys. Chem. C.111 (2007) 12391-12396.
    [140]A.D.Becke, J. Chem. Phys.98 (1993) 5648-5652.
    [141]P.J. Stephens, F.J. Devlin, C.F. Chabalowski, M.J. Fnsch, J. Phys. Chem.98 (1994) 11623-11627.
    [142]B. Michlich, A. Savin, H. Stoll, H Preuss, Chem. Phys. Lett.157 (1989) 200-206.
    [143]C. Lee, W.Yang, R.G. Parr, Phys. Rev. B 37 (1988) 785-788.
    [144]R. Knshnan, J.S. Binkley, R. Seeger, J.A. Pople, J. Chem. Phys.72 (1980) 650-654.
    [145]P.C. Hariharan, J.A. Pople, Theor. Chim. Acta 28 (1973) 213-222.
    [146]E.D. Glendening, A.E. Reed, J.E. Carpenter, F. Weinhold, NBO (Version 3.1), Gaussian, Inc:Pittsburgh, PA,2003.
    [147]A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev.88 (1988) 899-926.
    [148]K.B. Wiberg, Tetrahedron 24 (1968) 1083-1096.
    [149]M.j. Frisch, et al. Gaussian 03, revision B05, Gaussian, inc.:Pittsburgh, PA,2003.
    [150]T. Ziegler, A. Rauk, Theor. Chim. Acta 46 (1977) 1-10.
    [151]J. Zhu, G. Jia, Z. Lin, Organometallics 25 (2006) 1812-1819.
    [152]S. Bi, S. Zhu, Z. Zhang, Eur. J. Inorg. Chem. (2007) 2046-2054.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700