Cr/Fe共掺杂BaTiO_3多铁性材料与多元储氢合金的电化学性能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1BaTiO_3基多铁性材料研究
     在论文本部分工作中,我们通过在铁电材料BaTiO_3中掺入过渡金属元素来获得兼具铁磁性和铁电性的复合多铁材料。系统研究了Fe/Cr掺杂的BaTiO_3的多铁性质,用Fe/Cr共掺杂的方法显著提高了BaTiO_3多铁性能,具体结果如下:
     1.1BaTi(1-x)Cr_xO_3系列材料(x=1.0%、2.5%、5.0%、7.5%)
     Cr掺杂量小于2.5%的样品为纯四方BaTiO_3结构;Cr掺杂量高于2.5%的样品中出现了六方BaCrO3相。这说明Cr在BaTiO_3中的溶解度较低。对掺杂量为2.5%的样品的XPS测量表明Cr元素在样品中以单一价态Cr3+存在,结合XRD测试表征结果,可以认为Cr离子替代了BaTiO_3晶格中的Ti离子。铁电性质测量表明样品在室温下具有着良好的铁电性,并随着Cr掺杂含量的增加,样品中漏电流逐渐增加,铁电性能逐渐降低;磁性测量结果显示,BaTi(1-x)Cr_xO_3系列样品都表现出了室温铁磁性,并且随着Cr掺杂含量的提高,样品的比饱和磁化强度先增加后减小,当Cr掺杂量为5.0%时,样品的比饱和磁化强度出现极大值,但磁化强度较弱,综合XRD测试结果表明Cr3+离子是造成室温铁磁性的根本原因。高温σ-T曲线在铁电相变温度(400K)附近的比磁化强度的跳变证明了在样品中存在着磁电耦合效应。N2氛围下退火后,样品磁性降低,BaCrO3相消失,同样从另一方面证明了样品的磁性源于Cr离子间的超交换相互作用,同时与氧空位的存在相关。
     1.2BaTi1-xFexO3系列材料(x=1.0%、2.5%、5.0%、7.5%)与BaTi0.95-xFexCr0.05O3系列材料(x=2.5%、5.0%、7.5%)
     由于Cr离子掺杂的BaTiO_3样品磁性较弱,为了克服这一点,我们制备了Fe/Cr共掺杂的样品并且同Fe单掺杂的样品进行了对比。结合XRD相结构分析与XPS测量数据,Fe/Cr共掺杂BaTiO_3样品与Fe掺杂的BaTiO_3样品均为四方钙钛矿与六方钙钛矿两相共存结构,Fe同样替代了BaTiO_3晶格中的Ti离子,并且Fe元素在其中以Fe3+形式存在。说明Fe/Cr共掺杂能够有效的提高Cr离子在BaTiO_3中的溶解度。磁电表征发现随着Fe掺杂含量的增加,Fe掺杂BaTiO_3样品比饱和磁化强度先增加后减小,铁电性能逐渐降低直至消失; Fe/Cr共掺杂BaTiO_3样品的比饱和磁化强度线性增大,铁电性能有所下降。这说明Fe/Cr共掺杂可以在显著提高铁磁性能的同时,将BaTiO_3铁电性保持的仍然较为良好。Fe掺杂BaTiO_3与Fe/Cr共掺杂BaTiO_3样品的磁矩在铁电居里温度附近的跳变表明了样品中存在自发的磁电耦合。说明共掺杂是一种获得良好磁电耦合性能的BaTiO_3基多铁性材料的有效途径。
     综上,我们成功制备出了Cr掺杂的BaTiO_3基多铁性材料,并且通过Fe/Cr共掺杂的方法明显提高了Fe掺杂BaTiO_3基多铁性材料的铁电性能。关于铁磁性得到提高的原因,我们认为是过渡金属离子通过以氧离子为媒介的超交换作用直接导致了铁磁性的产生和增强,并且这种交换作用还会使Ti的3d壳层不再完全为空,破坏了时间反演对称性,并导致了铁电性能的消失。
     2热处理与相成分变化对多元储氢合金的微观结构及电化学特性的影响。
     在论文本部分工作中,我们制备了多元储氢合金La-Mg-Ni-Co,并研究了不同的热处理手段对(La_(0.83)Mg_(0.17))Ni_(3.9)合金储氢能力的影响以及优化合金的成分对La-Mg-Ni-Co合金的电化学性质的影响。
     2.1采用频感熔炼法制备了(La_(0.83)Mg_(0.17))Ni_(3.9)合金,并对此合金进行了不同时间的热处理。衍射分析证实了合金主要由LaNi_5、Pr_5Co_(19)、Ce_2Ni_7和PuNi_3相构成,退火前后,合金(La_(0.83)Mg_(0.17))Ni_(3.9)的物相组成没有发生变化,可是退火后合金中CaCu_5相丰度降低,同时其它相也有不同程度的变化。退火合金比铸态合金的吸氢容量更高,查看压力组成曲线,我们认为合金吸氢可以分为两个过程,这与两过程中起决定作用的相成分不同有着密切的关系。
     2.2采用真空电弧熔炼法制备了La-Mg-Ni-Co合金,进行电化学性能测试后可知,Co取代Ni造成了合金电化学容量的下降,令合金的活化变得困难。高的Pr5Co19、Ce2Ni7及PuNi_3相丰度之和会提高最大放电容量。适量的Mg对La的取代可以提高合金电极的循环稳定性能,使合金更加易于被活化,但却降低了合金的倍率放电能力。而Co的添加减少了合金晶格的缺陷,可以提高合金表面抗腐蚀的能力。
1Research on BaTiO_3-based multiferroic material
     In this work, the incorporation of transition metal elements in the ferroelectric materialBaTiO_3has both ferromagnetic and ferroelectric properties of the composite multiferroicmaterials. The multiferroic properties of Fe/Cr co-doped BaTiO_3was studied systematically.The multiferroic performance of BaTiO_3was improved significantly. The results are asfollows:
     1.1BaTi(1-x)Cr_xO_3samples (x=1.0%、2.5%、5.0%、7.5%)
     These samples (x≤2.5%) are crystallized in a tetragonal perovskite structure (t-BaTiO_3)at room temperature; With the Cr doping content increasing, BaCrO3phase appears. Theappearance of BaCrO3indicates that Cr has a low solubility in BaTiO_3lattice. The XPS resultof the sample at x=2.5%shows that Cr exists as a single state of Cr~(3+), considering the XRDtest results, we believe that Cr ion which is in the samples at low doping content then replacesat Ti. Those ferroelectric test data indicate that these samples have good ferroelectricproperties at room temperature. With the increasing Cr doping content, the leakage current inthese samples increased and the ferroelectric properties decreased. Magnetic measurementresults indicate that these BaTi(1-x)Cr_xO_3samples all have demonstrated room temperatureferromagnetism. With the increasing Cr doping content, the specific saturation magnetizationof these samples first increases and then decreases, maximum value appears at x=5.0%, butthe magnetization is still weak. Combining with the XRD test results, the change of specificsaturation magnetization indicates that Cr3+is the primary cause of sample’s ferromagnetismat room temperature. The hops of specific saturation magnetization at the Curie temperatureof BaTiO_3(400K) proved the existence of magnetoelectric coupling in these samples. Afterannealing in N2atmosphere, the reduction of the magnetic parameters and disappearance ofBaCrO3phase proved that: The origin of magnetization in Cr doped BaTiO_3samples is thesuper-exchange interactions between Cr ions which depending on O ions.
     1.2BaTi1-xFexO3samples (x=1.0%、2.5%、5.0%、7.5%) and BaTi0.95-xFexCr0.05O3samples (x=2.5%、5.0%、7.5%).
     In order to overcome the weak ferromagnetism in BaTi(1-x)Cr_xO_3, we have prepared Fe/Cr codoped BaTiO_3samples, and compared with Fe doped BaTiO_3samples. Combination of theXPS results, X-ray diffraction (XRD) patterns show that both BaTi1-xFexO3andBaTi_(0.95-x)Fe_xCr_(0.05_O_3samples are crystallizing in a hexagonal perovskite (h-BaTiO_3) andtetragonal perovskite (t-BaTiO_3) coexistence structure at room temperature. Fe exists in thesesamples with a single state of Fe~(3+). Fe doped into BaTiO_3lattice and then replaced at Ti aswell. The XRD result can prove that codoping BaTiO_3with Fe/Cr can improve the solubilityof Cr ions in the BaTiO_3. From the analysis of ferroelectric and magnetic properties of thesesamples, we can find that: With the increasing Fe doping content, the specific saturationmagnetization of BaTi_(1-x)Fe_xO_3samples first increases and then decreases, the ferroelectricproperties decreased until disappeared; the specific saturation magnetization ofBaTi0.95-xFexCr0.05O3samples increases linearly and the ferroelectric properties decrease tosome extent. From this, we can infer that codoping BaTiO_3with Fe/Cr can significantlyimprove the ferromagnetic properties at no expense of rapid decline in ferroelectricperformance at the same time. Codoping is an effective way to synthesis the multiferroicmaterial which has better ferroelectric and magnetic properties
     In summary, we successfully prepared Cr doped BaTiO_3multiferroic materials, andcodoped BaTiO_3with Fe/Cr significantly improved the ferroelectric properties of Fe-dopedBaTiO_3multiferroic materials. We believed that the super-exchange interaction of transitionmetal ions which depending on oxygen ions as a medium was a direct origin of theferromagnetic and enhanced it then. This exchange would make the Ti3d shell being notcompletely empty which would destroy the time reversal symmetry, and then led to thedisappearance of the ferroelectric.
     2Effect of annealed treatment and elemental composition on microstructure andelectrochemical properties for multielement hydrogen storage alloy.
     In this work, we prepared multielement hydrogen La-Mg-Ni-Co alloy, and study theeffect of annealed treatment and elemental composition on both microstructure andelectrochemical properties for multielement hydrogen storage alloy.
     2.1The (La_(0.83)Mg_(0.17))Ni_(3.9)alloy were prepared by induction melted method, then it washeated for different days. The XRD patterns show that these alloys consist of LaNi_5, Pr5Co_(19)Ce2Ni7and PuNi3-type phase. The mass fraction of each phase in these alloys varies after annealing. The hydriding capacity of annealing alloy was higher than as-cast alloy. Estimatingfrom pressure-composition isotheral curves, it was considered that the hydriding is governedby two processes, which has the close relationship with the phase abundance of each phasevaried.
     2.2The LaNi_(3.8-x)Al_x(0≤x<0.5) alloy was prepared by arc melting under argonatomosphere. The electrochemical result showed that, both full Co substitution of Ni and theincreasing doping content of Mg will decrease the discharge capacity. It means the HRD (highrate discharge) property of La-Mg-Ni alloy is better than La-Mg-Co alloy. High elementcontent of LaNi5and PuNi_3will make cyclic stability better. Full Co substitution of Ni willmake the activation is extremely difficult. Mg substitution of La will make cyclic stabilitybetter, make the activation easier and decrease the HRD property. The addition of Co reducesthe lattice defects, which can imporve the ability of corrosion-resistant. Comparing the curveof HRD-I0(exchange current density) with the curve of HRD-D (hydrogen diffusioncoefficient), we can find that the hydrogen diffusion coefficient is a key factor for the highrate discharge performance.
引文
[1] Sang-Wook Cheong,Maxim Mostovoy.A magnetic twist for ferroelectricity[J].Naturematerials,2007,6(1):13-20.
    [2] N A Hill.Why are there so Few Magnetic Ferroelectrics?[J] Phys Chem B,2000,104(29):6694-6709.
    [3]于敦波.钙钛矿型稀土锰氧化物巨磁电阻材料的研究[D].北京北京有色金属研究总院.2001.
    [4]戴道生等.RE1-xTxMnO3氧化物的结构,电磁特性和巨磁电阻[J].物理学进展,1997,17:201.
    [5]钟维烈.铁电物理学[M].科学出版社,1998.
    [6]王仁卉.郭可信,晶体学中的对称群[M].科学出版社,1990.
    [7]戴玉蓉.PZT陶瓷材料的微结构及物性[D].南京大学,1993.
    [8]卢海霞.掺杂BiCO3陶瓷制备和性能研究[D].扬州大学,2009.
    [9]钟文定.铁磁学(中册)[M].科学出版社,2000.
    [10]冯端,金国钧.凝聚态物理学[M].高等教育出版社,2003.
    [11] C Kittel,Introduction to Solid State Physics[M].1976.杨顺华等译,固体物理导论,科学出版社,1979.
    [12]戴道生,钱昆明.铁磁学(上册)[M]北京科学出版社,1987
    [13]刘朝霞,单相多铁材料BiFeO3的溶胶凝胶法制备与表征[D].河南大学,2007.
    [14] A Srinivas,D Kim W,K S Hong,et al.Observation of Ferroelectromagnetic Nature inRare-earth-Substituted Bismuth Iron Titanate[J].Appl Phys Lett,2003,83(11):2217~2219.
    [15]王克锋,刘俊明,王雨“单相多铁性材料—极化和磁性序参量的耦合与调控”.
    [16] J K Hulm,B T Matthias,E A Long.A Ferromagnetic Curie Point in KTaO3at Very LowTemperatures[J].Phys Rev,1950,79:885.
    [17] G A Smolenskii and I E Chupis Sov.Ferroelectromagnets [J].Phys Usp,1982,25:475.
    [18] M.Fiebig.Revival of the magnetoelectric effect[J].J Phys D Appl Phys,2005,38.8,R123.
    [19] P Curie.Sur la symétrie dans les phénomènes physiques,symétrie d'un champélectriqueet d'un champ magnétique [J].J Phys Theor Appl,1894,3:393-415.
    [20] G L Yuan Siu Wing Or.Enhanced piezoelectric and pyroelectric effects insingle-phasemultiferroic Bi1-xNdxFeO3(x=0-0.15) ceramics [J].Appl Phys Lett,2006,88:062905.
    [21] V R Palkar,J John,R Pinto.Obserbation of saturated polarization and dielectric anomalyin magnetoelectric BiFeO3thin films[J].Appl Phys Lett,2002,80:1628.
    [22] V J Folen,G T Rado,E.W.Stalder.Anisotropy of the Magnetoelectric EffectinCr2O3[J].Phys Rev Lett,1961,6:607-608.
    [23] G T Rado,V J Folen.Observation of the Magnetically Induced Magnetoelectric Effectand Evidence for Antiferromagnetic Domains[J].Phys Rev Lett,1961,7:310-311.
    [24] Y Yang,J M Liu,H B Huang,W Q Zou,P Bao,Z.G.Liu.Magnetoelectric couplingin ferroelectromagnet Pb(Fe1/2Nb1/2)O3single crystals coupling in ferroelectromagnetPb(Fe1/2Nb1/2)O3single crystals[J].Phys Rev B,2004,70:132101.
    [25] M Mostovoy.Ferroelectricity in Spiral Magnets[J].Phys Rev Lett,2006,96:067601.
    [26] C H Li,F Wang,Y Liu,X Q Zhang,Z H Cheng,Y Sun.Electrical control ofmagnetization in charge-ordered multiferroic LuFe2O4[J].Phys Rev B.2009,79:172412.
    [27] G Catalan,J F Scott.Physics and Applications of Bismuth Ferrite[J].Adv Mater,2009,21:2463-2485.
    [28] Y H Chu,L W Martin,M B Holcomb,R Ramesh.Controlling magnetism ithmultiferroics[J].Mater Today,2007,10:16-23.
    [29] N A Hill and A Filippetti.First principles study of structural,electronic and magneticinterplay in ferroelectromagnetic yttrium manganite[J].J Magn Magn Mater,2001,236:176-189.
    [30] R E Cohen.Origin of ferroelectricity in perovskite oxides[J].Nature,1992,358:136.
    [31] N A Hill,P Baettig,C Daul.First Principles Search for Multiferroism in BiCrO3[J].JPhys Chem B,2002,106:3383.
    [32] R Seshadri and N A Hill.Visualizing the Role of Bi6s “Lone Pairs” in the Off-CenterDistortion in Ferromagnetic BiMnO3[J].Chem Mater,2001,13:2892.
    [33] J B Neaton,C Ederer,U V Waghmare.First-principles study of spontaneous polarizationin multiferroic BiFeO3[J].Phys Rev B,2005,71:014113.
    [34] B B Van Aken,T T M Palstra,A Filippetti,N A Spaldin.The origin of ferroelectricityin magnetoelectric YMnO3[J].Nature Mater,2004,3:164.
    [35] K Ramesha,A Llobet,Th Proffen,C R Serrao,C N R Rao.Observation of localnon-centrosymmetry in weakly biferroic YCrO3[J].J Phys Condens Matter,2007,19:102202.
    [36] T Kimura,T Goto,H Shintani,K Ishizaka,T Arima,Y.Tokura.Magnetic controlof ferroelectric polarization[J].Nature,2003,426:55.
    [37] N Hur,S Park,P A Sharma,J S Ahn,S Guha,S W Cheong.Electric polarization reversaland memory in a multiferroic material induced by magnetic fields[J].Nature,2004,429:392.
    [38] Kadir K,Sakai T,Uehara I.Synthesis and structure determination of a new series ofhydrogen storage alloys:RMg2Ni9(R=La,Ce,Pr,Nd,Sm and Gd) built from MgNi2Laves-type layers alternating with AB5layers [J].J Alloys Compd,1997,257:115-121.
    [39]章应,罗永春,王大辉等.AB2型LaMgNi3.7M0.3(M=Ni,Al,Mn,Co,Sn,Cu)储氢合金的晶体结构及电极性能[J].功能材料,2005,36(9):1372-1376.
    [40] J Chen,H T Takeshita,H Tanaka,N Kuriyama,T Sakai,I Uehara,M Haruta.Hydridingproperties of LaNi3and CaNi3and their substitutes with PuNi3-type structure[J].J AlloysCompd,2000,302:304–313.
    [41] J Chen,N Kuriyama,H T Takeshita,H Tanaka,T Sakai,M Haruta.Hydrogen StorageAlloys with PuNi3-Type Structure as Metal Hydride Electrodes[J].Electrochem Solid-StateLett,2000,3:249–252.
    [42]王利伟,金自立,张羊换等.La-Mg-Ni系贮氢合金的研究进展[J].金属功能材料,2009,16,2:46-50.
    [43]彭能,苏玉长,肖方明.La-Mg-Ni系储氢合金储氢性能研究[J].材料研究与应用,2011,5(2):121-124.
    [44] F L Zhang,Y C Luo,D H Wang,R X Yan,L Kang,J H Chen.Structure andelectrochemical properties of La2xMgxNi7.0(x=0.3-0.6) hydrogen storage alloys[J].J AlloysCompd,2007,439:181–188.
    [45] H G Pan,Y F Liu,M X Gao,Y Q Lei,Q D Wang.Function of cobalt in the new typerare-earth Mg-based hydrogen storage electrode alloys.J Electrochem Soc,2003,150:A565–A570.
    [46]彭志忠.X射线分析简明教程[M].北京:地质出版社,1989.
    [47]钟维烈等.铁电物理学[M].北京:科学出版社,1996.
    [48]殷立峰,何睿华,钟锦强.振动样品磁强计的制作与调试[D].上海:复旦大学图书馆,2001.
    [49] H Nakayama,H Katayama-Yoshida.Ab initio Design on the Diamond Synthesis Methodby Core Excitation[J].Jpn J Appl Phys,2001,40:L1355-L1358.
    [50] B.Xu,K.B.Yin,J.Lin,Y.D.Xia,X.G.Wan,J.Yin,X.J.Bai,J.Du,and Z. G. Liu. Room-temperature ferromagnetism and ferroelectricity in Fe-dopedBaTiO3[J].Phys Review B,2009,79:134109.
    [51]K F Wang,J M Liu,and Z F Ren.Multiferroicity:the coupling between magnetic andpolarization orders[J].Adv Phys.58(2009):321-448.
    [52] D.R.Patil,A.D.Sheikh,C.A.Watve,and B.K.Chougule.Magnetoelectricproperties of ME particulate composites[J].J Mater Sci,2008,43:2708–2712.
    [53] M.Fiebig,T.Lottermoser,D.Fr hlich,et al.Observation of coupled magnetic andelectric domains[J],Nature,2002,419:818.
    [54] J Chaigneau,R Haumont, J Kiat.Ferroelectric order stability in the Bi1xPbxFeO3solidsolution[J].Phys Rev B,2009,80:184107.
    [55] Sung-Soo Ryu,Dang-Hyok Yoon.Solid-state synthesis of nano-sized BaTiO3powderwith high tetragonality[J].J Mater Sci,2007,42:7093–7099.
    [56] Ken Nishida,Takashi Yamamoto,Minoru Osada,et al.Orientation controlled depositionof Pb(Zr,Ti)O3films using a micron-size patterned SrRuO3buffer layer.J Mater Sci,2009,44:5339–5344.
    [57] Q Zhang,C H Kim,Y H Jang,H J Hwang,J H Cho.Multiferroic properties and surfacepotential behaviors in cobalt-doped BiFeO3film [J].Appl Phys Lett,2010,96:152901.
    [58] Chang yong Lan,Yuwen Jiang,Shaoguang Yang.Magnetic properties of La and (La,Zr) doped BiFeO3ceramics[J].J Mater Sci,2011,46:734–738.
    [59] G L Yuan,S W Or,Y P Wang,Z G Liu,et al.Solid State Commun,2006,138:76-81.
    [60] I Hase,T Saitoh,T Katsufuji.Ab initio calculation of charge-and spin-controlledSr1x yLax+yTi1xCrxO3[J].J Magn Magn Mater,2007,310:e281-e282.
    [61] Z H Zhu,X H Yan.Half-metallic properties of perovskite BaCrO3and BaCr0.5Ti0.5O3superlattice:LSDA+U calculations[J].J Appl Phys,2009,106:023713.
    [62] Y H Lin,J Yuan,S Y Zhang,Y Zhang,J Liu,Y Wang,et al.Multiferroic behaviorobserved in highly orientated Mn-doped BaTiO3thin films[J].Appl Phys Lett,2009,95:033105.
    [63] S Ray,P Mahadevan,S Mandal,S R Krishnakumar,C S Kuroda,T Sasaki,et al.Hightemperature ferromagnetism in single crystalline dilute Fe-doped BaTiO3[J].Phys Rev B,2008,77:104416.
    [64] B Xu,K B Yin,J Lin,Y D Xia,X G Wan,J Yin,et al.Room-temperatureferromagnetism and ferroelectricity in Fe-doped BaTiO3[J].Phys Rev B,2009,79:134109.
    [65] Yan ping Chen,Kui Ding,Ling Yang,Bo Xie,et al.Nanoscale ferromagnetic chromiumoxide film from gas-phase nanocluster deposition[J]. Appl Phys Lett, Nanoscaleferromagnetic chromium oxide film from gas-phase nanocluster deposition2008,92:173112.
    [66] Y X Wang,H Liu,Z Q Li,X X Zhang,R K Zheng,S P Ringer.Role of structural defectson ferromagnetism in amorphous Cr-doped TiO2films[J].Appl Phys Lett,2006,89:042511.
    [67] Gillian M Keith,K Sarma,N Mcn Alford,Drek C Sinclair.Electrical Properties of6H-BaTi0.95M0.05O3δCeramics where M=Mn,Fe,Co and Ni.J Electroceram,2004,13:305–309.
    [68] H J Hagemann,H Ihrig.Valence change and phase stability of3d-doped BaTiO3annealed in oxygen and hydrogen[J].Phys Rev B,1979,20:3871-3878.
    [69] K A müller,W Berlinger,J Albers.Paramagnetic resonance and local position of Cr3+inferroelectric BaTiO3[J].Phys Rev B,1985,32:5837-5844.
    [70] M H lzer,M Fechner,S Ostanin,I Mertig.Effect of interfacial Cr on magnetoelectricityof Fe2/CrO2/BaTiO3(001)[J].Phys Rev B,2010,81:214428.
    [71] W Eerenstein,M Wiora,J L Prieto,J F Scott,N D Mathur.Giant sharp and persistentconverse magnetoelectric effects in multiferroic epitaxial heterostructures[J]. NatMater,2007,6:348-351.
    [72] Filippetti A,Hill N.Coexistence of magnetism and ferroelectricity in perovskites[J].Phys Rev B,2002:65(19).
    [73] Kolodiazhnyi T,Belik A,Wimbush S,Haneda H.Electrical and magnetic properties ofhexagonal BaTiO3δ.Physical Review B,2008,77(7):075103.
    [74] W B Luo,J Zhu,Y R Li,X P Wang,D Zhao,J Xiong,and Y Zhang,Effects of chemicalfluctuations on microstructures and properties of multiferroic BiFeO3thin films[J].Appl PhysLett,2007,91:082501.
    [75] E Z Huang,X M Lu,W W Lin,X M Wu,Y Kan,J S Zhu.Effect of Nd dopant onmagnetic and electric properties of BiFeO3thin films prepared by metal organic depositionmethod[J].Appl Phys Lett,2006,89:242914.
    [76] J Wang,A Scholl,H Zheng,S B Ogale,D Viehland,D G Sehlom,N A SPaldin,KM Rabe,M Wuttig,L Mohaddes,J Neaton,U Waghmare,T Zhao,R Ramesh.EpitaxialBiFeO3Multiferroic Thin Film Heterostructures[J].Science,2005,307:1203b.
    [77] M Mouallem Bahout,T Roisnel,G Andre,D Gutierrez,C Moure,O Pena.Nuclearand magnetic order in Y(Ni,Mn)O3manganites by neutron powder diffraction[J].Solid StateCommun,2004,129:255.
    [78] O Pena,M Bahout,D Gutierrez,J F Fernandez,P Duran,C Moure.Critical behaviorin the perovskite-like system Y(Ni,Mn)O3[J].J Phys Chem Solids,2000,61:2019.
    [79] D Gutierrez,O Pena,K Ghanimi,P Duran,C Moure.Spin reversal and ferrimagnetismin (Gd,Ca)MnO3[J].J Phys Chem Solids,2002,63:1975.
    [80] S Ray,P Mahadevan,S Mandal,S R Krishnakumar,C S Kuroda,T Sasaki,T Taniyama,and M Itoh. High temperature ferromagnetism in single crystalline dilute Fe-dopedBaTiO3[J].Phys Rev B,2008,77:104416.
    [81] F Lin, D Jiang, X Ma, and W Shi. Influence of doping concentration onroom-temperature ferromagnetism for Fe-doped BaTiO3ceramics[J].Journal of Magnetismand Magnetic Materials,2008,320:691-694.
    [82] G M Keith, K Sarma, N M Alford, D C Sinclair. Electrical Properties of6H-BaTi0.95M0.05O3δCeramics where M=Mn,Fe,Co and Ni[J].Journal of Electroceramics,2004,13:305-309.
    [83] G P Du,Z J Hu,Q F Han,X M Qin,W Z Shi.Effects of niobium donor doping on thephase structures and magnetic properties of Fe-doped BaTiO3ceramics[J].J Alloys Compd,2010,492:L79-L81.
    [84] R Maier,J L Cohn,J J Neumeier,L A Bendersky.Ferroelectricity and ferrimagnetismin iron-doped BaTiO3[J].Appl Phys Lett,2001,78,2536.
    [85] B J Tan,K J Klabunde,P M A Sherwood.X-ray photoelectron spectroscopy studies ofsolvated metal atom dispersed catalysts. Monometallic iron and bimetallic iron-cobaltparticles on alumina[J].Chem Mat,1990,2:186-191.
    [86] T Yamashita,P Hayes.Analysis of XPS spectra of Fe2+and Fe3+ions in oxidematerials[J].Appl Surf Sci,2008,254:2441-2449.
    [87] Matsui T,Taketani E,Fujimura N,Ito T,Morii K.Magnetic properties of highly resistiveBaFeO3thin films epitaxially grown on SrTiO3single-crystal substrates[J].J Appl Phys,2003,93(10):6993.
    [88] R Maier,J L Cohn.Ferroelectric and ferrimagnetic iron-doped thin-film BaTiO3:Influence of iron on physical properties[J].J Appl Phys,2002,92:5429-5436.
    [89] Kohno T,Yoshida H,Kawashima F et al.Hydrogen storage properties of new ternarysystem alloys:La2MgNi9,La5Mg2Ni23,La3MgNi14[J].J Alloy Compd,2000,311:L5-L7.
    [90] Si TZ,Pang G,Zhang QA et al.Solid solubility of Mg in Ca2Ni7and hydrogen storageproperties of (Ca2-xMgx)Ni7alloys [J].Int J Hydrogen Energy,2009,34(11):4833-4837.
    [91] Denys R,Riabov B,Yartys VA et al.Hydrogen storage properties and structure ofLa1-xMgx(Ni1-yMny)3intermetallics and their hydrides[J].J Alloys Compd,2007,446-447:166-172.
    [92] Ozaki T,Kanemoto M,Kakeya T et al.Stacking structures and electrode performancesof rare earthe-Mg-Ni-based alloys for advanced nickelemetal hydride battery[J].J AlloysCompd,2007,446-447:620-624.
    [93] Miao H,Pan H G,Zhang S et al.Influences of Co substitution and annealing treatmenton the structure and electrochemical properties of hydrogen storage alloysLa0.7Mg0.3Ni2.45-xCo0.75+xMn0.1Al0.2(x=0.00,0.15,0.30)[J].Int J Hydrogen Energy,2007,32(15):3387-3394.
    [94] Yasuoka S,Magari Y,Murata T et al.Development of high-capacity nickel-metalhydride batteries using superlattice hydrogen-absorbing alloys[J].J Power Sources,2006,156:662-666.
    [95] W Hu,D Kim,S Jeon,J Lee.Electrochemical behaviors of low-Co Mm-based alloysas MH electrodes[J].J Alloys Comp.270(1998)255-264.
    [96] Zhang J,Zhou G Y,Chen G R et al.Relevance of hydrogen storage properties of ANi3intermetallics (A=La,Ce,Y) to the ANi2subunits in their crystal structures [J].Acta Mater,2008,56:5388-5394.
    [97] Jiang L,Li G X,Xu L Q et al.Effect of substituting Mn for Ni on the hydrogen storageand electrochemical properties of ReNi2.6-xMnxCo0.9alloys[J].Int J Hydrogen Energy,2010,35(1):204-209.
    [98] Si T Z,Zhang Q A,Pang G et al.Structural characteristics and hydrogen storageproperties of Ca3.0-xMgxNi9(x=0.5,1.0,1.5and2.0) alloys[J].Int J Hydrogen Energy,2009,34(3):1483-1488.
    [99] Y Chen,C A C Sequeira,X Song,R Neto,Q D Wang.Metal hydride beds and hydrogensupply tanks as minitype PEMFC hydrogen sources[J].Int J Hydrogen Energy,2002,27:63–68.
    [100] W Q Jiang,Z Q Lan,W W lou,J Guo,Influence of annealing treatment on thehydrogen storage properties of La2xTixMgNi9(x=0.2,0.3) alloys[J].Int J Hydrogen Energy,2010,35:11016-11024
    [101] Q A Zhang,M H Fang,T Z Si,F Fang,D L Sun,L Z Ouyang M Zhu.Cyclic stabilityand high rate discharge performance of (La,Mg)5Ni19multiphase alloy[J].J Phys Chem C,2010,114:11686–11692
    [102] Y H Zhang,X P Dong,S H Guo,G Wang,J Y Ren,X L Wang.Microstructure andelectrochemical performances of La0.7Mg0.3Ni2.55xCo0.45Cux(x=0-0.4)hydrogen storage alloysprepared by casting and rapid quenching[J].J Alloys Comp.2005,398:178–183.
    [103] F Zhang,Y Luo,J Chen,R Yan,L Kang,J Chen.Effect of annealing treatment onstructure and electrochemical properties of La0.67Mg0.33Ni2.5Co0.5alloy electrodes[J].J PowerSources,2005,150:247–254.
    [104] W Jiang,Z Lan,W lou,L Xin,J Guo.A study on the hydrogen-storage properties ofLa2xTixMgNi9(x=0.1,0.2,0.3,0.4) alloys[J].Int.J Hydrogen Energy,2010,35(20):11016-11024.
    [105] T Kohno,H Yoshida,F Kawashima,T Inaba, I Sakai, M Yamamoto,MKanda.Hydrogen storage properties of new ternary system alloys: La2MgNi9, La5Mg2Ni23,La3MgNi14[J].J Alloys Comp,2000,311(2):L5-L7.
    [106] R V Denys,A B Riabov,V A Yartys,M Sato,R G Delaplane.Mg substitution effecton the hydrogenation behaviour, thermodynamic and structural properties of theLa2Ni7–H(D)2system[J].J Solid State Chem,2008,181(4):812-821.
    [107] J Nakamura,K Iwase,H Hayakawa,Y Nakamura,E Akiba.Structural Study ofLa4MgNi19Hydride by In Situ X-ray and Neutron Powder Diffraction[J].J Phys Chem C,2009,113:5853–5859.
    [108] Kuriyama a N, Sakai T, Miyamura H, Uehara I, Ishikawa H, IwasakiT.Electrochemical impedance and deterioration behavior of metal hydride electrodes[J].JAlloys Compd,1993,202(1-2):183.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700