PVDF基介电复合膜的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着电子工业的发展,要求电介质材料具有更高的介电常数、更低的介电损耗。传统的陶瓷材料具有非常高的介电常数,但是制备工艺复杂、易脆且介电损耗较大,将它们制成电容器,在充电和放电的过程中还会发生机械共振,大大降低了其寿命。有机聚合物柔韧性好、介电损耗低、易于加工,但是介电常数较低。为了获得高介电性能的电介质材料,科研工作者们做了大量的工作。一种方法是将高介电常数的陶瓷添加到聚合物中,制备了陶瓷-聚合物复合材料。高含量的陶瓷虽然能够提高复合材料的介电常数,但是降低了复合材料的柔韧性。另一种方法是将导电材料添加到聚合物中,复合材料在渗流阈值处的介电常数可以提高几个数量级,但是介电损耗也会相应的增加。因此,制备高介电性能的聚合物基复合材料具有非常重要的意义。
     本论文以聚偏氟乙烯(PVDF)、聚偏氟乙烯-三氟乙烯(PVDF-TrFE)为基体,制备了不同填料的复合膜材料。通过对复合膜的微观形貌、结晶行为、介电性能等表征,探讨了填料对复合膜性能的影响。主要研究内容如下:
     (1)通过溶胶凝胶法制备了不同晶型的二氧化钛(TiO_2),并制备了TiO_2/PVDF-TrFE复合膜。扫描电镜表明TiO_2能够较好地分散在PVDF-TrFE基体中,并对复合膜的结晶行为起着非常重要的作用。少量的TiO_2有利于PVDF-TrFE在其表面结晶,提高了复合膜的结晶度;大量的TiO_2则破坏了PVDF-TrFE的分子链的规整度,降低了复合膜的结晶度。此外,金红石型二氧化钛更有利于PVDF-TrFE在其表面结晶。介电测试结果表明复合膜的介电常数随着TiO_2掺杂量的增加而增大。在相同的掺杂量下,掺杂金红石型二氧化钛复合膜的介电常数要高于掺杂锐钛矿型二氧化钛复合膜的介电常数。高温加速了PVDF-TrFE的分子运动,增加了二氧化钛的电导率,从而提高了复合膜的介电常数和介电损耗。
     (2)将纳米级的Ni-TiO_2添加到PVDF-TrFE中,研究了Ni-TiO_2对复合膜结晶性能、介电性能的影响。结果表明Ni-TiO_2的加入使得PVDF-TrFE由极性的β相向非极性的晶相转变;复合膜的介电常数随着Ni-TiO_2掺杂量的增加而增加,介电损耗依然保持着较低的数值(0.046-0.064)。在相同的Nix-TiO_2掺杂量下,复合膜的介电常数随着Nix-TiO_2中Ni含量的增加而增加,介电损耗几乎没有发生变化。
     (3)通过水热法制备了Na_2Ti_2O_4(OH)_2纳米管,并将纳米管添加到PVDF中。扫描电镜表明Na_2Ti_2O_4(OH)_2纳米管能够较好的分散在PVDF中,随着掺杂量的增加,纳米管在PVDF中逐渐形成导通的网状结构。DSC结果表明Na_2Ti_2O_4(OH)_2纳米管影响了复合膜的结晶性能。少量的纳米管有利于PVDF在其表面结晶,提高了复合膜的结晶度。随着纳米管的增加,纳米管破坏了PVDF分子链的规整度,降低了复合膜的结晶度。介电测试结果表明Na_2Ti_2O_4(OH)_2纳米管大幅度的提高了Na_2Ti_2O_4(OH)_2/PVDF、Na_2Ti_2O_4(OH)_2/PVDF-TrFE复合膜的介电性能。当掺杂量为18vol%时,Na_2Ti_2O_4(OH)_2/PVDF复合膜在100Hz的介电常数高达178.7,约为PVDF的20倍;Na_2Ti_2O_4(OH)_2/PVDF-TrFE复合膜的介电常数则高达330,约为PVDF-TrFE的25倍。经过计算发现实验结果符合渗流模型。向聚合物中添加Na_2Ti_2O_4(OH)_2纳米管大幅度提高复合材料的介电常数,相关文献至今未见报道。
     (4)通过水热法制备了核壳型Ag@C纳米材料,银核的大小为100-120nm,碳壳的大小为60-80nm。将核壳型Ag@C纳米材料分别添加到PVDF、PVDF-TrFE中,研究了核壳型Ag@C纳米材料对PVDF系列聚合物热力学稳定性、结晶性能、介电性能的影响。扫描电镜表明Ag@C均匀的分散在PVDF、PVDF-TrFE中,并未发生团聚现象,这是由于核壳型Ag@C纳米材料表面的羟基与氟原子产生氢键,从而提高了它们之间的相容性。DSC测试结果表明Ag@C的加入降低了复合膜的结晶度。介电测试结果表明Ag@C/PVDF、Ag@C/PVDF-TrFE复合膜的介电常数随着Ag@C的增加而增加,介电损耗保持着非常低的数值。较低的介电损耗是由于碳壳提高了Ag@C与PVDF的相容性,防止了银颗粒由于相互接触而引起较大的介电损耗。复合膜的介电常数、介电损耗对温度有较强的依赖性。
With the development of electronic industry,dielectric materials withhigh permittivity (k) and low dielectric loss are attracted much attentions.Traditional ceramic materials have high permittivity, but they are brittle, hardto fabricate, and have high dielectric loss. Besides, they will generatemechanical resonance during charging and discharging and thus reduced theirlife-span. Polymers are light-weight, flexible, and easily integrated. However,they show a relatively low permittivity. Much work has been focused onraising the k of polymer-based composites. One effective method is to addhigh-k ceramics into the polymers to form organic-ceramic composites. Highloadings of ceramic fillers can increase the k of the composites, butdramatically decrease the flexibility of the composites. Another method is tointroduce conductive materials into the polymer matrix to form percolativecomposites. The k of such composites is at least two orders of magnitudehigher than that of the polymer matrix. However, the dielectric loss increasesrapidly with increasing amount of conductive materials. Therefore, it is ofgreat importance to prepare polymer-based composites with high dielectricperformance.
     In this paper, Poly(vinylidene fluoride)(PVDF) and poly(vinylidene -trifluoroethylene)(PVDF-TrFE) were chosen as the polymer matrix anddifferent membranes were prepared through solution cast method. Themicrostructure, crystallization behavior, and dielectric properties werecharacterized and the corresponding reasons were studied. The detailedinformation is listed as follows:
     (1) Titanium dioxide nanoparticles with two different phases wereprepared by the sol-gel method. Poly(vinylidene-trifluoroethylene)/titaniumdioxide (TiO_2/PVDF-TrFE) membranes were prepared by the solution castmethod. Scanning electron microscope (SEM) results showed that the TiO_2nanoparticles were well dispersed in the polymer matrix and did not affect thestructure of the PVDF-TrFE matrix. Differential scanning calorimeter (DSC)results showed that crystallinity of TiO_2/PVDF-TrFE membranes increased asthe addition of TiO_2with two different phases. Besides, the crystallinity ofTiO_2/PVDF-TrFE membrane with the rutile TiO_2is higher than that of themembrane with the anatase TiO_2. Dielectric property testing showed that thepermittivity of TiO_2/PVDF-TrFE membrane increased rapidly with theincrease of TiO_2content, but the dielectric loss remains at a low level. Theincrease in permittivity is attributed to the interfacial polarization. At the sameTiO_2content, the permittivity of TiO_2/PVDF-TrFE membrane with the rutileTiO_2is higher than that of the membrane with the anatase TiO_2. Hightemperature is beneficial to the molecular polarization of PVDF-TrFE and alsoleads to the increase in conductivity of the semiconducting TiO_2nanoparticles, and thus increasing the permittivity and dielectric loss of the membranes.
     (2) Nickel-doped titanium dioxide (Ni-TiO_2) nanoparticles were preparedby the sol-gel method, the particle size is about30nm. TheNi-TiO_2/PVDF-TrFE membranes waere prepared and then characterized bySEM, X-ray diffraction (XRD), and dielectric property testing. XRD resultsshowed that the phase of PVDF-TrFE was changed from the polar β crystalphase to non-polar phase with the addition of Ni-TiO_2nanoparticles. Thedielectric property testing showed that the permittivity of the membranes wereimproved gradually with the increase of Ni-TiO_2content, and the dielectricloss keeps at a low level (0.046~0.064). Besides, the permittivity of themembranes increased with the increase of nickel content in Nix-TiO_2nanoparticles, while the dielectric loss has not been changed。
     (3) Na_2Ti_2O_4(OH)_2nanotube was prepared through a hydrothermalmethod and the structure of Na_2Ti_2O_4(OH)_2nanotube were characterized.Then the Na_2Ti_2O_4(OH)_2/PVDF membranes were prepared and thecorresponding properties were studied. The cross-sectional SEM images of themembranes showed that the Na_2Ti_2O_4(OH)_2nanotube were well dispersed inthe PVDF matrix and did not affect the structure of PVDF. The gooddispersion is attribute to the hydrogen bond through the oxhydryl group fromthe Na_2Ti_2O_4(OH)_2nanotube and the fluorine atom from PVDF. With theincrease of Na_2Ti_2O_4(OH)_2, Na_2Ti_2O_4(OH)_2connect with each other andformed network in PVDF matrix. DSC results showed that the crystallinity of the membranes were affect by the addition of Na_2Ti_2O_4(OH)_2nanotube. Smallamount of nanotube were embedded by the PVDF matrix and beneficial to thecrystallization of PVDF on the surface because of its large surface area, thusincreased the crystallinity of membranes. High content of nanotube willdestroy the conformation of PVDF molecular chain and thus reduced thecrystallinity of the membranes. The permittivity of Na_2Ti_2O_4(OH)_2/PVDF andNa_2Ti_2O_4(OH)_2/PVDF-TrFE membranes were improved quickly with theincrease of Na_2Ti_2O_4(OH)_2. When the content of Na_2Ti_2O_4(OH)_2nanotube isabout18vol%, the permittivity of the Na_2Ti_2O_4(OH)_2/PVDF membrane is upto178.7at100Hz, which is about20times of the PVDF. At the sameNa_2Ti_2O_4(OH)_2nanotube content, the permittivity of thePVDF-TrFE/Na_2Ti_2O_4(OH)_2membrane is up to330, about25times ofPVDF-TrFE. By calculation, the results are well fit the percolative model.Therefore, the dielectric properties of the membranes were improveddramatically with the addtion of Na_2Ti_2O_4(OH)_2nanotube, and thecorresponding literature has not been reported since now.
     (4) The Ag@C core-shell nanoparticles were prepared by a hydrothermalmethod. A typical core-shell structure can be observed, the silver cores withdiameters in the range of100-120nm are each covered with a carbon shellabout60-80nm thick. Ag@C/PVDF and Ag@C/PVDF-TrFE membranes wereprepared through the solution cast method. The cross-sectional SEM imagesshowed that the Ag@C particles are well dispersed in both membranes. The good dispersion is attributed to the carbon shell which not only act asinter-particle barriers to prevent direct connection of Ag nanoparticles, butalso produce excellent compatibility between the fillers and the polymermatrix. DSC results showed that the crystallinity of the two membranesdecreased with the increase of Ag@C content. The dielectric propertiesshowed that the permittivity of the Ag@C/PVDF and Ag@C/PVDF-TrFEmembranes improved obviously over the pure polymer with increasingcontent of Ag@C particles due to the enhanced interfacial polarization, butThe dielectric loss keeps low lever. The permiitivity and the dielectric loss ofthe two membranes are affected by the temperature. High temperature isbenefit to the molecular polarization of the polymer and also accelerates themigration of free electron from the Ag core, and thus increasing thepermittivity and dielectric loss of the composites.
引文
[1] Nagarajan V, Ganpule CS, Nagaraj B, Aggarwal S, Alpay SP, Roytburd AL, Williams ED,Ramesh R. Effect of mechanical constraint on the dielectric and piezoelectric behavior ofepitaxial Pb(Mg1/3Nb2/3)O3-PbTiO3(10%) relaxor thin films [J]. Applied Physics Letters,1999,75(26):4183-4185
    [2] Chen Q, Wang Y, Zhou X, Zhang QM, Zhang S. High field tunneling as a limiting factor ofmaximum energy density in dielectric energy storage capacitors[J]. Applied Physics Letters,2008,92(14):142909
    [3] Zhang SH, Zellers B, Henrish J, Rockey S, Anderson D, Chen Z, Zhang QM. High energydensity film capacitors. Pulsed Power Conference[C]. IEEE,2009,779-783.
    [4] Jiong XL, Wong CP. Recent advances in high-k nanocomposite materials for embeddedcapacitor applications[J]. Dielectrics and Electrical Insulation, IEEE Transactions on,2008,15(5):1322-1328
    [5] Sinha D, Pillai PKC. Ceramic-polymer composites as potential capacitor material[J]. J MaterSci Lett,1989,8(6):673-674
    [6] Barber P, Balasubramanian S, Anguchamy Y, Gong S, Wibowo A, Gao H, Ploehn H, Zur LoyeH. Polymer composite and nanocomposite dielectric materials for pulse power energy storage[J]. Materials,2009,2(4):1697-1733
    [7]殷之文.电介质物理学[M].科学出版社,2003.
    [8] Nan CW. Physics of inhomogeneous inorganic materials[J]. Progress in Materials Science,1993,37(1):1-116
    [9]梁先文.氧化硅包覆的银颗粒/聚合物复合电介质材料的制备与性能的研究[D]广州:华南理工大学,2011.
    [10] Vo HT, Todd M, Shi FG, Shapiro AA, Edwards M. Towards model-based engineering ofunderfill materials: CTE modeling[J]. Microelectronics Journal,2001,32(4):331-338
    [11] Poon YM, Shin FG. A simple explicit formula for the effective dielectric constant of binary0-3composites[J]. Journal of Materials Science,2004,39(4):1277-1281
    [12] Yang R, Qu J, Marinis T, Wong CP. A precise numerical prediction of effective dielectricconstant for polymer-ceramic composite based on effective-medium theory[J]. Componentsand Packaging Technologies, IEEE Transactions on,2000,23(4):680-683
    [13] Jayasundere N, Smith BV. Dielectric constant for binary piezoelectric0-3composites[J].Journal of Applied Physics,1993,73(5):2462-2466
    [14] Abraham R, Guo R, Bhalla AS. Modeling permittivity and tangent Loss in dielectric materialsusing finite element method and monte carlo simulation [J]. Ferroelectrics,2005,315(1):1-15
    [15] Han C, Gu A, Liang G, Yuan L. Carbon nanotubes/cyanate ester composites with lowpercolation threshold, high dielectric constant and outstanding thermal property[J]. CompositesPart A: Applied Science and Manufacturing,2010,41(9):1321-1328
    [16] Stauffer D, Aharony A. introduction to percolation theory[M]. Taylor&Francis,2003.
    [17] Kirkpatrick S. Percolation and Conduction[J]. Reviews of modern physics,1973,45(4):574-588
    [18] Dang ZM, Yuan JK, Zha JW, Zhou T, Li ST, Hu GH. Fundamentals, processes andapplications of high-permittivity polymer-matrix composites[J]. Progress in Materials Science,2012,57(4):660-723
    [19]李蕊.基于PVDF的全有机介电材料制备、结构与性能[D].武汉:武汉理工大学,2010.
    [20] Yu J, Jiang P, Wu C, Wang L, Wu X. Graphene nanocomposites based on poly(vinylidenefluoride): Structure and properties[J]. Polymer Composites,2011,32(10):1483-1491
    [21]晓力.聚偏氟乙烯树脂的生产、性能及用途[J].有机氟工业,2006,(1):24-32
    [22] Lovinger AJ. Ferroelectric Polymers[J]. Science,1983,220(4602):1115-1121
    [23] Li J, Meng Q, Li W, Zhang Z. Influence of crystalline properties on the dielectric and energystorage properties of poly(vinylidene fluoride)[J]. Journal of Applied Polymer Science,2011,122(3):1659-1668
    [24] Furukawa T. Ferroelectric properties of vinylidene fluoride copolymers[J]. Phase Transitions,1989,18(3-4):143-211
    [25]吴君毅.聚偏氟乙烯树脂的应用和聚合进展[J].有机氟工业,2008,(1):26-29
    [26] Yagi T, Tatemoto M. A Fluorine-19NMR Study of the Microstructure of VinylideneFluoride-Trifluoroethylene Copolymers[J]. Polymer Journal,1979,11(6):429-436
    [27] Choi J, Morikawa E, Ducharme S, Dowben PA. Comparison of crystalline thin poly(vinylidene(70%)-trifluoroethylene (30%)) copolymer films with short chain poly(vinylidene fluoride)films[J]. Materials Letters,2005,59(28):3599-3603
    [28] Lutkenhaus JL, McEnnis K, Serghei A, Russell TP. Confinement Effects on Crystallizationand Curie Transitions of Poly(vinylidene fluoride-co-trifluoroethylene)[J]. Macromolecules,2010,43(8):3844-3850
    [29] Kap Jin K, Gwan Bum K. Curie transition, ferroelectric crystal structure and ferroelectricity ofa VDF/TrFE (75/25) copolymer:2. The effect of poling on Curie transition and ferroelectriccrystal structure[J]. Polymer,1997,38(19):4881-4889
    [30] Sencadas V, Lanceros-Méndez S, Mano JF. Thermal characterization of a vinylidenefluoride-trifluorethylene (75-25)(%mol) copolymer film[J]. Journal of Non-Crystalline Solids,2006,352(50–51):5376-5381
    [31] Kim KJ, Kim GB, Vanlencia CL, Rabolt JF. Curie transition, ferroelectric crystal structure,and ferroelectricity of a VDF/TrFE(75/25) copolymer1. The effect of the consecutiveannealing in the ferroelectric state on curie transition and ferroelectric crystal structure[J].Journal of Polymer Science Part B: Polymer Physics,1994,32(15):2435-2444
    [32] Bauer F. Review on the properties of the ferrorelaxor polymers and some new recentdevelopments[J]. Applied Physics A,2012,107(3):567-573
    [33] Neese B, Chu B, Lu SG, Wang Y, Furman E, Zhang QM. Large electrocaloric effect inferroelectric polymers near room temperature[J]. Science,2008,321(5890):821-823
    [34] Koga K, Ohigashi H. Piezoelectricity and related properties of vinylidene fluoride andtrifluoroethylene copolymers[J]. Journal of Applied Physics,1986,59(6):2142-2150
    [35] Li B, Ren WJ, Wang XW, Meng H, Liu XG, Wang ZJ, Dang ZM. Intrinsic electrocaloriceffects in ferroelectric poly(vinylidene fluoride-trifluoroethylene) copolymers: Roles of orderof phase transition and stresses[J]. Applied Physics Letters,2010,96(10):102903
    [36] Kusuma DY, Nguyen CA, Lee PS. Enhanced ferroelectric switching characteristics ofP(VDF-TrFE) for organic memory devices[J]. The Journal of Physical Chemistry B,2010,114(42):13289-13293
    [37] Gonzalez Moran CO, Gonzalez Ballesteros R, Suaste Gomez E. Polivinylidene difluoride(PVDF) pressure sensor for biomedical applications. Electrical and Electronics Engineering,.(ICEEE).1st International Conference[C],2004,473-475.
    [38] Samara GA, Bauer F. The effects of pressure on the β molecular relaxation and phasetransitions of the ferroelectric copolymer P(VDF0.7TrFe0.3)[J]. Ferroelectrics,1992,135(1):385-399
    [39] Zhang QM, Bharti V, Zhao X. Giant electrostriction and relaxor ferroelectric behavior inelectron-irradiated poly(vinylidene fluoride-trifluoroethylene) copolymer[J]. Science,1998,280(5372):2101-2104
    [40] Zhao C, Guo M, Lu Y, Wang Q. Ferroelectric Poly(vinylidene fluoride-trifluoroethylene-chlorotrifluoroethylene)s: Effect of Molecular Weight on Dielectric Property[J].Macromolecular Symposia,2009,279(1):52-58
    [41] Chen Q, Ren K, Chu B, Liu Y, Zhang QM, Bobnar V, Levstik A. Relaxor ferroelectricpolymers-fundamentals and applications[J]. Ferroelectrics,2007,354(1):178-191
    [42] Vodopivec B, Bobnar V, Levstik A, Zhang QM. Dielectric properties of relaxor-likeP(VDF-TrFE-CFE) terpolymer[J]. Ferroelectrics,2004,304(1):27-29
    [43] Bao HM, Song JF, Zhang J, Shen QD, Yang CZ, Zhang QM. Phase transitions andferroelectric relaxor behavior in P(VDF TrFE CFE) terpolymers[J]. Macromolecules,2007,40(7):2371-2379
    [44] Zhang S, Chu B, Neese B, Ren K, Zhou X, Zhang QM. Direct spectroscopic evidence offield-induced solid-state chain conformation transformation in a ferroelectric relaxorpolymer[J]. Journal of Applied Physics,2006,99(4):044107
    [45]石智强,刘晓蕾,刘孝波.有机/无机纳米复合材料的研究进展[J].合成化学,2004,12(3):251-254
    [46]季光明.聚合物基纳米复合材料的制备及研究进展[J].玻璃钢,2006,(3):27-33
    [47]李曹,刘孝波.聚合物/无机复合材料在介电材料领域的应用[J].材料导报,2003,17(8):68-73
    [48]杨庆泉,宋勇志,李齐方.聚合物/无机纳米复合材料研究进展[J].合成树脂及塑料,2004,21(3):81-84
    [49] Dang ZM, Lin YQ, Xu HP, Shi CY, Li ST, Bai J. Fabrication and dielectric characterization ofadvanced BaTiO3/Polyimide nanocomposite films with high thermal stability [J]. AdvancedFunctional Materials,2008,18(10):1509-1517
    [50] Dietze M, Es-Souni M. Structural and functional properties of screen-printed PZT-PVDF-TrFEcomposites[J]. Sensors and Actuators A: Physical,2008,143(2):329-334
    [51] Zhang QQ, Chan HLW, Choy CL. Dielectric and pyroelectric properties of P(VDF-TrFE) andPCLT-P(VDF-TrFE)0-3nanocomposite films[J]. Composites Part A: Applied Science andManufacturing,1999,30(2):163-167
    [52] Marin-Franch P, Tunnicliffe DL, Das-Gupta DK. Dielectric properties and spatial distributionof polarization of ceramic+polymer composite sensors[J]. Mat Res Innovat,2001,4(5-6):334-339
    [53] Rao Y, Takahashi A, Wong CP. Di-block copolymer surfactant study to optimize fillerdispersion in high dielectric constant polymer-ceramic composite[J]. Composites Part A:Applied Science and Manufacturing,2003,34(11):1113-1116
    [54] Subodh G, Pavithran C, Mohanan P, Sebastian MT. PTFE/Sr2Ce2Ti5O16polymer ceramiccomposites for electronic packaging applications[J]. Journal of the European Ceramic Society,2007,27(8–9):3039-3044
    [55] Hu Y, Zhang Y, Liu H, Zhou D. Microwave dielectric properties of PTFE/CaTiO3polymerceramic composites[J]. Ceramics International,2011,37(5):1609-1613
    [56] Roberts S. Dielectric constants and polarizabilities of ions in Simple crystals and bariumtitanate [J]. Physical Review,1949,76(8):1215-1220
    [57] Kuo DH, Chang CC, Su TY, Wang WK, Lin BY. Dielectric behaviours of multi-dopedBaTiO3/epoxy composites [J]. Journal of the European Ceramic Society,2001,21(9):1171-1177
    [58] Dang ZM, Wang HY, Zhang YH, Qi JQ. Morphology and Dielectric property of homogenousBaTiO3/PVDF nanocomposites prepared via the natural adsorption action of nanosized BaTiO3[J]. Macromolecular Rapid Communications,2005,26(14):1185-1189
    [59] Dang ZM, Xu HP, Wang HY. Significantly enhanced low-frequency dielectric permittivity inthe BaTiO3/poly(vinylidene fluoride) nanocomposite[J]. Applied Physics Letters,2007,90(1):012901
    [60] Fan B-H, Zha JW, Wang D, Zhao J, Dang Z-M. Size-dependent low-frequency dielectricproperties in the BaTiO3/poly(vinylidene fluoride) nanocomposite films[J]. Applied PhysicsLetters,2012,100(1):012903
    [61] Cherqaoui B, Guillet J, Seytre G. Etude des propriétés diélectriques du polyfluorure devinylidène chargé de titanate de baryum[J]. Die Makromolekulare Chemie, RapidCommunications,1985,6(3):133-136
    [62] Dhar CM, Pillai PKC. Thermocompensated capacitor with barium titanate(BaTiO3)/polyvinylidene fluoride (PVDF) composite [J]. J Mater Sci Lett,1987,6(1):33-34
    [63] Muralidhar C, Pillai PKC. Dielectric behaviour of barium titanate (BaTiO3)/polyvinylidenefluoride (PVDF) composite[J]. J Mater Sci Lett,1987,6(3):346-348
    [64]党宇,王瑶,邓元,张烨,张传玲,李茂.高性能Ba/TiO3介电复合材料及其薄膜电容器应用[J].复合材料学报,2012,29(2):35-39
    [65] Kim P, Jones S C, Hotchkiss P J, Haddock J N, Kippelen B, Marder S R, Perry J W.Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity anddielectric strength[J]. Advanced Materials,2007,19(7):1001-1005
    [66] Xia W, Li J, Zhang Z, Xu Z. Poly (Vinylidene Fluoride-Chlorotrifluoroethylene)/BaTiO3composites with high electrical energy density [J]. Ferroelectrics,2010,407(1):125-133
    [67] Song Y, Shen Y, Liu H, Lin Y, Li M, Nan C W. Enhanced dielectric and ferroelectricproperties induced by dopamine-modified BaTiO3nanofibers in flexible poly(vinylidenefluoride-trifluoroethylene) nanocomposites[J]. Journal of Materials Chemistry,2012,22(16):8063-8068
    [68] Homes CC, Vogt T, Shapiro SM, Wakimoto S, Ramirez AP. Optical response ofhigh-dielectric-constant perovskite-related oxide [J]. Science,2001,293(5530):673-676
    [69] Yang Y, Zhu BP, Lu Z H, Wang Z Y, Fei C L, Yin D, Xiong R, Shi J,Chi QG, Lei QQ.Polyimide/nanosized CaCu3Ti4O12functional hybrid films with high dielectric permittivity[J].Applied Physics Letters,2013,102(4):042904
    [70] Li W, Schwartz RW. Maxwell-Wagner relaxations and their contributions to the highpermittivity of calcium copper titanate ceramics[J]. Physical Review B,2007,75(1):012104
    [71] Dang ZM, Zhou T, Yao SH, Yuan JK, Zha JW, Song HT, Li J,Chen Q,Yang WT, Bai, JB.Advanced calcium copper titanate/polyimide functional hybrid films with high dielectricpermittivity[J]. Advanced Materials.,2009,21(20):2077-2082
    [72] Thomas P, Varughese KT, Dwarakanath K, Varma KBR. Dielectric properties ofPoly(vinylidene fluoride)/CaCu3Ti4O12composites[J]. Composites Science and Technology,2010,70(3):539-545
    [73] Yang W, Yu S, Sun R, Du R. Nano-and microsize effect of CCTO fillers on the dielectricbehavior of CCTO/PVDF composites[J]. Acta Materialia,2011,59(14):5593-5602
    [74] Arbatti M, Shan X, Cheng ZY. Ceramic-Polymer composites with high dielectric constant[J].Advanced Materials,2007,19(10):1369-1372
    [75] Li J, Seok SI, Chu B, Dogan F, Zhang Q, Wang Q. Nanocomposites of Ferroelectric polymerswith TiO2nanoparticles exhibiting significantly enhanced electrical energy density [J].Advanced Materials,2009,21(2):217-221
    [76] Zha J W, Song H T, Dang Z M, Shi C Y, Bai J. Mechanism analysis of improvedcorona-resistant characteristic in polyimide/TiO2nanohybrid films [J]. Applied Physics Letters,2008,93(19):192911
    [77] Dong L, Xiong C, Quan H, Zhao G. Polyvinyl-butyral/lead zirconate titanates composites withhigh dielectric constant and low dielectric loss[J]. Scripta Materialia,2006,55(9):835-837
    [78]权红英,王高潮,谢小林,董丽杰,熊传溪.高介电常数PVDF/PZT/Terfenol-D复合材料的介电性能研究[J].化工新型材料,2009,37(5):43-44
    [79] Bai Y, Cheng ZY, Bharti V, Xu HS, Zhang QM. High-dielectric-constant ceramic-powderpolymer composites[J]. Applied Physics Letters,2000,76(25):3804-3806
    [80] Xia W, Xu Z, Wen F, Zhang Z. Electrical energy density and dielectric properties ofpoly(vinylidene fluoride-chlorotrifluoroethylene)/BaSrTiO3nanocomposites[J]. CeramicsInternational,2012,38(2):1071-1075
    [81] Wang F, Zhou D, Gong S. Dielectric behavior of TiC-PVDF nanocomposites[J]. physica statussolidi (RRL)-Rapid Research Letters,2009,3(1):22-24
    [82] Subodh G, Deepu V, Mohanan P, Sebastian MT. Dielectric response of high permittivitypolymer ceramic composite with low loss tangent[J]. Applied Physics Letters,2009,95(6):062903
    [83] Zelikman E, Narkis M, Siegmann A, Valentini L, Kenny JM. Polyaniline/multiwalled carbonnanotube systems: Dispersion of CNT and CNT/PANI interaction[J]. Polymer Engineering&Science,2008,48(10):1872-1877
    [84] Liu XQ, Yang W, Xie B-, Yang MB. Influence of multiwall carbon nanotubes on themorphology, melting, crystallization and mechanical properties of polyamide6/acrylonitrile–butadiene–styrene blends[J]. Materials&Design,2012,34(0):355-362
    [85] Zhang Q, Adebisi R, Gladden J. Synthesize procedures, mechanical and electrical properties ofpoly(vinylidene fluoride) nanocomposite thin films containing multiwalled carbonnanotubes[J]. Polymer Composites,2012,33(4):509-514
    [86] Mandal A, Nandi AK. Noncovalent Noncovalent functionalization of multiwalled carbonnanotube by a polythiophene-based compatibilizer: reinforcement and conductivityimprovement in poly(vinylidene fluoride) films[J]. The Journal of Physical Chemistry C,2012,116(16):9360-9371
    [87] Deng Y, Zhang Y, Wang Y, Li M, Yuan J, Bai J. A facile way to fabricate novel2–3-typecomposites based on zinc powders and polyvinylidene fluoride with enhanced dielectricproperties[J]. Composites Part A: Applied Science and Manufacturing,2012,43(6):842-846
    [88] Deepa KS, Gopika MS, James J. Influence of matrix conductivity and coulomb blockade effecton the percolation threshold of insulator–conductor composites[J]. Composites Science andTechnology,2013,78(0):18-23
    [89] Zhang YY, Jiang SL, Yu Y, Zeng YK, Zhang GZ, Zhang QF, He JG. Crystallization behaviorand phase-transformation mechanism with the use of graphite nanosheets in poly(vinylidenefluoride) nanocomposites[J]. Journal of Applied Polymer Science,2012,125(S1): E314-E319
    [90] Li JY, Huang C, Zhang Q. Enhanced electromechanical properties in all-polymer percolativecomposites[J]. Applied Physics Letters,2004,84(16):3124-3126
    [91] Wang J W, Shen Q D, Bao H M, Yang C Z, Zhang QM. Microstructure and dielectricproperties of P(VDF TrFE CFE) with partially grafted copper phthalocyanine oligomer [J].Macromolecules,2005,38(6):2247-2252
    [92] Bobnar V, Levstik A, Huang C, Zhang QM. Dielectric Properties and charge transport inall-organic relaxorlike CuPc-P(VDF-TrFE-CFE) composite and its constituents[J].Ferroelectrics,2006,338(1):107-116
    [93] Lund A, Gustafsson C, Bertilsson H, Rychwalski RW. Enhancement of β phase crystalsformation with the use of nanofillers in PVDF films and fibres[J]. Composites Science andTechnology,2011,71(2):222-229
    [94] Lebedev SM, Gefle OS, Tkachenko SN. Metal-polymer PVDF/nickel composites andevaluation of their dielectric and thermal properties[J]. Journal of Electrostatics,2010,68(2):122-127
    [95] El Achaby M, Arrakhiz FZ, Vaudreuil S, Essassi EM, Qaiss A, Bousmina M. Preparation andcharacterization of melt-blended graphene nanosheets–poly(vinylidene fluoride)nanocomposites with enhanced properties[J]. Journal of Applied Polymer Science,2013,127(6):4697-4707
    [96] Forró L, Sch nenberger C. Physical properties of multi-wall nanotubes[C]. Dresselhaus M,Dresselhaus G, Avouris P, eds. Carbon Nanotubes: Springer Berlin Heidelberg2001,329-391.
    [97] Ketpang K, Park JS. Electrospinning PVDF/PPy/MWCNTs conducting composites[J].Synthetic Metals,2010,160(15–16):1603-1608
    [98] Mohamadi S, Sharifi-Sanjani N. Investigation of the crystalline structure of PVDF inPVDF/PMMA/graphene polymer blend nanocomposites[J]. Polymer Composites,2011,32(9):1451-1460
    [99] Levi N, Czerw R, Xing S, Iyer P, Carroll DL. Properties of Polyvinylidene difluoride-carbonnanotube blends[J]. Nano Letters,2004,4(7):1267-1271
    [100] Yuan JK, Li WL, Yao SH, Lin YQ, Sylvestre A, Bai J. High dielectric permittivity and lowpercolation threshold in polymer composites based on SiC-carbon nanotubes micro/nanohybrid[J]. Applied Physics Letters,2011,98(3):032901
    [101] Deng Y, Zhang Y, Xiang Y, Wang G, Xu H. Bi2S3-BaTiO3/PVDF three-phase composites withhigh dielectric permittivity [J]. Journal of Materials Chemistry,2009,19(14):2058-2061
    [102] Wen R, Ke K, Wang Y, Yang W, Xie BH, Yang MB. Interfacial interaction of polyvinylidenefluoride/multiwalled carbon nanotubes nanocomposites: A rheological study[J]. Journal ofApplied Polymer Science,2011,121(5):3041-3046
    [103] Ke K, Wang Y, Zhang K, Luo Y, Yang W, Xie BH, Yang MB. Melt viscoelasticity, electricalconductivity, and crystallization of PVDF/MWCNT composites: Effect of the dispersion ofMWCNTs[J]. Journal of Applied Polymer Science,2012,125(S1): E49-E57
    [104] P tschke P, Abdel-Goad M, Alig I, Dudkin S, Lellinger D. Rheological and dielectricalcharacterization of melt mixed polycarbonate-multiwalled carbon nanotube composites[J].Polymer,2004,45(26):8863-8870
    [105] Sandler JKW, Kirk JE, Kinloch IA, Shaffer MSP, Windle AH. Ultra-low electrical percolationthreshold in carbon-nanotube-epoxy composites[J]. Polymer,2003,44(19):5893-5899
    [106] Wang L, Dang ZM. Carbon nanotube composites with high dielectric constant at lowpercolation threshold[J]. Applied Physics Letters,2005,87(4):042903
    [107] Li Q, Xue Q, Zheng Q, Hao L, Gao X. Large dielectric constant of the chemically purifiedcarbon nanotube/polymer composites[J]. Materials Letters,2008,62(26):4229-4231
    [108]李淑琴,王经文,王晔,王芳,肖军.多壁碳纳米管填充聚偏氟乙烯复合薄膜的介电性能[J].南京航空航天大学学报,2008,40(1):115-119
    [109]张诚,俞苗锋,陈孟奇. MWNTs/PVDF复合材料导电和介电性能的研究[J].材料工程,2008,增刊1:291-296
    [110] Dang ZM, Wang L, Yin Y, Zhang Q, Lei QQ. Giant dielectric permittivities in functionalizedcarbon-nanotube/electroactive-polymer nanocomposites[J]. Advanced Materials,2007,19(6):852-857
    [111] Zhang S, Zhang N, Huang C, Ren K, Zhang QM. Microstructure and electromechanicalproperties of carbon nanotube/poly(vinylidene fluoride-trifluoroethylene-chlorofluoroethylene)composites [J]. Advanced Materials,2005,17(15):1897-1901
    [112] Zhou T, Zha JW, Hou Y, Wang D, Zhao J, Dang ZM. Surface-functionalized MWNTs withemeraldine base: preparation and improving dielectric properties of polymer nanocomposites[J]. ACS Applied Materials&Interfaces,2011,3(12):4557-4560
    [113] Kim KS, Park SJ. Influence of enhanced dispersity of chemically treated MWNTs on physicalproperties of MWNTs/PVDF films[J]. Macromolecular Research.,2010,18(10):981-985
    [114] Wu C, Huang X, Wu X, Yu J, Xie L, Jiang P. TiO2-nanorod decorated carbon nanotubes forhigh-permittivity and low-dielectric-loss polystyrene composites[J]. Composites Science andTechnology,2012,72(4):521-527
    [115] Huang XY, Jiang PK, Kim CU. Electrical properties of polyethylene/aluminumnanocomposites[J]. Journal of Applied Physics,2007,102(12):124103
    [116]李海蓉. Ag/PVDF复合材料的制备和电性能研究[D].武汉:武汉理工大学,2011.
    [117] Qi L, Lee BI, Chen S, Samuels WD, Exarhos GJ. High-dielectric-constant silver–epoxycomposites as embedded dielectrics[J]. Advanced Materials,2005,17(14):1777-1781
    [118] Dang ZM, Lin YH, Nan CW. Novel ferroelectric polymer composites with high dielectricconstants [J]. Advanced Materials,2003,15(19):1625-1629
    [119] Panda M, Srinivas V, Thakur AK. On the question of percolation threshold in polyvinylidenefluoride/nanocrystalline nickel composites[J]. Applied Physics Letters,2008,92(13):132905
    [120] Dang ZM, Shen Y, Nan CW. Dielectric behavior of three-phase percolativeNi-BaTiO3/polyvinylidene fluoride composites[J]. Applied Physics Letters,2002,81(25):4814-4816
    [121]夏肆华,王军. Fe3O4/PVDF复合材料的介电性质研究[J].纳米加工工艺,2011,8(1):34-37
    [122] Dang ZM, Wu JP, Xu HP, Yao SH, Jiang MJ, Bai J. Dielectric properties of upright carbonfiber filled poly(vinylidene fluoride) composite with low percolation threshold and weaktemperature dependence[J]. Applied Physics Letters,2007,91(7):072912
    [123] Dang Z, Shen Y, Fan L, Cai N, Nan C, Zhao S. Dielectric properties of carbon fiber filledlow-density polyethylene[J]. Journal of Applied Physics,2003,93(9):5543-5545
    [124] Fan P, Wang L, Yang J, Chen F, Zhong M. Graphene/poly(vinylidene fluoride) compositeswith high dielectric constant and low percolation threshold[J]. Nanotechnology,2012,23(36):365702
    [125] Jinhong Y, Xingyi H, Chao W, Pingkai J. Permittivity, thermal conductivity and thermalstability of poly(vinylidene fluoride)/graphene nanocomposites[J]. Dielectrics and ElectricalInsulation, IEEE Transactions on,2011,18(2):478-484
    [126] Chen Q, Du P, Jin L, Weng W, Han G. Percolative conductor/polymer composite films withsignificant dielectric properties[J]. Applied Physics Letters,2007,91(2):022912
    [127] Xiao M, Sun L, Liu J, Li Y, Gong K. Synthesis and properties of polystyrene/graphitenanocomposites[J]. Polymer,2002,43(8):2245-2248
    [128] Zhang QM, Li H, Poh M, Xia F, Cheng ZY, Xu H, Huang C. An all-organic compositeactuator material with a high dielectric constant[J]. Nature,2002,419(6904):284-287
    [129] Wang JW, Shen QD, Yang CZ, Zhang QM. High dielectric constant composite ofP(VDF-TrFE) with grafted copper phthalocyanine oligomer[J]. Macromolecules,2004,37(6):2294-2298
    [130]王晔.高介电常数高分子复合材料研究[D].南京:南京航空航天大学,2008.
    [131] Huang C, Zhang QM, Li JY, Rabeony M. Colossal dielectric and electromechanical responsesin self-assembled polymeric nanocomposites[J]. Applied Physics Letters,2005,87(18):182901
    [132]吴聪聪,王经文,陈涛,魏楠,李淑琴.聚氨酯基高介电常数复合材料的制备与表征[J].四川化工,2011,14(4):5-9
    [133] Huang C, Zhang QM, Su J. High-dielectric-constant all-polymer percolative composites[J].Applied Physics Letters,2003,82(20):3502-3504
    [134]苑金凯,党智敏.高储能密度全有机复合薄膜介质材料的研究[J].绝缘材料,2008,45(1):1-4
    [135]潘冬,罗大兵,吴娴,刘韩星. PVDF/PAn纳米复合材料的制备及介电性能的研究[J].纳米科技,2010,7(1):51-54
    [136] Liang H, Yu D. Novel Ag/C nanocable/epoxy resin composite[J]. Polymer Engineering&Science,2011,51(9):1757-1762
    [137] Liang H, Yu D. Mechanical and thermal properties of (Ag/C nanocable)/epoxy resincomposites[J]. Polym. Sci. Ser. B,2011,53(11-12):601-605
    [138] Shen Y, Lin Y, Li M, Nan CW. High dielectric performance of polymer composite filmsinduced by a percolating interparticle barrier layer[J]. Advanced Materials,2007,19(10):1418-1422
    [139] Shen Y, Lin YH, Nan CW. Interfacial effect on dielectric properties of polymernanocomposites filled with core/shell-structured particles[J]. Advanced Functional Materials,2007,17(14):2405-2410
    [140] Dang ZM, You SS, Zha JW, Song HT, Li ST. Effect of shell-layer thickness on dielectricproperties in Ag@TiO2core@shell nanoparticles filled ferroelectric poly(vinylidene fluoride)composites[J]. physica status solidi (a),2010,207(3):739-742
    [141] Kuang X, Gao Q, Zhu H. Effect of calcination temperature of TiO2on the crystallinity and thepermittivity of PVDF-TrFE/TiO2composites[J]. Journal of Applied Polymer Science,2013,129(1):296-300
    [142] Zubieta CE, Messina PV, Schulz PC. Photocatalytic degradation of acridine dyes using anataseand rutile TiO2[J]. Journal of Environmental Management,2012,101(0):1-6
    [143] Gregorio R. Determination of the α, β, and γ crystalline phases of poly(vinylidene fluoride)films prepared at different conditions[J]. Journal of Applied Polymer Science,2006,100(4):3272-3279
    [144] Weber N, Lee YS, Shanmugasundaram S, Jaffe M, Arinzeh TL. Characterization and in vitrocytocompatibility of piezoelectric electrospun scaffolds[J]. Acta Biomaterialia,2010,6(9):3550-3556
    [145] Wu J, Nan C-W, Lin Y, Deng Y. Giant dielectric permittivity observed in Li and Ti dopedNiO[J]. Physical Review Letters,2002,89(21):217601
    [146] Maensiri S, Thongbai P, Yamwong T. Giant dielectric permittivity observed inCaCu3Ti4O12/(Li,Ti)-doped NiO composites[J]. Applied Physics Letters,2007,90(20):202908
    [147] Pecharromán C, Esteban-Betegón F, Bartolomé JF, López-Esteban S, Moya JS. NewPercolative BaTiO3–Ni Composites with a high and frequency-independent dielectric constant(εr≈80000)[J]. Adv. Mater.,2001,13(20):1541-1544
    [148]刚董,朱忠其,柳清菊.镍掺杂TiO2光催化剂的制备及光催化性能[J].功能材料,2012,43(3):294-298
    [149] Kuang X, Lin S, Zhu H. Synthesis and characterization of poly(vinylidene-trifluoroethylene)/Ni-TiO2[J]. physica status solidi (a),2013,210(3):570-573
    [150] Zhang S, Chen Z, Li Y, Wang Q, Wan L, You Y. Preparation of TiO2fibers by two-stepsynthesis method and their photocatalytic activity[J]. Materials Chemistry and Physics,2008,107(1):1-5
    [151] Bourgeois S, le Seigneur P, Perdereau M. Study by XPS of ultra-thin nickel deposits onTiO2(100) supports with different stoichiometries[J]. Surface Science,1995,328(1–2):105-110
    [152] Latour M. Spectroscopic and other techniques for the study of ferroelectricity in polymers[J].Key Engineering Materials,1994,92-93:31-82
    [153] Yang J, Jin Z, Wang X, Li W, Zhang J, Zhang S, Guo X, Zhang Z. Study on composition,structure and formation process of nanotube Na2Ti2O4(OH)2[J]. Dalton Transactions,2003,0(20):3898-3901
    [154] Zhang M, Jin Z, Zhang J, Guo X, Yang J, Li W, Wang X, Zhang Z. Effect of annealingtemperature on morphology, structure and photocatalytic behavior of nanotubedH2Ti2O4(OH)2[J]. Journal of Molecular Catalysis A: Chemical,2004,217(1–2):203-210
    [155] Guo G-S, He CN, Wang ZH, Gu FB, Han DM. Synthesis of titania and titanate nanomaterialsand their application in environmental analytical chemistry[J]. Talanta,2007,72(5):1687-1692
    [156] Meng Q, Li W, Zheng Y, Zhang Z. Effect of poly(methyl methacrylate) addition on thedielectric and energy storage properties of poly(vinylidene fluoride)[J]. Journal of AppliedPolymer Science,2010,116(5):2674-2684
    [157] Tao MM, Liu F, Xue LX. Poly(vinylidene fluoride) membranes by an ultrasound assistedphase inversion method[J]. Ultrason. Sonochem.,2013,20(1):232-238
    [158] Kuang X, Liu Z, Zhu H. Dielectric properties of Ag@C/PVDF composites[J]. Journal ofApplied Polymer Science,2013: n/a-n/a
    [159] Fang Z, Tang K, Lei S, Li T. CTAB-assisted hydrothermal synthesis of Ag/Cnanostructures[J]. Nanotechnology,2006,17(12):3008
    [160] Sun S, Wang W, Zhang L, Shang M, Wang L. Ag@C core/shell nanocomposite as a highlyefficient plasmonic photocatalyst[J]. Catalysis Communications.,2009,11(4):290-293
    [161] Ilie A, Durkan C, Milne WI, Welland ME. Surface enhanced Raman spectroscopy as a probefor local modification of carbon films[J]. Physical Review B,2002,66(4):045412
    [162] Sun XM, Li YD. Ag@C core/shell Sstructured nanoparticles: controlled synthesis,characterization, and assembly[J]. Langmuir,2005,21(13):6019-6024
    [163] Botelho G, Lanceros-Mendez S, Gon alves AM, Sencadas V, Rocha JG. Relationship betweenprocessing conditions, defects and thermal degradation of poly(vinylidene fluoride) in theβ-phase[J]. Journal of Non-Crystalline Solids,2008,354(1):72-78

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700