路易斯酸催化的碳氢键官能团化反应构建氧化吲哚结构的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
近十多年来,过渡金属催化的碳氢键活化反应研究已经成为最富有前景和希望的新课题。对环境友好的,温和的C-H键活化反应将是构建C-X (X=C, N, O等)键的最理想手段,是最具有原子经济性的、简捷高效地合成有机分子的方法。无疑,这将是未来二十年最有竞争力的催化化学研究领域之一。因而,深入研究C-H键活化与断裂的基本规律,不仅具有重要的学术意义,而且有潜在的巨大实用价值。美国科学杂志曾就C-H键活化发表了专门评论,将其称为金属有机化学的“圣碑”。
     在我攻读博士期间,有幸在杨尚东教授及梁永民教授的研究小组参与了路易斯酸催化的直接碳氢键转化成碳碳键的反应研究,合成了一系列氧化吲哚结构单元的化合物。论文主要包括以下几个部分:
     第一章主要对过渡金属催化的分解重氮化合物生成卡宾的C-H键插入反应研究以及在全合成中的应用进行了归纳和总结。
     第二章详细阐述了三氟甲烷磺酸银(AgOTf)催化的分解重氮化合物生成卡宾,对芳基碳氢键直接插入构建烯基氧化吲哚类化合物的反应。该反应的催化体系非常简单,环境友好,避免了使用碱,氧化剂,或者其它的添加剂;NMR, X-ray,DFT计算表明3-烯基氧化吲哚是唯一的产物;除此之外,实验数据和DFT计算表明:银催化剂作为路易斯酸促进形成自由卡宾并且该反应的决速步是N2的释放。
     第三章主要对过渡金属催化的碳氢键对不饱和碳杂键的加成反应研究进行了综述。
     第四章阐述了三氟甲烷磺酸钪(Sc(OTf)3)催化的分子内芳基碳氢键直接对α-酰胺酮的加成构建3-羟基氧化吲哚类化合物的反应。与传统的方法(有机金属试剂或者富电子试剂对靛红的加成,以及分子内的芳基卤代物对α-酰胺酮的加成反应)相比较,该方法简单易行,环境友好,省去了制备有机金属试剂或者卤代物的繁琐过程。
In the past decade, transition metal catalyzed C-H bond activation reactions have emerged as promising new catalytic transformations. Environmentally friendly, mild C-H bond activation reaction will became the ideal means to build a C-X bond (X=C, N, O, etc.), which is most atom economy, simplely and efficiently method for synthesis of organic molecules. Undoubtedly, this will be the most competitive research fields of catalytic chemistry in the next two decades. Thus, in-depth study of the basic law of the C-H bond activation and cleavage, not only has the important academic significance, but also has a huge potential practical value. Scientific American magazine has been published a C-H bond activation specifically comment and considered it as the "holy grail" of organometallic chemistry.
     During my PhD, I had the great honor involved in the research groups of Professor Shang-Dong Yang and Professor Yong-Min Liang to study on new methods of lewis acid-catalyzed direct conversion of aromatic rings carbons hydrogen bonds into carbon-carbon bonds to form oxindoles structure motif.
     This thesis includes the following:
     In first chapter, recent studies about transition-metal-catalyzed reaction of diazo compounds generates metal carbene or carbenoid intermediates that undergo catalytic C-H bond insertion reactions and their application of total synthesis are reviewed.
     In second chapter, A novel protocol for the preparation of various oxindoles via a silver-catalyzed carbene insertion to aromatic C-H bond has been developed. The process is simple, environmentally conscious, and avoids the use of bases, oxidants, or other additives. All analyses including NMR, single crystal X-ray, and DFT calculations show that the3-methyleneoxindole is obtained as a single product. In addition experiments and computational analysis illustrated that silver prompt the formation of a free carbene and the rate-determining step of the catalytic cycle is N2dissociation.
     In third chapter, recent developments of transition metal catalyzed direct nucleophilic addition of C-H bonds in hydrocarbons and their derivatives to the unsaturated carbon-heteroatom to produce addition product are reviewed.
     In four chapter, A novel method for Sc(OTf)3-catalyzed intramolecular Friedel-Crafts alkylation to construct3-hydroxy-2-oxindoles by direct C-H addition to a-ketoanilides has been developed. In comparision with traditional methods of nucleophilic conjugate additions of organometallic reagents or electron-rich reagents to isatins and intramolecular addition of aryl chlorides to ketoamides. This protocol is simple, environmentally conscious, and omits the complicated preparation of organometallic reagents or halogenations procedures.
引文
1. (a) Ye, T.; McKervey, M. A., Organic Synthesis with α-Diazo Carbonyl Compounds. Chemical Reviews 1994,94 (4),1091-1160; (b) Padwa, A.; Austin, D. J., Ligand Effects on the Chemoselectivity of Transition Metal Catalyzed Reactions of a-Diazo Carbonyl Compounds. Angewandte Chemie International Edition in English 1994,33 (18),1797-1815; (c) Doyle, M. P.; McKervey, M. A.; Ye, T., Modern catalytic methods for organic synthesis with diazo compounds: from cyclopropanes to ylides. Wiley New York:1998; (d) Doyle, M. P.; Forbes, D. C., Recent Advances in Asymmetric Catalytic Metal Carbene Transformations. Chemical Reviews 1998,98 (2),911-936; (e) Zhang, Z.; Wang, J., Recent studies on the reactions of a-diazocarbonyl compounds. Tetrahedron 2008,64 (28),6577-6605; (f) Padwa, A., Domino reactions of rhodium(ii) carbenoids for alkaloid synthesis. Chemical Society Reviews 2009,38 (11),3072-3081; (g) Zhang, Y.; Wang, J., Recent development of reactions with a-diazocarbonyl compounds as nucleophiles. Chemical Communications 2009,0 (36),5350-5361; (h) Candeias, N. R.; Afonso, C. A. M., Developments in the Photochemistry of Diazo Compounds. Current Organic Chemistry 13 (7),763-787; (i) Korneev, S. M., Valence Isomerization between Diazo Compounds and Diazirines. European Journal of Organic Chemistry 2011,2011 (31),6153-6175; (j) Zhao, X.; Zhang, Y.; Wang, J., Recent developments in copper-catalyzed reactions of diazo compounds. Chemical Communications 2012,48 (82),10162; (k) Zhu, S.-F.; Zhou, Q.-L., Transition-Metal-Catalyzed Enantioselective Heteroatom-Hydrogen Bond Insertion Reactions. Accounts of Chemical Research 2012,45 (8),1365-1377; (1) Maas, G., New Syntheses of Diazo Compounds. Angewandte Chemie International Edition 2009,48 (44),8186-8195.
    2. (a) Davies, H. M. L.; Manning, J. R., Catalytic C-H functionalization by metal carbenoid and nitrenoid insertion. Nature 2008,451 (7177),417-424; (b) Davies, H. M. L.; Beckwith, R. E. J., Catalytic Enantioselective C-H Activation by Means of Metal-Carbenoid-Induced C-H Insertion. Chemical Reviews 2003,103 (8),2861-2904; (c) H. Wee, A. G., Rhodium(II)-Catalyzed Reaction of Diazocompounds in the Service of Organic Synthesis of Natural and Non-Natural Products. Current Organic Synthesis 2006,3 (4),499-555; (d) Davies, H. M. L.; Denton, J. R., Application of donor/acceptor-carbenoids to the synthesis of natural products. Chemical Society Reviews 2009, 38 (11),3061-3071; (e) Doyle, M. P.; Duffy, R.; Ratnikov, M.; Zhou, L., Catalytic Carbene Insertion into C-H Bonds. Chemical Reviews 2009,110 (2),704-724; (f) Davies, H. M. L. Morton, D., Guiding principles for site selective and stereoselective intermolecular C-H functionalization by donor/acceptor rhodium carbenes. Chemical Society Reviews 2011,40 (4), 1857-1869; (g) Doyle, M. P.; Ratnikov, M.; Liu, Y., Intramolecular catalytic asymmetric carbon-hydrogen insertion reactions. Synthetic advantages in total synthesis in comparison with alternative approaches. Organic& Biomolecular Chemistry 2011,9(11),4007; (h) Slattery, C. N.; Ford, A.; Maguire, A. R., Catalytic asymmetric C-H insertion reactions of a-diazocarbonyl compounds. Tetrahedron 2010,66 (34),6681-6705.
    3. F. Greuter, J. K., and O. Jeger, Thermal Decomposition of 20-Diazo-5a-pregnan-20-one Proceedings of the Chemical Society 1958,1958 (December),349-349.
    4. Wenkert, E.; Davis, L. L.; Mylari, B. L.; Solomon, M. F.; Da Silva, R. R.; Shulman, S.; Warnet, R. J.; Ceccherelli, P.; Curini. M.; Pellicciari, R., Cyclopentanone synthesis by intramolecular carbon-hydrogen insertion of diazo ketones. A diterpene-to-steroid skeleton conversion. The Journal of Organic Chemistry 1982,47(17),3242-3247.
    5. Taber, D. F.; Petty, E. H., General route to highly functionalized cyclopentane derivatives by intramolecular CH insertion. The Journal of Organic Chemistry 1982,47(24),4808-4809.
    6. Doyle, M. P.; Shanklin, M. S.; Pho. H. Q.; Mahapatro, S. N., Rhodium (Ⅱ) acetate and Nafion-H catalyzed decomposition of N-aryldiazoamides. Efficient synthesis of 2 (3H)-indolinones. The Journal of Organic Chemistry 1988,53 (5),1017-1022.
    7. Etkin, N.; Babu, S. D.; Fooks, C. J.; Durst, T., Preparation of 3-acetyl-2-hydroxyindoles via rhodium carbenoid aromatic carbon-hydrogen insertion. The Journal of Organic Chemistry 1990, 55(3),1093-1096.
    8. Adams, J.; Poupart, M.-A.; Grenier, L.; Schaller, C.; Ouimet, N.; Frenette, R., Rhodium acetate catalyzes the addition of carbenoids a-to ether oxygens. Tetrahedron Letters 1989,30 (14), 1749-1752.
    9. Kennedy, M.; McKervey, M. A.; Maguire, A. R.; Roos. G. H. P., Asymmetric synthesis in carbon-carbon bond forming reactions of a-diazoketones catalysed by homochiral rhodium(Ⅱ) carboxylates. Journal of the Chemical Society, Chemical Communications 1990, (5),361.
    10. Doyle, M. P.; Van Oeveren, A.; Westrum, L. J.; Protopopova, M. N.; Clayton Jr, T. W., Asymmetric synthesis of lactones with high enantioselectivity by intramolecular carbon-hydrogen insertion reactions of alkyl diazoacetates catalyzed by chiral rhodium (Ⅱ) carboxamides. Journal of the American Chemical Society 1991,113 (23),8982-8984.
    11. Padwa, A.; Austin, D. J.; Price, A. T.; Semones, M. A.; Doyle, M. P.; Protopopova, M. N.; Winchester, W. R.; Tran, A., Ligand effects on dirhodium(Ⅱ) carbene reactivities. Highly effective switching between competitive carbenoid transformations. Journal of the American Chemical Society 1993,115(19),8669-8680.
    12. Doyle, M. P.; Westrum, L. J.; Wolthuis, W. N.; See, M. M.; Boone, W. P.; Bagheri, V.; Pearson, M. M., Electronic and steric control in carbon-hydrogen insertion reactions of diazoacetoacetates catalyzed by dirhodium (Ⅱ) carboxylates and carboxamides. Journal of the American Chemical Society 1993,115 (3),958-964.
    13. Doyle, M. P.; Dyatkin, A. B.; Roos, G. H.; Canas, F.; Pierson, D. A.; van Basten, A.; Mueller, P.; Polleux, P., Diastereocontrol for Highly Enantioselective Carbon-Hydrogen Insertion Reactions of Cycloalkyl Diazoacetates. Journal of the American Chemical Society 1994,116 (10), 4507-4508.
    14. Doyle, M. P.; Dyatkin, A. B., Spirolactones from Dirhodium (Ⅱ)-Catalyzed Diazo Decomposition with Regioselective Carbon-Hydrogen Insertion. The Journal of Organic Chemistry 1995,60 (10),3035-3038.
    15. Lim, H.-J.; Sulikowski, G. A., Enantioselective Synthesis of a 1,2-Disubstituted Mitosene by a Copper-Catalyzed Intramolecular Carbon-Hydrogen Insertion Reaction of a Diazo Ester. The Journal of Organic Chemistry 1995,60 (8),2326-2327.
    16. Ye, T.; Garcia, C. n. F. n.; McKervey, M. A., Chemoselectivity and stereoselectivity of cyclisation of α-diazocarbonyls leading to oxygen and sulfur heterocycles catalysed by chiral rhodium and copper catalysts. Journal of the Chemical Society, Perkin Transactions 11995, (11), 1373.
    17. Burgess, K.; Lim, H.-J.; Porte, A. M.; Sulikowski, G. A., New Catalysts and Conditions for a C-H Insertion Reaction Identified by High Throughput Catalyst Screening. Angewandte Chemie International Edition in English 1996,35 (2),220-222.
    18. Doyle, M. P.; Kalinin, A. V., Synthesis of pyrrolizidine bases by highly diastereoselective and regioselective catalytic carbon-hydrogen insertion reactions of chiral pyrrolidinediazoacetamides. Tetrahedron Letters 1996,37 (9),1371-1374.
    19. Wee, A. G. H.; Slobodian, J., Metal-Catalyzed Reaction of Indoline Diazoamides Possessing a C-2 CH2X Substituent:Site-Selectivity, Diastereoselectivity, and Chemoselectivity. The Journal of Organic Chemistry 1996,61 (8),2897-2900.
    20. Yoon. C. H.; Zaworotko, M. J.; Moulton, B.; Jung, K. W., Regio- and Stereocontrol Elements in Rh(Ⅱ)-Catalyzed Intramolecular C-H Insertion of α-Diazo-α-(phenylsulfonyl)acetamides. Organic Letters 2001,3 (22),3539-3542.
    21. Davies, H. M. L.; Grazini, M. V. A.; Aouad, E., Asymmetric Intramolecular C-H Insertions of Aryldiazoacetates. Organic Letters 2001,5(10),1475-1477.
    22. Yoon, C. H.; Nagle, A.; Chen, C.; Gandhi, D.; Jung, K. W., γ-Lactam Synthesis via C-H Insertion:Elaboration of N-Benzyl Protecting Groups for High Regioselectivity toward the Total Synthesis of Rolipram. Organic Letters 2003,5(13),2259-2262.
    23. Skerry, P. S.; Swain, N. A.; Harrowven, D. C.; Smyth, D.; Bruton, G.; Brown, R. C., Intramolecular C-H insertions adjacent to sulfur for the diastereoselective synthesis of thienofuranones. Chemical Communications 2004, (15),1772-1773.
    24. Clark, J. S.; Dossetter, A. G.; Wong, Y.-S.; Townsend, R. J.; Whittingham, W. G.; Russell, C. A., Anomalous intramolecular CH insertion reactions of rhodium carbenoids:Factors influencing the reaction course and mechanistic implications. The Journal of Organic Chemistry 2004,69 (11), 3886-3898.
    25. Candeias, N. R.; Gois, P. M.; Afonso, C. A., Rh (ii) catalysed intramolecular C-H insertion of diazo substrates in water:a simple and efficient approach to catalyst reuse. Chemical Communications 2005, (3),391-393.
    26. Wee, A. G.; Duncan, S. C., The bis (trimethylsilyl) methyl group as an effective N-protecting group and site-selective control element in rhodium (Ⅱ)-catalyzed reaction of diazoamides. The Journal of Organic Chemistry 2005,70 (21),8372-8380.
    27. Choi, M. K.-W.; Yu, W.-Y.; Che, C.-M., Ruthenium-Catalyzed Stereoselective Intramolecular Carbenoid C-H Insertion for β-and γ-Lactam Formations by Decomposition of α-Diazoacetamides. Organic Letters 2005,7(6),1081-1084.
    28. Shi, W.; Zhang, B.; Zhang, J.; Liu, B.; Zhang, S.; Wang, J., Stereoselective Intramolecular 1, 3 C-H Insertion in Rh (Ⅱ) Carbene Reactions. Organic Letters 2005,7(14),3103-3106.
    29. Candeias, N. R.; Gois, P. M.; Afonso, C. A., Rh (Ⅱ)-catalyzed intramolecular C-H insertion of diazo substrates in water:Scope and limitations. The Journal of Organic Chemistry 2006,71 (15), 5489-5497.
    30. John, J. P.; Novikov, A. V., Selective Formation of Six-Membered Cyclic Sulfones and Sulfonates by CH Insertion. Organic Letters 2007,9 (1),61-63.
    31. Martin, C.:Belderrain, T. R.; Perez, P. J., Rediscovering copper-based catalysts for intramolecular carbon-hydrogen bond functionalization by carbene insertion. Organic & Biomolecular Chemistry 2009,7 (22),4777-4781.
    32. Flynn, C. J.; Elcoate, C. J.; Lawrence, S. E.; Maguire, A. R., Highly Enantioselective Intramolecular Copper Catalyzed C-H Insertion Reactions of a-Diazosulfones. Journal of the American Chemical Society 2010,132 (4),1184-1185.
    33. Slattery, C. N.; Maguire, A. R., Asymmetric copper-catalysed intramolecular C-H insertion reactions of α-diazo-β-keto sulfones. Organic & Biomolecular Chemistry 2011,9 (3),667.
    34. Chan, W.-W.; Kwong, T.-L.; Yu, W.-Y., Ruthenium-catalyzed intramolecular cyclization of diazo-(3-ketoanilides for the synthesis of 3-alkylideneoxindoles. Organic & Biomolecular Chemistry 2012,10 (18),3749.
    35. Lo, V. K.-Y.; Guo, Z.; Choi, M. K.-W.; Yu, W.-Y.; Huang, J.-S.; Che, C.-M., Highly Selective Intramolecular Carbene Insertion into Primary C-H Bond of α-Diazoacetamides Mediated by a (p-Cymene) ruthenium (Ⅱ) Carboxylate Complex. Journal of the American Chemical Society 2012, 134(18),7588-7591.
    36. Rodriguez-Cardenas, E.; Sabala. R.; Romero-Ortega, M.; Ortiz, A.; Olivo, H. F., Chemoselective Aromatic C-H Insertion of α-Diazo-β-ketoesters Catalyzed by Dirhodium(Ⅱ) Carboxylates. Organic Letters 2011,14 (1),238-240.
    37. Candeias, N. R.; Carias, C.; Gomes, L. F. R.; Andre, V.; Duarte, M. T.; Gois, P. M. P.; Afonso, C. A. M., Asymmetric Intramolecular C-H Insertion of a-Diazoacetamides in Water by Dirhodium(Ⅱ) Catalysts Derived from Natural Amino Acids. Advanced Synthesis & Catalysis 2012,354 (16),2921-2927.
    38. Scott, L. T.; DeCicco, G. J., Intermolecular carbon-hydrogen insertion of copper carbenoids. Journal of the American Chemical Society 1974,96 (1),322-323.
    39. Wulfrnan, D. S.; McDaniel Jr, R. S.; Peace, B. W., Metal salt catalyzed carbenoid-ⅩⅢ:On the mechanisms of cyclopropanation and allylic C-H insertions by diazo esters in the presence of olefins and homogeneous copper catalysts. Tetrahedron 1976,32 (11),1241-1249.
    40. Demonceau, A.; Noels, A. F.; Hubert, A. J.; Teyssie, P., Transition-metal-catalysed reactions of diazoesters. Insertion into C-H bonds of paraffins by carbenoids. Journal of the Chemical Society, Chemical Communications 1981, (14),688-689.
    41. Callot, H.; Metz, F., Homologation of n-alkanes using diazoesters and rhodium (Ⅲ) porphyrins. Enhanced attack on primary C-H bonds. Tetrahedron Letters 1982,23 (42), 4321-4324.
    42. Davies, H. M. L.; Hansen, T., Asymmetric Intermolecular Carbenoid C-H Insertions Catalyzed by Rhodium(Ⅱ) (S)-N-(p-Dodecylphenyl)sulfonylprolinate. Journal of the American Chemical Society 1997,119 (38),9075-9076.
    43. Davies, H. M. L.; Stafford, D. G.; Hansen, T., Catalytic Asymmetric Synthesis of Diarylacetates and 4,4-Diarylbutanoates. A Formal Asymmetric Synthesis of (+)-Sertraline. Organic Letters 1999,1(2),233-236.
    44. Davies, H. M. L.; Antoulinakis, E. G.; Hansen, T., Catalytic Asymmetric Synthesis of Syn-Aldol Products from Intermolecular C-H Insertions between Allyl Silyl Ethers and Methyl Aryldiazoacetates. Organic Letters 1999,1 (3),383-386.
    45. Davies, H. M. L.; Hansen, T.; Hopper, D. W.; Panaro, S. A., Highly Regio-, Diastereo-, and Enantioselective C-H Insertions of Methyl Aryldiazoacetates into Cyclic N-Boc-Protected Amines. Asymmetric Synthesis of Novel C2-Symmetric Amines and threo-Methylphenidate. Journal of the American Chemical Society 1999,121 (27),6509-6510.
    46. Axten, J. M.; Ivy, R.; Krim, L.; Winkler, J. D., Enantioselective Synthesis of d-threo-Methylphenidate. Journal of the American Chemical Society 1999,121 (27),6511-6512.
    47. Davies, H. M. L.; Hansen, T.; Churchill, M. R., Catalytic Asymmetric C-H Activation of Alkanes and Tetrahydrofuran. Journal of the American Chemical Society 2000,122 (13), 3063-3070.
    48. Davies, H. M. L.; Stafford, D. G.; Hansen, T.; Churchill, M. R.; Keil, K. M., Effect of carbenoid structure on the reactions of rhodium-stabilized carbenoids with cycloheptatriene. Tetrahedron Letters 2000,41 (13),2035-2038.
    49. Muller, P.; Tohill, S., Intermolecular Cyclopropanation versus C-H Insertion in RhII-Catalyzed Carbenoid Reactions. Tetrahedron 2000,56(12),1725-1731.
    50. Davies, H. M. L.; Ren, P., Catalytic Asymmetric C-H Activation of Silyl Enol Ethers as an Equivalent of an Asymmetric Michael Reaction. Journal of the American Chemical Society 2001, 123(9),2070-2071.
    51. Davies, H. M. L.; Ren, P.; Jin, Q., Catalytic Asymmetric Allylic C-H Activation as a Surrogate of the Asymmetric Claisen Rearrangement. Organic Letters 2001,3 (22),3587-3590.
    52. Diaz-Requejo, M. M.; Belderrain, T. R.; Nicasio, M. C.; Trofimenko, S.; Perez, P. J., Intermolecular copper-catalyzed carbon-hydrogen bond activation via carbene insertion. Journal of the American Chemical Society 2002,124 (6),896-897.
    53. Caballero, A.; Diaz-Requejo, M. M.; Belderrain, T. R.; Nicasio, M. C.; Trofimenko, S.; Perez, P. J., Highly regioselective functionalization of aliphatic carbon-hydrogen bonds with a perbromohomoscorpionate copper (Ⅰ) catalyst. Journal of the American Chemical Society 2003, 125(6),1446-1447.
    54. Caballero, A.; Diaz-Requejo, M. M.; Belderrain, T. R.; Nicasio, M. C.; Trofimenko, S.; Perez, P. J., Functionalization of carbon-hydrogen bonds of hydrocarbons and ethers via carbene insertion with copper (Ⅰ)-homoscorpionate catalysts. Organometallics 2003,22 (20),4145-4150.
    55. Davies, H. M. L.; Walji, A. M., Asymmetric Intermolecular C-H Activation, Using Immobilized Dirhodium Tetrakis((S)-N-(dodecylbenzenesulfonyl)-prolinate) as a Recoverable Catalyst. Organic Letters 2003,5 (4),479-482.
    56. Dias, H. R.; Browning, R. G.; Richey, S. A.; Lovely, C. J., Silver (Ⅰ) Scorpionate Mediated Insertion of Carbenes into Aliphatic C-H Bonds. Organometallics 2004,23 (6),1200-1202.
    57. Davies, H. M. L.; Jin, Q., Highly Diastereoselective and Enantioselective C-H Functionalization of 1,2-Dihydronaphthalenes:A Combined C-H Activation/Cope Rearrangement Followed by a Retro-Cope Rearrangement. Journal of the American Chemical Society 2004,126 (35),10862-10863.
    58. Urbano, J.; Belderrain, T. R.; Nicasio, M. C.; Trofimenko, S.; Diaz-Requejo, M. M.; Perez, P. J., Functionalization of primary carbon-hydrogen bonds of alkanes by carbene insertion with a silver-based catalyst. Organometallics 2005,24 (7),1528-1532.
    59. Hilt, G.; Galbiati, F., Regioselective carbene insertion on polysubstituted dihydroaromatic compounds. Organic Letters 2006,8 (10),2195-2198.
    60. Fructos, M. R.; de Fremont, P.; Nolan, S. P.; Diaz-Requejo, M. M.; Perez, P. J., Alkane Carbon-Hydrogen Bond Functionalization with (NHC) MCI Precatalysts (M=Cu. Au; NHC= N-Heterocyclic Carbene). Organometallics 2006,25 (9),2237-2241.
    61. Fraile, J. M.; Garcia, J. I.; Mayoral, J. A.; Roldan, M., Simple and Efficient Heterogeneous Copper Catalysts for Enantioselective C-H Carbene Insertion. Organic Letters 2007,9 (4), 731-733.
    62. Davies, H. M. L.; Coleman, M. G.; Ventura, D. L., Balance between Allylic C-H Activation and Cyclopropanation in the Reactions of Donor/Acceptor-Substituted Rhodium Carbenoids with trans-Alkenes. Organic Letters 2007,9 (24),4971-4974.
    63. Mbuvi, H. M.; Woo, L. K., Catalytic C-H Insertions Using Iron (Ⅲ) Porphyrin Complexes. Organometallics 2008,27 (4),637-645.
    64. Thu, H.-Y.; Tong, G. S.-M.; Huang, J.-S.; Chan, S. L.-F.; Deng, Q.-H.; Che, C.-M., Highly Selective Metal Catalysts for Intermolecular Carbenoid Insertion into Primary C-H Bonds and Enantioselective C-C Bond Formation. Angewandte Chemie International Edition 2008,47 (50), 9747-9751.
    65. Suematsu, H.; Katsuki, T., Iridium(Ⅲ) Catalyzed Diastereo-and Enantioselective C-H Bond Functionalization. Journal of the American Chemical Society 2009,131 (40),14218-14219.
    66. Rangan. K.; Fianchini, M.; Singh, S.; Rasika Dias, H., Silver (I) complexes of fluorinated scorpionates:Ligand effects in silver catalyzed carbene insertion into C-H bonds in alkanes. lnorganica Chimica Acta 2009,362 (12),4347-4352.
    67. Tayama, E.; Yanaki, T.; lwamoto, H.; Hasegawa, E., Copper (Ⅱ) Triflate Catalyzed Intermolecular Aromatic Substitution of N, N-Disubstituted Anilines with Diazo Esters. European Journal of Organic Chemistry 2010,2010(35).6719-6721.
    68. Lian, Y.; Davies, H. M. L., Rhodium-Catalyzed [3+2] Annulation of Indoles. Journal of the American Chemical Society 2009,132 (2),440-441.
    69. Fraile, J. M.; Mayoral.J. A.; Ravasio, N.; Roldan, M.; Sordelli, L.;Zaccheria, F., Heterogeneous catalysts for carbene insertion reactions. Journal of Catalysis 2011,281 (2), 273-278.
    70. Rivilla, I.; Gomez-Emeterio, B. P.; Fructos, M. R.; Diaz-Requejo, M. M.; Perez, P. J., Exclusive Aromatic vs Aliphatic C-H Bond Functionalization by Carbene Insertion with Gold-Based Catalysts. Organometallics 2011,30 (10),2855-2860.
    71. DeAngelis, A.; Shurtleff, V. W.; Dmitrenko, O.; Fox, J. M., Rhodium(Ⅱ)-Catalyzed Enantioselective C-H Functionalization of Indoles. Journal of the American Chemical Society 2011,133(6),1650-1653.
    72. Anding, B. J.; Brgoch, J.; Miller, G. J.; Woo, L. K., C-H Insertion Catalyzed by Tetratolylporphyrinato Methyliridium via a Metal-Carbene Intermediate. Organometallics 2012, 31(15).5586-5590.
    73. Wang, J.-C.; Xu, Z.-J.; Guo, Z.; Deng, Q.-H.; Zhou, C.-Y.; Wan, X.-L.; Che, C.-M., Highly enantioselective intermolecular carbene insertion to C-H and Si-H bonds catalyzed by a chiral iridium(ⅲ) complex of a D4-symmetric Halterman porphyrin ligand. Chemical Communications 2012,48 (36),4299.
    74. Fuentes, M. A.; Munoz, B. K.; Jacob, K.; Vendier, L.; Caballero, A.; Etienne, M.; Perez, P. J., Functionalization of Non-activated C-H Bonds of Alkanes:An Effective and Recyclable Catalytic System Based on Fluorinated Silver Catalysts and Solvents. Chemistry-A European Journal 2013,19(4),1327-1334.
    75. Taber, D. F.; Petty, E. H.; Raman, K., Enantioselective ring construction:synthesis of (+)-. alpha.-cuparenone. Journal of the American Chemical Society 1985,107(1),196-199.
    76. Wee, A. G., A Dirhodium (Ⅱ)-Carbenoid Route to (-)-and (+)-Geissman-Waiss Lactone: Synthesis of (1 R,7 R,8 R)-(-)-Turneforcidine. The Journal of Organic Chemistry 2001,66 (25), 8513-8517.
    77. Doyle, M. P.; Hu, W.; Valenzuela, M. V., Total synthesis of (S)-(+)-imperanene. Effective use of regio-and enantioselective intramolecular carbon-hydrogen insertion reactions catalyzed by chiral dirhodium (Ⅱ) carboxamidates. The Journal of Organic Chemistry 2002,67 (9),2954-2959.
    78. Wardrop, D. J.; Forslund, R. E.; Landrie, C. L.; Velter, A. I.; Wink, D.; Surve, B., Template-directed C H activation:development and application to the total synthesis of 7-episordidin. Tetrahedron:Asymmetry 2003,14 (1),929-940.
    79. Kurosawa, W.; Kan, T.; Fukuyama, T., Stereocontrolled total synthesis of (-)-ephedradine A (orantine). Journal of the American Chemical Society 2003,125 (27),8112-8113.
    80. Hinman, A.; Du Bois, J., A stereoselective synthesis of (-)-tetrodotoxin. Journal of the American Chemical Society 2003,125 (38),11510-11511.
    81. Swain, N. A.; Brown, R. C.; Bruton, G., A Versatile Stereoselective Synthesis of endo, e xo-Furofuranones:Application to the Enantioselective Synthesis of Furofuran Lignans. The Journal of Organic Chemistry 2004,69 (1),122-129.
    82. Pattenden, G.; Blake, A. J.; Constandinos, L., A concise synthesis of the functionalised cyclopentane unit in the antitumoural antibiotic viridenomycin. Tetrahedron letters 2005,46 (11), 1913-1915.
    83. Tambar, U. K.; Ebner, D. C.; Stoltz, B. M., A convergent and enantioselective synthesis of (+)-amurensinine via selective C-H and C-C bond insertion reactions. Journal of the American Chemical Society 2006,128 (36),11752-11753.
    84. Davies, H. M.; Dai, X.; Long, M. S., Combined C-H activation/cope rearrangement as a strategic reaction in organic synthesis:Total synthesis of (-)-colombiasin A and (-)-elisapterosin B. Journal of the American Chemical Society 2006,128 (7),2485-2490.
    1. Parkes, K. E. B.; Ermert, P.; Fassler, J.; lves,J; Martin, J. A.; Merrett, J. H.; Obrecht. D.; Williams, G.; Klumpp, K., Use of a Pharmacophore Model To Discover a New Class of Influenza Endonuclease Inhibitors. Journal of Medicinal Chemistry 2003,46 (7),1153-1164.
    2. Zhou, L.; Yang, J.-S.; Wu, X.; Zou, J.-H.; Xu, X.-D.; Tu, G.-Z., two new cycloartane triterpene glycosides and a new alkaloid from souliea vaginata.. Heterocycles 2005,65 (6), 1409-1414.
    3. Hilberg, F.; Roth, G. J.; Krssak, M.; Kautschitsch. S.; Sommergruber, W.; Tontsch-Grunt, U.; Garin-Chesa, P.; Bader, G.; Zoephel. A.; Quant, J., BIBF 1120:triple angiokinase inhibitor with sustained receptor blockade and good antitumor efficacy. Cancer Research 2008,68 (12), 4774-4782.
    4. (a) Treu, M.; Guertler, U.; Karner, T.; Kraemer, O.; Quant, J. J.; Zahn, S. K., indolinone derivatives and their use in treating disease-states such as cancer. WO Patent WO/2008/152,013: 2008; (b) Burgdorf, L. T.; Bruge, D.; Greiner, H.; Kordowicz, M.; Sirrenberg, C.; Zenke, F., Oxindoles as Kinase Inhibitors. Google Patents:2006.
    5. (a) Tang, S.; Yu, Q.-F.; Peng, P.; Li. J.-H.; Zhong, P.; Tang, R.-Y., Palladium-Catalyzed Carbonylative Annulation Reaction of 2-(1-Alkynyl) benzenainines:Selective Synthesis of 3-(Halomethylene) indolin-2-ones. Organic Letters 2007,9(17),3413-3416; (b) Hirao, K.; Morii, N.; Joh, T.; Takahashi. S., Rhodium-catalyzed carbonylation of 2-alkynylaniline:Syntheses of 1, 3-dihydroindol-2-ones. Tetrahedron Letters 1995,36 (35),6243-6246.
    6. Park, J. H.; Kim, E.; Chung, Y. K., Heterobimetallic Cobalt/Rhodium Nanoparticle-Catalyzed Carbonylative Cycloaddition of 2-Alkynylanilines to Oxindoles. Organic Letters 2008,10 (21), 4719-4721.
    7. Fielding, M. R.; Grigg, R.; Urch, C. J., Novel synthesis of oxindoles from carbamoyl chlorides via palladium catalysed cyclisation-anion capture. Chemical Communications 2000, (22).2239-2240.
    8. Kamijo, S.; Sasaki, Y.; Kanazawa, C.; SchiiBeler, T.; Yamamoto, Y., Oxindole Synthesis through Intramolecular Nucleophilic Addition of Vinylpalladiums to Aryl lsocyanates. Angewandle Chemie International Edition 2005,44 (47),7718-7721.
    9. Miura, T.; Takahashi, Y.; Murakami, M., Rhodium-catalyzed borylative cyclization of 2-alkynylaryl isocyanates with bis (pinacolato) diboron. Organic Letters 2008,10 (9),1743-1745.
    10. Miura, T.; Toyoshima, T.; Takahashi, Y.; Murakami, M., Stereoselective Oxindole Synthesis by Palladium-Catalyzed Cyclization Reaction of 2-(Alkynyl) aryl Isocyanates with Amides. Organic Letters 2009,11(10),2141-2143.
    11. Cheung, W. S.; Raymond, J.; Mark, R., A tandem Heck-carbocyclization/Suzuki-coupling approach to the stereoselective syntheses of asymmetric 3,3-(diarylmethylene) indolinones. The Journal of Organic Chemistry 2005,70 (9),3741-3744.
    12. Shintani, R.; Yamagami, T.; Hayashi, T., Rhodium-Catalyzed Multicomponent-Coupling Reactions Involving a Carborhodation-Cross-Coupling Sequence. Organic Letters 2006,8 (21). 4799-4801.
    13. Lu, B.; Ma, D., Assembly of 3-Acyloxindoles via Cul/I-Proline-Catalyzed Intramolecular Arylation of β-Keto Amides. Organic Letters 2006,8 (26),6115-6118.
    14. Pinto, A.; Neuville, L.; Retailleau, P.; Zhu, J., Synthesis of 3-(diarylmethylenyl) oxindole by a palladium-catalyzed domino carbopalladation/CH activation/CC bond-forming process. Organic Letters 2006,8 (21),4927-4930.
    15. Pinto, A.; Neuville, L.; Zhu, J., Palladium-Catalyzed Three-Component Synthesis of 3-(Diarylmethylene) oxindoles through a Domino Sonagashira/Carbopalladation/C-H Activation/C-C Bond-Forming Sequence. Angewandte Chemie International Edition 2007,46 (18),3291-3295.
    16. Tang, S.; Peng, P.; Wang, Z.-Q.; Tang, B.-X.; Deng, C.-L.; Li, J.-H.; Zhong, P.; Wang, N.-X., Synthesis of (2-Oxoindolin-3-ylidene) methyl Acetates Involving a C-H Functionalization Process. Organic Letters 2008,10 (9),1875-1878.
    17. Tang, D.-J.; Tang, B.-X.; Li, J.-H., Selective Synthesis of 3-Aryl Quinolin-2 (1 H)-ones and 3-(1-Arylmethylene) oxindoles Involving a 2-Fold Arene C-H Activation Process. The Journal of Organic Chemistry 2009,74 (17),6749-6755.
    18. Ueda, S.; Okada, T.; Nagasawa, H., Oxindole synthesis by palladium-catalysed aromatic C-H alkenylation. Chemical Communications 2010,46 (14),2462-2464.
    19. Doyle, M. P.; McKervey, M. A.; Ye, T., Modern catalytic methods for organic synthesis with diazo compounds:from cyclopropanes to ylides. Wiley New York:1998.
    20. Zhao, X.; Zhang, Y.; Wang, J., Recent developments in copper-catalyzed reactions of diazo compounds. Chemical Communications 2012,48 (82),10162.
    21. Li, Z.; He, C., Recent Advances in Silver-Catalyzed Nitrene, Carbene, and Silylene-Transfer Reactions. European Journal of Organic Chemistry 2006,2006 (19),4313-4322.
    22. (a) Doyle, M. P.; Shanklin, M. S.; Pho, H. Q.; Mahapatro, S. N., Rhodium (Ⅱ) acetate and Nafion-H catalyzed decomposition of N-aryldiazoamides. Efficient synthesis of 2 (3H)-indolinones. The Journal of Organic Chemistry 1988,53 (5),1017-1022; (b) Etkin, N.; Babu, S. D.; Fooks, C. J.; Durst, T., Preparation of 3-acetyl-2-hydroxyindoles via rhodium carbenoid aromatic carbon-hydrogen insertion. The Journal of Organic Chemistry 1990,55 (3),1093-1096.
    23. Frisch, M.; Trucks, G.; Schlegel, H.; Scuseria, G.; Robb, M.; Cheeseman, J.; Zakrzewski, V.; Montgomery Jr, J.; Stratmann, R.; Burant, J., GAUSSIAN 98, Rev. A.7 Gaussian. Inc., Pittsburgh, PA 1998.
    24. (a) Grushin, V. V.; Alper, H., Transformations of chloroarenes, catalyzed by transition-metal complexes. Chemical Reviews 1994,94 (4),1047-1062; (b) Nakamura, I.; Yamamoto, Y., Transition-metal-catalyzed reactions in heterocyclic synthesis. Chemical Reviews-Columbus 2004, 104(5),2127-2198.
    25. (a) Hrytsak, M.; Etkin, N.; Durst, T., Intramolecular rhodium carbenoid insertions into aromatic C H bonds. Preparation of 1-carboalkoxy-1,3-dihydrobenzo[C]thiophene 2,2-dioxides. Tetrahedron letters 1986,27 (47),5679-5682; (b) Hrytsak, M.; Durst, T., Preparation of 3-acetylbenzofuran-2 (3H)-ones and 3-acetylnaphthofuran-2 (3H)-ones via intramolecular rhodium carbenoid insertion. Journal of the Chemical Society, Chemical Communications 1987, (15),1150-1151; (c) Nakatani, K., Synthesis of 2-indanones by intramolecular insertion of a-diazoketones. Tetrahedron letters 1987,28(2),165-166.
    26. Hansen, J. H.; Davies, H. M., Vinylogous reactivity of silver (I) vinylcarbenoids. Chemical Science 2011,2 (3).457-461.
    27. (a) Hansen, J.; Autschbach, J.; Davies. H. M., Computational Study on the Selectivity of Donor/Acceptor-Substituted Rhodium Carbenoids. The Journal of Organic Chemistry 2009,74 (17),6555-6563; (b) Nowlan, D. T.; Gregg, T. M.; Davies, H. M.; Singleton, D. A., Isotope effects and the nature of selectivity in rhodium-catalyzed cyclopropanations. Journal of the American Chemical Society 2003,125 (51),15902-15911; (c) Nakamura, E.; Yoshikai, N.; Yamanaka, M., Mechanism of CH bond activation/CC bond formation reaction between diazo compound and alkane catalyzed by dirhodium tetracarboxylate. Journal of the American Chemical Society 2002, 124(24),7181-7192.
    28. (a) Doyle, M. P., Catalytic methods for metal carbene transformations. Chemical Reviews 1986,86 (5),919-939; (b) Trost, B. M.; Semmelhack, M. F.; Fleming, I., Comprehensive organic synthesis:selectivity, strategy,& efficiency in modern organic chemistry. Pergamon:1991; Vol.3. Chapter 4.2; (c) Abel, E. W.; Stone, F. G. A.; Wilkinson, G.. Comprehensive Organometallic Chemistry Ⅱ:Heteronuclear Metal-Metal Bonds. Pergamon Press:1995; Vol.10; Chapters 5.1 and 5.2; (d) Ye, T.; McKervey, M. A., Organic Synthesis with. a-Diazo Carbonyl Compounds. Chemical Reviews 1994,94 (4),1091-1160.
    29. Gauthier, D.; Dodd, R. H.; Dauban, P., Regioselective access to substituted oxindoles via rhodium-catalyzed carbene C-H insertion. Tetrahedron 2009,65 (41),8542-8555.
    30. Villalgordo,J. M.; Enderli, A.; Linden, A.; Heimgartner, H., Diazo-Transfer Reaction with Diphenyl Phosphorazidate. Helvetica chimica acta 2004,78(8),1983-1998.
    31. Miah, S.; Slawin. A. M.; Moody, C. J.; Sheehan, S. M.; Marino, J. P.; Semones, M. A.; Padwa, A.; Richards, I. C., Ligand effects in the rhodium (Ⅱ) catalysed reactions of diazoamides and diazoimides. Tetrahedron 1996,52 (7),2489-2514.
    1. Fukumoto, Y.; Sawada, K.; Hagihara, M.; Chatani, N.; Murai, S., [Ir4(CO)12]-Catalyzed Coupling Reaction of Imidazoles with Aldehydes in the Presence of a Hydrosilane to Give 2-Substituted Imidazoles. Angewandle Chemie International Edition 2002,41 (15),2779-2781.
    2. Kuninobu, Y.; Nishina, Y.; Nakagawa, C.; Takai. K., Rhenium-Catalyzed Insertion of Aldehyde into a C-H Bond:Synthesis of lsobenzofuran Derivatives. Journal of the American Chemical Society 2006,128 (38),12376-12377.
    3. Kuninobu, Y.; Nishina, Y.; Takeuchi, T.; Takai, K., Manganese-Catalyzed Insertion of Aldehydes into a C-H Bond. Angewandte Chemie International Edition 2007,46 (34), 6518-6520.
    4. Kuninobu, Y.; Fujii, Y.; Matsuki, T.; Nishina, Y.; Takai, K., Rhenium-Catalyzed Insertion of Nonpolar and Polar Unsaturated Molecules into an Olefinic C-H Bond. Organic Letters 2009,11 (12),2711-2714.
    5. Li, B.-J.; Shi, Z.-J., Ir-catalyzed highly selective addition of pyridyl C-H bonds to aldehydes promoted by triethylsilane. Chemical Science 2011,2 (3),488.
    6. Yang, L.; Correia, C. A.; Li, C.-J., Grignard-Type Arylation of Aldehydes via a Rhodium-Catalyzed C-H Activation under Mild Conditions. Advanced Synthesis & Catalysis 2011,353 (8),1269-1273.
    7. Li, Y.; Zhang, X.-S.; Chen. K.; He. K.-H.; Pan, F.; Li, B.-J.; Shi, Z.-J.,N-Directing Group Assisted Rhodium-Catalyzed Aryl C-H Addition to Aryl Aldehydes. Organic Letters 2012,14 (2). 636-639.
    8. Zhao, B.; Lu, X., Cationic Palladium(Ⅱ)-Catalyzed Addition of Arylboronic Acids to Nitrites. One-Step Synthesis of Benzofurans from Phenoxyacetonitriles. Organic Letters 2006,8 (26), 5987-5990.
    9. Tsuchikama, K.; Hashimoto, Y.-k.; Endo, K.; Shibata, T., Iridium-Catalyzed Selective Synthesis of 4-Substituted Benzofurans and IndolesviaDirected Cyclodehydration. Advanced Synthesis & Catalysis 2009,351 (17),2850-2854.
    10. Niu, R.; Xiao, J.; Liang, T.; Li, X., Facile Synthesis of Azaarene-Substituted 3-Hydroxy-2-oxindoles via Br(?)nsted Acid Catalyzed sp3C-H Functionalization. Organic Letters 2012,14(3),676-679.
    11. Luo, Y.; Li, C.-J., A highly efficient gold/silver-catalyzed addition of arenes to imines. Chemical Communications 2004, (17),1930.
    12. Aydin, J.; Szabo, K.I. n. J., Palladium-Pincer Complex Catalyzed C-C Coupling of Allyl Nitriles with Tosyl Imines via Regioselective Allylic C-H Bond Functionalization. Organic Letters 2008,10(13),2881-2884.
    13. Aydin, J.; Conrad, C. S.; Szabo, K. I. n. J., Stereoselective Pincer-Complex Catalyzed C-H Functionalization of Benzyl Nitriles under Mild Conditions. An Efficient Route to β-Aminonitriles. Organic Letters 2008,10 (22),5175-5178.
    14. Qian, B.; Guo, S.; Shao. J.; Zhu, Q.; Yang, L.; Xia, C.; Huang, H., Palladium-Catalyzed Benzylic Addition of 2-Methyl Azaarenes to N-Sulfonyl Aldimines via C-H Bond Activation. Journal of the American Chemical Society 2010,132 (11),3650-3651.
    15. Li, Y.; Li, B.-J.; Wang, W.-H.; Huang, W.-P.; Zhang, X.-S.; Chen, K.; Shi, Z.-J., Rhodium-Catalyzed Direct Addition of Aryl C-H Bonds to N-Sulfonyl Aldimines. Angewandte Chemie International Edition 2011,50 (9),2115-2119.
    16. Tsai, A. S.; Tauchert, M. E.; Bergman, R. G.; Ellman, J. A., Rhodium(Ⅲ)-Catalyzed Arylation of Boc-Imines via C-H Bond Functionalization. Journal of the American Chemical Society 2011, 133(5),1248-1250.
    17. Rueping, M.; Tolstoluzhsky, N., Copper Catalyzed C-H Functionalization for Direct Mannich Reactions. Organic Letters 2011,13 (5),1095-1097.
    18. Qian, B.; Xie, P.; Xie, Y.; Huang, H., Iron-Catalyzed Direct Alkenylation of 2-Substituted Azaarenes with N-Sulfonyl Aldimines via C-H Bond Activation. Organic Letters 2011,13 (10), 2580-2583.
    19. Li, Y.; Zhang, X.-S.; Zhu, Q.-L.; Shi, Z.-J., Olefinic C-H Bond Addition to Aryl Aldehyde and Its N-Sulfonylimine via Rh Catalysis. Organic Letters 2012,14 (17),4498-4501.
    20. Best, D.; Kujawa, S.; Lam, H. W., Diastereo- and Enantioselective Pd(II)-Catalyzed Additions of 2-Alkylazaarenes to N-Boc Imines and Nitroalkenes. Journal of the American Chemical Society 2012,134 (44),18193-18196.
    21. Zhou, C.; Larock, R. C., Synthesis of Aryl Ketones by the Pd-Catalyzed C-H Activation of Arenes and Intermolecular Carbopalladation of Nitriles. Journal of the American Chemical Society 2004,126 (8),2302-2303.
    22. Kuninobu, Y.; Tokunaga, Y.; Kawata, A.; Takai, K., Insertion of Polar and Nonpolar Unsaturated Molecules into Carbon-Rhenium Bonds Generated by C-H Bond Activation: Synthesis of Phthalimidine and Indene Derivatives. Journal of the American Chemical Society 2005,128(1),202-209.
    23. Hesp, K. D.; Bergman, R. G.; Ellman, J. A., Expedient Synthesis of N-Acyl Anthranilamides and β-Enamine Amides by the Rh(Ⅲ)-Catalyzed Amidation of Aryl and Vinyl C-H Bonds with Isocyanates. Journal of the American Chemical Society 2011,133 (30),11430-11433.
    24. Muralirajan, K.; Parthasarathy, K.; Cheng, C.-H., Ru(Ⅱ)-Catalyzed Amidation of 2-Arylpyridines with Isocyanates via C-H Activation. Organic Letters 2012,14 (16),4262-4265.
    25. Chatani, N.; le, Y.; Kakiuchi, F.; Murai, S., Ru3(CO)12-Catalyzed Reaction of Pyridylbenzenes with Carbon Monoxide and Olefins. Carbonylation at a C-H Bond in the Benzene Ring. The Journal of Organic Chemistry 1997,62 (8),2604-2610.
    26. Fukuyama, T.; Chatani, N.; Tatsumi, J.; Kakiuchi, F.; Murai, S., Ru3(CO)12-Catalyzed Site-Selective Carbonylation Reactions at a C-H Bond in Aza-Heterocycles. Journal of the American Chemical Society 1998,120 (44),11522-11523.
    27. Chatani, N.; Fukuyama, T.; Tatamidani, H.; Kakiuchi, F.; Murai, S., Acylation of Five-Membered N-Heteroaromatic Compounds by Ruthenium Carbonyl-Catalyzed Direct Carbonylation at a C-H Bond. The Journal of Organic Chemistry 2000,65 (13),4039-4047.
    28. Boogaerts, I. I. F.; Nolan, S. P., Carboxylation of C-H Bonds Using N-Heterocyclic Carbene Gold(Ⅰ) Complexes. Journal of the American Chemical Society 2010,132 (26),8858-8859.
    29. Zhang, L.; Cheng, J.; Ohishi, T.; Hou, Z., Copper-Catalyzed Direct Carboxylation of C-H Bonds with Carbon Dioxide. Angewandte Chemie International Edition 2010,49 (46),8670-8673.
    30. Boogaerts, I. I. F.; Fortman, G. C.; Furst, M. R. L.; Cazin, C. S. J.; Nolan, S. P., Carboxylation of N-H/C-H Bonds Using N-Heterocyclic Carbene Copper(Ⅰ) Complexes. Angewandte Chemie International Edition 2010,49 (46),8856-8859.
    1. (a) Marti, C.; Carreira, E. M., Construction of Spiro [pyrrolidine-3,3'-oxindoles]-Recent Applications to the Synthesis of Oxindole Alkaloids. European Journal of Organic Chemistry 2003,2003 (12),2209-2219; (b) Galliford, C. V.; Scheidt, K. A., Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. Angewandte Chemie International Edition 2007,46 (46),8748-8758; (c) Lin, H.; Danishefsky, S. J., Gelsemine:A Thought-Provoking Target for Total Synthesis. Angewandte Chemie International Edition 2003,42 (1),36-51; (d) Dounay, A. B.; Overman, L. E., The asymmetric intramolecular Heck reaction in natural product total synthesis. Chemical Reviews-Columbus 2003, 103 (8),2945-2964; (e) Zhou, F.; Liu, Y. L.; Zhou, J., Catalytic Asymmetric Synthesis of Oxindoles Bearing a Tetrasubstituted Stereocenter at the C-3 Position. Advanced Synthesis & Catalysis 2010,352 (9),1381-1407; (f) Peddibhotla, S.,3-Substituted-3-hydroxy-2-oxindole, an Emerging New Scaffold for Drug Discovery with Potential Anti-Cancer and other Biological Activities. Current Bioactive Compounds 2009,5(1),20-38.
    2. (a) Tomita, D.; Yamatsugu, K.; Kanai, M.; Shibasaki, M., Enantioselective Synthesis of SM-130686 Based on the Development of Asymmetric Cu(I)F Catalysis To Access 2-Oxindoles Containing a Tetrasubstituted Carbon. Journal of the American Chemical Society 2009,131 (20), 6946-6948; (b) Jia, Y.-X.; Katayev, D.; Kundig, E. P., Synthesis of 3-hydroxyoxindoles by Pd-catalysed intramolecular nucleophilic addition of aryl halides to a-ketoamides. Chemical Communications 2010,46 (1),130-132; (c) Hu, J. X.; Wu, H.; Li, C. Y.; Sheng, W. J.; Jia, Y. X.; Gao, J. R., Nickel-Catalyzed Intramolecular Nucleophilic Addition of Aryl or Vinyl Chlorides to α-Ketoamides Through C-Cl Bond Activation. Chemistry-A European Journal 2011,17 (19), 5234-5237; (d) Yin, L.; Kanai, M.; Shibasaki, M., A Facile Pathway to Enantiomerically Enriched 3-Hydroxy-2-Oxindoles:Asymmetric Intramolecular Arylation of α-Keto Amides Catalyzed by a Palladium-DifluorPhos Complex. Angewandte Chemie International Edition 2011, 50(33),7620-7623.
    3. (a) Sano, D.; Nagata, K.; Itoh, T., Catalytic Asymmetric Hydroxylation of Oxindoles by Molecular Oxygen Using a Phase-Transfer Catalyst. Organic Letters 2008,10 (8),1593-1595; (b) Bui, T.; Candeias, N. R.; Barbas Ⅲ, C. F., Dimeric quinidine-catalyzed enantioselective aminooxygenation of oxindoles:an organocatalytic approach to 3-hydroxyoxindole derivatives. Journal of the American Chemical Society 2010,132 (16),5574-5575.
    4. Ishimaru, T.; Shibata, N.; Nagai, J.; Nakamura, S.; Tom, T.; Kanemasa, S., Lewis Acid-Catalyzed Enantioselective Hydroxylation Reactions of Oxindoles and P-Keto Esters Using DBFOX Ligand. Journal of the American Chemical Society 2006,128 (51),16488-16489.
    5. (a) Shintani, R.; Inoue, M.; Hayashi, T., Rhodium-Catalyzed Asymmetric Addition of Aryl-and Alkenylboronic Acids to Isatins. Angewandte Chemie International Edition 2006,45 (20),3353-3356; (b) Toullec, P. Y.; Jagt, R. B.; de Vries, J. G.; Feringa, B. L.; Minnaard, A. J., Rhodium-catalyzed addition of arylboronic acids to isatins:an entry to diversity in 3-aryl-3-hydroxyoxindoles. Organic Letters 2006,8 (13),2715-2718; (c) Lai, H.; Huang, Z.; Wu, Q.; Qin, Y., Synthesis of Novel Enantiopure Biphenyl P,N-Ligands and Application in Palladium-Catalyzed Asymmetric Addition of Arylboronic Acids to N-Benzylisatin. The Journal of Organic Chemistry 2008,74 (1),283-288; (d) Hanhan, N. V.; Sahin, A. H.; Chang, T. W.; Fettinger, J. C.; Franz, A. K., Catalytic Asymmetric Synthesis of Substituted 3-Hydroxy-2-Oxindoles. Angewandte Chemie International Edition 2009,49 (4),744-747.
    6. (a) Itoh, J.; Han, S. B.; Krische, M. J., Enantioselective Allylation, Crotylation, and Reverse Prenylation of Substituted Isatins:Iridium-Catalyzed C-C Bond-Forming Transfer Hydrogenation. Angewandte Chemie International Edition 2009,48 (34),6313-6316; (b) Grant, C. D.; Krische, M. J., Protecting-Group-Free Synthesis of 3-tert-Prenylated Oxindoles:Contiguous All Carbon Quaternary Centers via Tertiary Neopentyl Substitution. Organic Letters 2009,11 (20), 4485; (c) Qiao, X.-C.; Zhu, S.-F.; Zhou, Q.-L., From allylic alcohols to chiral tertiary homoallylic alcohol:palladium-catalyzed asymmetric allylation of isatins. Tetrahedron:Asymmetry 2009,20 (11),1254-1261.
    7. (a) Deng, J.; Zhang, S.; Ding, P.; Jiang, H.; Wang, W.; Li, J., Facile Creation of 3-Indolyl-3-hydroxy-2-oxindoles by an Organocatalytic Enantioselective Friedel-Crafts Reaction of Indoles with Isatins. Advanced Synthesis & Catalysis 2010,352 (5),833-838; (b) Chauhan, P.; Chimni, S. S., Asymmetric Addition of Indoles to Isatins Catalysed by Bifunctional Modified Cinchona Alkaloid Catalysts. Chemistry-A European Journal 2010,16 (26),7709-7713.
    8. (a) Nakamura, S.; Hara, N.; Nakashima, H.; Kubo, K.; Shibata, N.; Toru, T., Enantioselective Synthesis of (R)-Convolutamydine A with New N-Heteroarylsulfonylprolinamides. Chemistry-A European Journal 2008,14 (27),8079-8081; (b) Xue, F.; Zhang, S.; Liu, L.; Duan, W.; Wang, W., Organocatalytic Enantioselective Cross-Aldol Reactions of Aldehydes with Isatins:Formation of Two Contiguous Quaternary Centered 3-Substituted 3-Hydroxyindol-2-ones. Chemistry-An Asian Journal 2009,4 (11),1664-1667; (c) Itoh, T. Ishikawa, H.; Hayashi, Y., Asymmetric aldol reaction of acetaldehyde and isatin derivatives for the total syntheses of ent-convolutamydine E and CPC-1 and a half fragment of madindoline A and B. Organic Letters 2009,11 (17),3854-3857; (d) Hara, N.; Nakamura, S.; Shibata, N.; Toru, T., First Enantioselective Synthesis of (R)-Convolutamydine B and E with N-(Heteroarenesulfonyl) prolinamides. Chemistry-A European Journal 2009,15 (28), 6790-6793; (e) Guo, Q.; Bhanushali, M.; Zhao, C. G., Quinidine Thiourea-Catalyzed Aldol Reaction of Unactivated Ketones:Highly Enantioselective Synthesis of 3-Alkyl-3-hydroxyindolin-2-ones. Angewandte Chemie International Edition 2010,49 (49),9460-9464.
    9. (a) Garden, S. J.; Skakle, J. M. S., Isatin derivatives are reactive electrophilic components for the Baylis-Hillman reaction. Tetrahedron Letters 2002,43 (11),1969-1972; (b) Chung, Y. M.; Im, Y. J.; Kim, J. N., Baylis-Hillman reaction of isatin derivatives:Isatins as a new entry for the Baylis-Hillman reaction. BULLETIN-KOREAN CHEMICAL SOCIETY 2002,23 (11),1651-1654; (c) Liu, Y.-L.; Wang, B.-L.; Cao, J.-J.; Chen, L.; Zhang, Y.-X.; Wang, C.; Zhou, J., Organocatalytic Asymmetric Synthesis of Substituted 3-Hydroxy-2-oxindoles via Morita-Baylis-Hillman Reaction. Journal of the American Chemical Society 2010,132 (43), 15176-15178; (d) Guan, X. Y.; Wei, Y.; Shi, M., Construction of Chiral Quaternary Carbon through Morita-Baylis-Hillman Reaction:An Enantioselective Approach to 3-Substituted 3-Hydroxyoxindole Derivatives. Chemistry-A European Journal 2010,16(46),13617-13621; (e) Zhong, F.; Chen, G.-Y.; Lu, Y., Enantioselective Morita-Baylis-Hillman Reaction of Isatins with Acrylates:Facile Creation of 3-Hydroxy-2-oxindoles. Organic Letters 2010,13 (1),82-85.
    10. Niu, R.; Xiao, J.; Liang, T.; Li, X., Facile Synthesis of Azaarene-Substituted 3-Hydroxy-2-oxindoles via Bronsted Acid Catalyzed sp3 C-H Functionalization. Organic Letters 2012,14 (3),676-679.
    11. Gorokhovik, I.; Neuville, L.; Zhu, J., Trifluoroacetic acid-promoted synthesis of 3-hydroxy, 3-amino and spirooxindoles from α-keto-N-anilides. Organic Letters 2011,13 (20),5536-5539.
    12. (a) Olah, G. A., Friedel-Crafts Chemistry. Wiley New York:1973; (b) Olah. G.; Krishnamurti, R.; Prakash, G. S.; Trost, B., Comprehensive Organic Synthesis. Pergamon Press, New York 1991,3,293.
    13. (a) Bandini, M.; Emer, E.; Tommasi, S.; Umani-Ronchi, A., Innovative Catalytic Protocols for the Ring-Closing Friedel-Crafts-Type Alkylation and Alkenylation of Arenes. European Journal of Organic Chemistry 2006,2006 (16),3527-3544; (b) Poulsen, T. B.; Jorgensen, K. A., Catalytic Asymmetric Friedel-Crafts Alkylation ReactionssCopper Showed the Way. Chem. Rev 2008,108,2903-2915.
    14. Bandini, M.; Umani-Ronchi, A., Catalytic Asymmetric Friedel-Crafts Alkylations. Wiley-VCH:2009.
    15. Diederich, F.; Stang, P., Metal-catalyzed cross-coupling reactions. Wiley-VCH:2008.
    16. (a) Kim, S. C.; Gowrisankar, S.; Kim, J. N., Synthesis of 3-aryl-3-hydroxypyrrolidin-2-ones and 2-benzyl-9b-hydroxy-3,3a,5,9b-tetrahydro-2H-pyrrolo[3,4-c]quinoline-1,4-dione derivatives from the Baylis-Hillman adducts of isatins. Tetrahedron Letters 2006,47 (20),3463-3466; (b) Takayama, H.; Matsuda, Y.; Masubuchi, K.; lshida. A.; Kitajima, M.; Aimi, N., Isolation, structure elucidation, and total synthesis of two new Chimonanthus alkaloids, chimonamidine and chimonanthidine. Tetrahedron 2004,60 (4),893-900; (c) Khuzhaev, V., Alkaloids of Arundo donax. XVIII. Nitrogenous bases in flowers of cultivars. Chemistry of natural compounds 2004, 40 (5),516-517; (d) Rasmussen, H. B.; MacLeod, J. K., Total synthesis of donaxaridine. Journal of natural products 1997,60 (11),1152-1154; (e) Kawasaki, T.; Nagaoka, M.; Satoh, T.; Okamoto, A.; Ukon, R.; Ogawa, A., Synthesis of 3-hydroxyindolin-2-one alkaloids,(±)-donaxaridine and (±)-convolutamydines A and E, through enolization-Claisen rearrangement of 2-allyloxyindolin-3-ones. Tetrahedron 2004,60 (15),3493-3503; (f) Monde, K.; Sasaki, K.; Shirata, A.; Takasugi, M., Brassicanal C and two dioxindoles from cabbage. Phytochemistry 1991, 30 (9),2915-2917; (g) Abdullaeva, D.; Samikov, K.; Shakirov, R.; Yunusov, S. Y., Alkaloids ofKoroZkowia sewerzowii. Chemistry of natural compounds 1978,14 (6),702-703; (h) Carle, J. S.; Christophersen, C., Bromo-substituted physostigmine alkaloids from a marine bryozoa Flustra foliacea. Journal of the American Chemical Society 1979,101 (14),4012-4013; (i) Spande, T.; Edwards, M.; Pannell, L.; Daly, J.; Erspamer, V.; Melchiorri, P., Pseudophrynamine A:an unusual prenyl pyrrolo [2,3-b] indole ester from an Australian frog, Pseudophryne coriacea (Myobatrachidae). The Journal of Organic Chemistry 1988,53 (6),1222-1226; (j) Dounay, A. B.; Hatanaka, K.; Kodanko, J. J.; Oestreich, M.; Overman, L. E.; Pfeifer, L. A.; Weiss, M. M., Catalytic Asymmetric Synthesis of Quaternary Carbons Bearing Two Aryl Substituents. Enantioselective Synthesis of 3-Alkyl-3-Aryl Oxindoles by Catalytic Asymmetric Intramolecular Heck Reactions. Journal of the American Chemical Society 2003,125 (20),6261-6271; (k) Huang, A.; Kodanko, J. J.; Overman, L. E., Asymmetric Synthesis of Pyrrolidinoindolines. Application for the Practical Total Synthesis of (-)-Phenserine. Journal of the American Chemical Society 2004,126(43),14043-14053.
    17. (a) He, R.; Ding, C.; Maruoka, K., Phosphonium Salts as Chiral Phase-Transfer Catalysts: Asymmetric Michael and Mannich Reactions of 3-Aryloxindoles. Angewandte Chemie International Edition 2009,48 (25),4559-4561; (b) Liang, J.; Chen, J.; Liu, J.; Li, L.; Zhang, H., Oxidative dearomatization in the synthesis of erythrina, oxindole and hexahydropyrrolo [2,3-b] indole skeletons. Chemical Communications 2010,46 (21),3666-3668; (c) Kieffer, M. E.; Repka, L. M.; Reisman, S. E., Enantioselective Synthesis of Tryptophan Derivatives by a Tandem Friedel-Crafts Conjugate Addition/Asymmetric Protonation Reaction. Journal of the American Chemical Society 2012,134 (11),5131-5137; (d) Singh, A.; Roth, G. P., A [3+2] Dipolar Cycloaddition Route to 3-Hydroxy-3-alkyl Oxindoles:An Approach to Pyrrolidinoindoline Alkaloids. Organic Letters 2011,13 (8),2118-2121; (e) Suarez-Castillo, O. R.; Sanchez-Zavala, M.; Melendez-Rodriguez, M.; Castelan-Duarte, L. E.; Morales-Rios, M. S.; Joseph-Nathan, P., Preparation of 3-hydroxyoxindoles with dimethyldioxirane and their use for the synthesis of natural products. Tetrahedron 2006,62 (13),3040-3051; (f) Chen, W.-B.; Du, X.-L.; Cun, L.-F.; Zhang, X.-M.; Yuan, W.-C., Highly enantioselective aldol reaction of acetaldehyde and isatins only with 4-hydroxydiarylprolinol as catalyst:concise stereoselective synthesis of (R)-convolutamydines B and E, (-)-donaxaridine and (R)-chimonamidine. Tetrahedron 2010,66 (7),1441-1446.
    18. Tani, K.; Suwa, K.; Tanigawa, E.; Ise, T.; Yamagata, T.; Tatsuno, Y.; Otsuka, S., Preparation of optically active peralkyldiphosphines and their use, as the rhodium (Ⅰ) complex, in the asymmetric catalytic hydrogenation of ketones. Journal of organometallic chemistry 1989,370 (1), 203-221.
    19. Garcia Ruano, J. L.; Pedregal, C.; Rodriguez, J. H., Basic media behavior of N-[2-(1-hydroxy-2-Y-ethyl)phenyl] ethyl carbamates (Y=SMe, SOMe, SO2Me, H, Br, CN). Tetrahedron 1989,45 (1),203-214.
    20. Aoyama, H.; Omote, Y.; Hasegawa, T.; Shiraishi, H., Acid-catalysed cyclization of [small alpha]-oxo-anilides to 1,3-dihydro-3-hydroxyindol-2-ones. Journal of the Chemical Society, Perkin Transactions 11976,0(14),1556-1558.
    21. Yadav, J.; Reddy, B.; Reddy, C. S.; Krishna, A., CeCl3·7H2O/1BX-promoted oxidation of 3-alkylindoles to 3-hydroxyoxindoles. Tetrahedron Letters 2007,48 (11),2029-2032.
    22. Petit, M.; Geib, S. J.; Curran, D. P., Asymmetric reactions of axially chiral amides:use of removable ortho-substituents in radical cyclizations of o-iodoacrylanilides and N-allyl-N-o-iodoacrylamides. Tetrahedron 2004,60 (35),7543-7552.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700