梅花脱水素基因家族的克隆与功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
梅花(Prunus mume)属于蔷薇科李属植物,在东亚地区深受人们喜爱。梅花原产于长江流域,如何提高其抗逆能力,尤其是抗寒能力,对扩大梅花的应用范围十分重要。脱水素(又称第二类胚胎发育晚期丰富蛋白)在植物抵抗非生物胁迫中起重要作用。但目前对梅花脱水素家族基因的研究还很少。本研究首先在‘藏梅’全基因组测序的基础上,对梅花胚胎发育晚期丰富蛋白基因家族进行了生物信息分析;然后利用RT-PCR法对其中脱水素基因家族进行了克隆和表达分析;最后分别在大肠杆菌和烟草中超表达了梅花脱水素基因,并进行了初步的功能分析。主要结果如下:
     1.首次预测了梅花胚胎发育晚期丰富蛋白基因家族成员:梅花中共有30个胚胎发育晚期丰富蛋白基因,分布于7个连锁群上。5个梅花胚胎发育晚期丰富蛋白基因属于片段重复,12个属于串联重复。根据序列相似性,可以将这些基因分为8组(LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, PvLEA18,脱水素和SMP),其中脱水素家族含有6个成员(PmLEA8,PmLEA9, PmLEA10, PmLEA19,PmLEA20和PmLEA29)。在梅花胚胎发育晚期丰富蛋白基因中总共发现10次基因转换,其中7次发生在脱水素基因之间。
     2.梅花脱水素基因表达受胁迫诱导,并具有明显的组织特异性:从‘北京玉蝶’梅花中克隆了5个脱水素基因(PmLEA8, PmLEA10, PmLEA19, PmLEA20, PmLEA29),并利用TA克隆的方法构建其GATEWAY克隆载体。测序结果表明,除PmLEA8外,其余基因序列与‘藏梅’全基因组数据库中的序列基本一致。表达分析证明:除PmLEA29在五种器官中(根、茎、叶、花、果实)均有高水平表达外,其余4个梅花脱水素基因表达均表现一定的组织特异性。6种胁迫处理下(低温、高温、干旱、盐、ABA和SA处理)梅花脱水素基因表达水平均有所升高,但PmLEA29在ABA处理下表达水平略有降低。
     3.原核表达梅花脱水素可以提高大肠杆菌的抗逆能力:通过LR反应将克隆载体上的梅花脱水素基因重组到原核表达载体pDEST15上,转化大肠杆菌BL21(DE3),经1mM的IPTG诱导,表达了带GST标签的梅花脱水素蛋白。对转化大肠杆菌进行抗逆性分析证明,原核表达梅花脱水素可以提高大肠杆菌抗渗透胁迫和抗反复冻融能力。但不同梅花脱水素的改善效果不同,其中表达PmLEA8的改善效果稍差。
     4.超表达梅花脱水素可以提高转基因烟草的抗寒能力:通过LR反应构建梅花脱水素基因的植物表达载体pEG203-PmLEA,转化农杆菌EHA105.采用农杆菌介导的叶圆盘法转化烟草NC89,经抗生素筛选和PCR验证获得转梅花脱水素基因烟草。其中,对转PmLEA20基因的烟草株系进行抗寒性分析证明:超表达梅花脱水素基因PmLEA20可以提高烟草种子在低温胁迫下的相对发芽率;低温下转PmLEA20基因烟草叶片电解质渗透率也明显低于对照。
     本研究首次对梅花脱水素基因家族进行了克隆和功能分析,为利用梅花脱水素基因进行植物抗性改良、培育抗逆新品种,积累了新的分子材料,奠定了理论基础。
Mei (Prunus mume) belongs to the Rosaceae family. It is one of the most populous flowers in East Asia. Mei originated in the Yangtze River of China. Cold-hardiness breeding is important for mei utilization in the northern part of China. It has been demonstrated that dehydrins (also called group2late embryogenesis abundant proteins) play important roles in plant desiccation tolerance. In this study, we first did bioinformatics analysis to identify dehydrins in mei, and then cloned five dehydrin genes from P. mume 'Beijingyudie' using RT-PCR method. At last, mei dehydrin genes were overexpressed in Escherichia coli and tobacco to analysis their function.
     1. The bioinformatics analysis of LEA gene family in P. mume:30LEA genes were identified from mei through genome-wide analysis. The PmLEA genes are distributed on all mei chromosomes except chromosome3. Twelve (40%) and four PmLEA genes are arranged in tandem and segmental duplications, respectively. The VmLEA genes could be divided into eight groups (LEA_1, LEA_2, LEA_3, LEA_4, LEA_5, PvLEA18, dehydrin and seed maturation protein). Six PmLEA genes (PmLEA8, PmLEA9, PmLEA10, PmLEA19, PmLEA20, PmLEA29) were divided into dehydrin group. Ten gene conversion events were observed in four LEA groups, with most of them (70%) identified in dehydrin group.
     2. Cloning and expression analyses of dehydrin genes in P. mume:Five dehydrin genes (PmLEAs) were cloned from P. mume'Beijingyudie'using RT-PCR method. The entry vectors for PmLEAs were constructed using a TA method. The sequence of PmLEA8from P. mume'Beijingyudie'was longer than that from'Zangmei'genome database. The expressions of most genes were different among five organs (root, stem, leaf, flower, and fruit) except PmLEA29. The expression of most dehydrin genes was up-regulated under six abiotic stress treatments (cold, hot, drought, salt, ABA and SA treatment), except PmLEA29under ABA treatment.
     3. Mei dehydrins confer the tolerance of E. coli:The E. coli expression vectors for dehydrin genes were established by LR recombination reaction. The mei dehydrins were expressed in E. coli BL21(DE3) after1mM IPTG induction. The results of a spot assay demonstrated that the expression of most mei dehydrins conferred the tolerance to the E. coli recombinant for cold and osmotic stresses.
     4. Transgenic analysis of dehydrin genes of P. mume:The dehydrin genes in entry vector was recombined into plant expression vector pEG203through LR reaction and then transferred into tobacco NC89through Agrobacterium mediated leaf disc transformation. Twelve PmLEA20transgenic plants were identified through Basta selection and PCR test. These T1lines were used for germination analysis under low temperature and the relative germination rates of transgenic lines were higher than that of wild-type. The amount of electrolyte leakage in wild-type tobacco seedlings was higher than that of transgenic lines.
     The cloning and functional analyses of P. mume dehydrin genes pave the way for their future utilization in plant resistance breeding.
引文
[1]Adam Z and Clarke A. K, Cutting edge of chloroplast proteolysis. Trends in Plant Science,2002.7: p.451-456.
    [2]Afif H, Allali N, Couturier M, et al, The ratio between CcdA and CcdB modulates the transcriptional repression of the ccd poison-antidote system. Molecular Microbiology,2001.41:p. 73-82.
    [3]Agarwal M, Katiyar-Agarwal S, Sahi C, et al, Arabidopsis thaliana Hsp100 proteins:kith and kin. Cell Stress Chaperones,2001.6:p.219-224.
    [4]Agboma P, Sinclair T, Jokinen K, et al, An evaluation of the effect of exogenous glycine betaine on the growth and yield of soybean. Field Crops Research,1997.54:p.51-64.
    [5]Ahmad I, Wainwright S. J, and Stewart G. R, The solute and water relations of Agrostis stolonifera ecotypes differing in their salt tolerance. New Phytologist,1991.87:p.615-629.
    [6]Ahmad P, John R, Sarwat M, et al, Responses of proline, lipid peroxidation and antioxidative enzymes in two varieties of Pisum sativum L. under salt stress. International Journal of Plant Production,2008.2(4):p.353-365.
    [7]Ahmad R, Kim M. D, Back K. H, et al, Stress-induced expression of choline oxidase in potato plant chloroplasts confers enhanced tolerance to oxidative, salt and drought stresses. Plant Cell Reports,2008.27:p.687-698.
    [8]Alamillo J, Almoguera C, Bartels D, et al, Constitutive expression of small heat shock proteins in vegetative tissues of the resurrection plant Craterostigma plantagineum. Plant Molecular Biology, 1995.29:p.1093-1099.
    [9]Alan T and Michael J. W, The continuing conundrum of the LEA proteins. Naturwissenschaften, 2007.94(10):p.791-812.
    [10]Allagulova C. R, Gimalov F. R, Shakirova F. M, et al, The plant dehydrins:structure and putative functions. Biochemistry (Moscow),2003.68(9):p.945-951.
    [11]Allen M. D, Yamasaki K, Ohme-Takagi M, et al, A novel mode of DNA recognition by a beta-sheet revealed by the solution structure of the GCC-box binding domain in complex with DNA. The EMBO Journal,1998.17(18):p.5484-5496.
    [12]Almoguera C, Coca M. A, and Jordano J, Tissue-specific expression of sunflower heat shock proteins in response to water stress. Plant Journal,1993.4:p.947-958.
    [13]Alsheikh M. K, Heyen B. J, and Randall S. K, Ion binding properties of the dehydrin ERD14 are dependent upon phosphorylation. Journal of Biological Chemistry,2003.278:p.40882-40889.
    [14]Alsheikh M. K, Svensson J. T, and Randall S. K, Phosphorylation regulated ion-binding is a property shared by the acidic subclass dehydrins. Plant Cell and Environment,2005.28:p. 1114-1122.
    [15]Altenhoff A. M and Dessimoz C, Phylogenetic and functional assessment of orthologs inference projects and methods. PloS Computational Biology,2009.5(1):e1000262.
    [16]Altschul S. F, Madden T. L, Schaffer A. A, et al, Gapped BLAST and PSI-BLAST:a new generation of protein database search programs. Nucleic Acids Research,1997.25(17):p. 3389-3402.
    [17]Angel Jimenez J, Alonso-Ramirez A, and Nicolas C, Two cDNA clones (FsDhnl and FsClol) up-regulated by ABA are involved in drought responses in Fasus sylvatica L. seeds. Journal of Plant Physiology,2008.165(17):p.1798-1807.
    [18]Apel K and Hirt H, Reactive oxygen species:Metabolism, oxidative stress, and signal transduction. Annual Review of Plant Biology,2004.55:p.373-399.
    [19]Apse M. P, Aharon G. S, Snedden W. A, et al, Salt tolerance conferred by overexpression of a vacuolar Na+/H+ antiport in Arabidopsis. Science,1999.285:p.1256-1258.
    [20]Arbona V, Hossain Z, Lopez-Climent M. F, et al, Antioxidant enzymatic activity is linked to waterlogging stress tolerance in citrus. Physiologia Plantarum,2008.132:p.452-466.
    [21]Arrillaga I, Gil-Mascarell R, Gisbert C, et al, Expression of the yeast HAL2 gene in tomato increases the in vitro salt tolerance of transgenic progenies. Plant Science,1998.136:p.219-226.
    [22]Arvind P and Prasad M. N. V, Zinc alleviates cadmium-induced oxidative stress in Ceratophyllum demersum L:a free-floating freshwater macrophyte. Plant Physiology and Biochemistry,2003.41: p.391-397.
    [23]Ashraf M, Breeding for salinity tolerance in plants. Crit. Rev. Plant Science,1994.13:p.17-42.
    [24]Ashraf M and Ali Q, Relative membrane permeability and activities of some antioxidant enzymes as the key determinants of salt tolerance in canola{Brassica napus L.). Environmental and Experimental Botany,2008.63(1-3):p.266-273.
    [25]Ashraf M and Foolad M. R, Roles of glycine betaine and proline in improving plant abiotic stress resistance. Environmental and Experimental Botany,2007(59):p.206-216.
    [26]Ashraf M, Biotechnological approach of improving plant salt tolerance using antioxidants as markers. Biotechnology Advances,2009.27(1):p.84-93.
    [27]Avsian-Kretchmer O, Eshdat Y, Gueta-Dahan Y, et al, Regulation of stress-induced phospholipid hydroperoxide glutathione peroxidase expression in citrus. Planta,1999.209:p.469-477.
    [28]Bae E. K, Lee H, Lee J. S, et al, Differential expression of a poplar SK2-type dehydrin gene in response to various stresses. BMB Reports,2009.42:p.439-443.
    [29]Bailey T. L, Boden M, Buske F. A, et al, MEME SUITE:tools for motif discovery and searching. Nucleic Acids Research,2009.37:p. W202-W208.
    [30]Bailey T. L, Williams N, Misleh C, et al, MEME:discovering and analyzing DNA and protein sequence motifs. Nucleic Acids Research,2006.34:p. W369-W373.
    [31]Baneyx F, Recombinant protein expression in Escherichia coli. Current Opinion in Biotechnology, 1999.10:p.411-421.
    [32]Baniwal S. K, Bharti K, Fauth M, et al, Heat stress response in plants:a complex game with chaperones and more than twenty heat stress transcription factors. Bioscience Journal,2004.29:p. 471-487.
    [33]Bassett C. L, Dardick C, Gasic K, et al, The peach dehydrin family is small relative to all other sequenced plant genomes. Hortscience,2010.45(8):p. S120-S121.
    [34]Battaglia M, Olvera-Carrillo Y, Garciarrubio A, et al, The enigmatic LEA proteins and other hydrophilins. Plant Physiology,2008.148:p.6-24.
    [35]Behnam B, Kikuchi A, Celebi-Toprak F, et al, The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerance in proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotechnology Journal,2006.23:p. 169-177.
    [36]Bell W, Sun W, Hohmann S, et al, Composition and functional analysis of the Saccharomyces cerevisiae trehalose synthase complex. Journal of Biological Chemistry,1998.272:p. 33311-33319.
    [37]Ben Amor N, Ben Hamed K, Debez A, et al, Physiological and antioxidant responses of the perennial halophyte Crithmum maritimum to salinity. Plant Science,2005.168(4):p.889-899.
    [38]Bies-Etheve N, Gaubier-Comella P, Debures A, et al, Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Molecular Biology,2008.67(1-2):p.107-124.
    [39]Boswell L. C, Menze M. A, and Hand S. C, Multiple isoforms of Late Embryogenesis Abundant proteins in Artemia franciscana embryos. Integrative and Comparative Biology,2009.49:p. E203-E203.
    [40]Bray E. A, Molecular responses to water deficit. Plant Physiology,1993.103(4):p.1035-1040.
    [41]Brini F, Hanin M, Lumbreras V, et al, Functional characterization of DHN5, a dehydrin showing a differential phosphorylation pattern in two Tunisian durum wheat{Triticum durum Desf.) varieties with marked differences in salt and drought tolerance. Plant Science,2007.172:p.20-28.
    [42]Brini F, Hanin M, Lumbreras V, et al, Overexpression of wheat dehydrin DHN5 enhances tolerance to salt and osmotic stress in Arabidopsis thaliana. Plant Cell Reports,2007.26:p.2017-2026.
    [43]Campbell S. A and Close T. J, Dehydrins:Genes, proteins, and associations with phenotypic traits. New Phytologist,1997.137:p.61-74.
    [44]Carvajal M, Martinez V, and Alcaraz C. F, Physiological function of water channels as affected by salinity in roots of paprika pepper. Physiologia Plantarum,1999.105:p.95-101.
    [45]Chary S. N, Hicks G. R, Choi Y. G, et al, Trehalose-6-phosphate synthase/phosphatase regulates cell shape and plant architecture in Arabidopsis. Plant Physiology,2008.146:p.97-107.
    [46]Chen J. Q, Meng X. P, Zhang Y, et al, Over-expression of OsDREB genes lead to enhanced drought tolerance in rice. Biotechnology Letters,2008.30:p.2191-2198.
    [47]Chen M, Wang Q. Y, Cheng X. G, et al, GmDREB2, a soybean DRE-binding transcription factor, conferred drought and high-salt tolerance in transgenic plants. Biochemical and Biophysical Research Communications,2007.353:p.299-305.
    [48]Chen Q. J, Zhou H. M, Chen J, et al, Using a modified TA cloning method to create entry clones. Analytical Biochemistry,2006.358:p.120-125.
    [49]Cheng Z, Targolli J, Huang X, et al, Wheat LEA genes, PMA80 and PMA1959, enhance dehydration tolerance of transgenic rice (Oryza sativa L.). Molecular Breeding,2002.10:p.71-82.
    [50]Chinnusamy V, Schumaker K, and Zhu J. K, Molecular genetic perspectives on cross-talk and specificity in abiotic stress signalling in plants. Journal of Experimental Botany,2004.55:p. 225-236.
    [51]Cho E. K and Hong C. B, Over-expression of tobacco NtHSP70-1 contributes to drought-stress tolerance in plants. Plant Cell Reports,2006.25:p.349-358.
    [52]Christophe M, Lionel V, Doan-Trung L, et al, Plant aquaporins:membrane channels with multiple integrated functions. Annual Review of Plant Biology,2008.59:p.595-624.
    [53]Chung E, Cho C. W, Kim K, et al, Ectopic expression of soybean KS-type dehydrin, SLTI66 and SLTI629 conferred tolerance against osmotic and metal stresses of Escherichia coli and Arabidopsis. Journal of Plant Biotechnology,2009.36:p.38-44.
    [54]Close T. J, Dehydrins:A commonality in the response of plants to dehydration and low temperature Physiologia Plantarum,1997.100(2):p.291-296.
    [55]Cong L, Zheng H. C, Zhang Y. X, et al, Arabidopsis DREB1A confers high salinity tolerance and regulates the expression of GA dioxygenases in Tobacco. Plant Science,2008.174:p.56-64.
    [56]Cortina C and Culi nez-Maci F. A, Tomato abiotic stress enhanced tolerance by trehalose biosynthesis. Plant Science,2005.169:p.75-82.
    [57]Creissen G. P, Broadbent P, Kular B, et al, Mullineaux, Manipulation of glutathione reductase in transgenic plants:implications for plant responses to environmental stress. Proceedings of the Royal Society of Edinburgh,1994.102:p.167-175.
    [58]Dalal M, Tayal D, Chinnusamy V, et al, Abiotic stress and ABA-inducible Group 4 LEA from Brassica napus plays a key role in salt and drought tolerance. Journal of Biotechnology,2009. 139(2):p.137-145.
    [59]Danyluk J, Perron A, Houde M, et al, Accumulation of an acidic dehydrin in the vicinity of the plasma membrane during cold acclimation of wheat. The Plant Cell,1998.10:p.623-638.
    [60]Deborah A. J and Michael A. T, The monosaccharide transporter gene family in Arabidopsis and rice:A history of duplications, adaptive evolution, and functional divergence. Molecular Biology and Evolution,2007.24(11):p.2412-2423.
    [61]de-Lacerda C. F, Cambraia J, Oliva M. A, et al, Solute accumulation and distribution during shoot and leaf development in two sorghum genotypes under salt stress. Environmental and Experimental Botany,2003.49:p.107-120.
    [62]Delauney A. J and Verma D. P. S, Proline biosynthesis and osmoregulation in plants. Plant Journal, 1993.4:p.215-223.
    [63]Denekamp N. Y, Reinhardt R, Kube M, et al, Late Embryogenesis Abundant (LEA) proteins in nondesiccated, encysted, and diapausing embryos of rotifers. Biology of Reproduction,2010.82(4): p.714-724.
    [64]Ding S, Lu Q, Zhang Y, et al, Enhanced sensitivity to oxidative stress in transgenic tobacco plants with decreased glutathione reductase activity leads to a decrease in ascorbate pool and ascorbate redox state. Plant Molecular Biology,2009.69:p.577-592.
    [65]Dominguez T, Hernandez M. L, Pennycooke J. C, et al, Increasing desaturase expression in tomato results in altered aroma profile and enhanced resistance to cold stress. Plant Physiology,2010.153: p.655-665.
    [66]Dong J, Chen C, and Chen Z, Expression profiles of the Arabidopsis WRKY gene super-family during plant defence response. Plant Molecular Biology,2003.51:p.21-37.
    [67]Doucet C. J, Distribution and characterization of recrystallization inhibitor activity in plant and lichen species from the UK and maritime Antarctic. Cryobiology,2000.40:p.218-227.
    [68]Duarte J. M, Cui L. Y, Wall P. K, et al, Expression pattern shifts following duplication indicative of subfunctionalization and neofunctionalization in regulatory genes of Arabidopsis. Molecular Biology and Evolution,2006.23(2):p.469-478.
    [69]Duman J. G and Olsen T. M, Thermal hysteresis protein activity in bacteria, fungi, and phylogenetically diverse plants. Cryobiology,1993.30:p.322-328.
    [70]Dure L, Crouch M, Harada J, et al, Common amino acid sequence domains among the LEA proteins of higher plants. Plant Molecular Biology,1989.12(5):p.475-486.
    [71]Elbein A. D, Pan Y. T, Pastuszak I, et al, New insights on trehalose:a multifunctional molecule. Glycobiology,2003.13:p.17-27.
    [72]Emanuelsson O, Brunak S, von Heijne G, et al, Locating proteins in the cell using TargetP, SignalP and related tools. Nature Protocols,2007.2(4):p.953-971.
    [73]Eyidogan F and Oz M. T, Effect of salinity on antioxidant responses of chickpea seedlings. Acta Physiologia Plantarum,2005.29:p.485-493.
    [74]Fallon K. M and Phillips R, Responses to water stress in adapted carrot cell suspension cultures. Journal of Experimental Botany,1989.40:p.681-687.
    [75]Fang Y, You J, Xie K, et al, Systematic sequence analysis and identification of tissue-specific or stress-responsive genes of NAC transcription factor family in rice. Molecular Genetics Genomics, 2008.280:p.547-563.
    [76]Finn R. D, Clements J, and Eddy S. R, HMMER web server:interactive sequence similarity searching. Nucleic Acids Research,2011.39:p. W29-W37.
    [77]Finn R. D, Mistry J, Tate J, et al, The Pfam protein families database. Nucleic Acids Research, 2010.38:p. D211-D222.
    [78]Flowers T. J and Yeo A. R, Breeding for salinity resistance in crop plants:where next? Australian Journal of Plant Physiology,1995.22:p.875-884.
    [79]Fougere F, Le Rudulier D, and Streeter J. G, Effects of salt stress on amino acid, organic acid, and carbohydrate composition of roots, bacteroids, and cytosol of alfalfa (Medicago sativa L.). Plant Physiology,1991.96:p.1228-1236.
    [80]Frugoli J. A, Zhong H. H, Nuccio M. L, et al, Catalase is encoded by a multigene family in Arabidopsis thaliana (L.) Heynh. Plant Physiology,1996.112:p.327-336.
    [81]Furuki T, Shimizu T, Kikawada T, et al, Salt effects on the structural and thermodynamic properties of a group 3 LEA protein model peptide. Biochemistry,2011.50(33):p.7093-7103.
    [82]Gao M, Tao R, Miura K, et al, Transformation of Japanese persimmon (Diospyros kaki Thunb.) with apple cDNA encoding NADP-dependent sorbitol-6-phosphate dehydrogenase. Plant Science, 2001(160):p.837-845.
    [83]Garcia B, de Almeida Engler J, Iyer S, et al, Effects of osmoprotectants upon NaCl stress in rice. Plant Physiology,1997.115:p.159-169.
    [84]Garg A. K, Kim J. K, Owens T. G, et al, Trehalose accumulation in rice plants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy of Sciences of the United States of America,2002.99:p.15898-15903.
    [85]Gasteiger E, Gattiker A, Hoogland C, et al, ExPASy:the proteomics server for in-depth protein knowledge and analysis. Nucleic Acids Research,2003.31(13):p.3784-3788.
    [86]Genadii B. Borovskii, Irina V. Stupnikova, Anna I. Antipina, et al, Accumulation of dehydrin-like proteins in the mitochondria of cereals in response to cold, freezing, drought and ABA treatment. BMC Plant Biology,2002.2:5.
    [87]George S, Usha B, and Parida A, Isolation and characterization of an atypical LEA protein coding cDNA and its promoter from drought-tolerant plant Prosopis juliflora. Applied Biochemistry and Biotechnology,2009.157(2):p.244-253.
    [88]Gisbert C, Rus A. M, Bolarin M. C, et al, The yeast HAL1 gene improves salt tolerance of transgenic tomato. Plant Physiology,2000.123:p.393-402.
    [89]Goday A, Jensen A. B, Culiaez-Macia F. A, et al, The maize abscisic acid responsive protein Rabl7 is located in the nucleus and interacts with nuclear-localization signals. The Plant Cell,1994.6:p. 351-360.
    [90]Goddijn O. J, Verwoerd T. C, Voogd E, et al, Inhibition of trehalase activity enhances trehalose accumulation in transgenic plants. Plant Physiology,1997.113:p.181-190.
    [91]Gozzo F, Systemic acquired resistance in crop protection:from nature to a chemical approach. Journal of Agricultural and Food Chemistry,2003.51:p.4487-4503.
    [92]Griffith M and Yaish W. F, Antifreeze proteins in overwintering plants:a tale of two activities. Trends in Plant Science,04.9(8):p.399-406.
    [93]Griffith M, Antifreeze protein produced endogenously in winter rye leaves. Plant Physiology,1992. 100:p.593-596.
    [94]Guo A. Y, Zhu Q. H, Chen X, et al, GSDS:a gene structure display server. Yi chuan,2007.29(8):p. 1023-1026.
    [95]Guo L, Wang Z. Y, Lin H, et al, Expression and functional analysis of the rice plasma-membrane intrinsic protein gene family. Cell Research,2006.16:p.277-286.
    [96]Gupta A. S, Heinen J. L, Holaday A. S, et al, Increased resistance to oxidative stress in transgenic plants that overexpress chloroplastic Cu/Zn superoxide dismutase. Proceedings of the National Academy of Sciences of the United States of America,1993.90:p.1629-1633.
    [97]Gupta A. S, Webb R. P, Holaday A. S, et al, Overexpression of superoxide dismutase protects plants from oxidative stress (induction of ascorbate peroxidase in superoxide dismutase-overexpressing plants). Plant Physiology,1993.103:p.1067-1073.
    [98]Hamilton E. W and Heckathorn S. A, Mitochondrial adaptations to NaCl. Complex I is protected by anti-oxidants and small heat shock proteins, whereas complex Ⅱ is protected by proline and betaine. Plant Physiology,2001.126:p.1266-1274.
    [99]Hand S. C, Menze M. A, Toner M, et al, LEA proteins during water stress:not just for plants anymore. Annual Review of Physiology,2011.73:p.115-134.
    [100]Hara M, Fujinaga M, and Kuboi T, Metal binding by citrus dehydrin with histidine-rich domains. Journal of Experimental Botany,2005.56:p.2695-2703.
    [101]Hara M, Terashima S, and Kuboi T, Characterization and cryoprotective activity of cold-responsive dehydrin from Citrus unshiu. Journal of Plant Physiology,2001.158:p. 1333-1339.
    [102]Hara M, Fujinaga M, and Kuboi T, Radical scavenging activity and oxidative modification of citrus dehydrin. Plant Physiology and Biochemistry,2004.42(7-8):p.657-662.
    [103]Hare P. D and CressW. A, Metabolic implications of stress-induced proline accumulation in plants. Plant Growth Regulation,1997.21:p.79-102.
    [104]Hare P. D, Cress W. A, and Staden J. V, Dissecting the roles of osmolyte accumulation during stress. Plant Cell and Environment,1998.21:p.535-553.
    [105]He S, Tan L, Hu Z, et al, Molecular characterization and functional analysis by heterologous expression in E. coli under diverse abiotic stresses for OsLEA5, the atypical hydrophobic LEA protein from Oryza sativa L. Molecular Genetics and Genomics,2011.287(1):p.39-54.
    [106]Heyen B. J, Alsheikh M. K, Smith E. A, et al, The calcium-binding activity of a vacuole-associated, dehydrin-like protein is regulated by phosphorylation. Plant Physiology,2002. 130:p.675-687.
    [107]Hightower R, Expression of antifreeze proteins in transgenic plants. Plant Molecular Biology, 1991.17:p.1013-1021.
    [108]Higo K, Ugawa Y, Iwamoto M, et al, PLACE:a database of plant cis-acting regulatory DNA elements. Nucleic Acids Research,1998.26(1):p.358-369.
    [109]Higo K, Ugawa Y, Iwamoto M, et al, Plant cis-acting regulatory DNA elements (PLACE) database:1999. Nucleic Acids Research,1999.27(1):p.297-300.
    [110]Hisayo Y, Yukinobu K, Eiko K, et al, Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break. Tree Physiology,2006.26(12):p.1559-1563.
    [111]Holmberg N, Targeted expression of a synthetic codon optimized gene, encoding the spruce budworm antifreeze protein, leads to accumulation of antifreeze activity in the apoplasts of transgenic tobacco. Gene,2001.275:p.115-124.
    [112]Holmstrom K. O, Somersalo S, Mandal A, et al, Improved tolerance to salinity and low temperature in transgenic tobacco producing glycine betaine. Journal of Experimental Botany, 2000.51:p.177-185.
    [113]Holmstrom K. O, Mantyla E, Welin B, et al, Drought tolerance in tobacco. Nature,1996.379: p.683-684.
    [114]Hon W. C, Antifreeze proteins in winter rye are similar to pathogenesis-related proteins. Plant Physiology,1995.109:p.879-889.
    [115]Hong C. Y, Hsu Y. T, Tsai Y. C, et al, Expression of ASCORBATE PEROXIDASE 8 in roots of rice (Oryza sativa L.) seedlings in response to NaCl. Journal of Experimental Botany,2007.58: p.3273-3283.
    [116]Hong Z, Lakkineni K, Zhang Z, et al, Removal of feedback inhibition of 1-pyrroline-5-carboxylate synthetase results in increased proline accumulation and protection of plants from osmotic stress. Plant Physiology,2000.122:p.1129-1136.
    [117]Houde M, Daniel C, Lachapelle M, et al, Immunolocalization of freezing-tolerance associated proteins in the cytoplasm and nucleoplasm of wheat crown tissues. Plant Journal,1995.8:p. 583-593.
    [118]Houde M, Dhindsa R. S, and Sarhan F, A molecular marker to select for freezing tolerance in Gramineae. Molecular and General Genetics,1992.234:p.43-48.
    [119]Houde M, Dallaire S, Dong D, et al, Overexpression of the acidic dehydrin WCOR410 improves freezing tolerance in transgenic strawberry leaves. Plant Biotechnology Journal,2004.2: p.381-387.
    [120]Hounsa C. G, Brandt E. V, Thevelein J, et al, Role of trehalose in survival of Saccharomyces cerevisiae under osmotic stress. Microbiology,1998.144:p.671-680.
    [121]Hsu S. Y, Hsu Y. T, and Kao C. H, The effect of polyethylene glycol on proline accumulation in rice leaves. Biologia Plantarum,2003.46:p.73-78.
    [122]Hsu Y. T and Kao C. H, Heat shock-mediated H2O2 accumulation and protection against Cd toxicity in rice seedlings. Plant Soil,2007.300:p.137-147.
    [123]Hu H, Dai M, Yao J, et al, Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proceedings of the National Academy of Sciences of the United States of America,2006.103:p.12987-12992.
    [124]Huang J, Hirji R, Adam L, et al, Genetic engineering of glycinebetaine production toward enhancing stress tolerance in plants:metabolic limitations. Plant Physiology,2000.122:p. 747-756.
    [125]Huang T and Duman J. G, Cloning and characterization of a thermal hysteresis (antifreeze) protein with DNA-binding activity from winter bittersweet nightshade, Solanum dulcamara. Plant Molecular Biology,2001.48:p.339-350.
    [126]Hunault G and Jaspard E, LEAPdb:a database for the late embryogenesis abundant proteins. BMC Genomics,2010.11:221.
    [127]Hundertmark M and Hincha D, Genome-wide analysis of LEA (late embryogenesis abundant) genes in the model plant Arabidopsis thaliana. Comparative Biochemistry and Physiology a-Molecular & Integrative Physiology,2007.146(4):p. S262-S262.
    [128]Hundertmark M and Hincha D. K, LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics,2008.9:118.
    [129]Hundertmark M, Dimova R, Lengefeld J, et al, The intrinsically disordered late embryogenesis abundant protein LEA 18 from Arabidopsis thaliana modulates membrane stability through binding and folding. Biochimica Et Biophysica Acta-Biomembranes,2011.1808(1):p. 446-453.
    [130]Hundertmark M, Popova A. V, Rausch S, et al, Influence of drying on the secondary structure of intrinsically disordered and globular proteins. Biochemical and Biophysical Research Communications,2011.417(1):p.122-128.
    [131]Ingram J and Bartels D, The molecular basis of dehydration tolerance in plants. Annual Review of Plant Physiology and Plant Molecular Biology,1996.47:p.377-403.
    [132]Ireland H. E, Harding S. J, Bonwick G. A, et al, Evaluation of heat shock protein 70 as a biomarker of environmental stress in Fucus serratus and Lemna minor. Biomarkers,2004.9:p. 139-155.
    [133]Ismail A. M, Hall A. E, and Close T. J, Allelic variation of a dehydrin gene cosegregates with chilling tolerance during seedling emergence. Proceedings of the National Academy of Sciences of the United States of America,1999.96:p.13566-13570.
    [134]Ito Y, Katsura K, Maruyama K, et al, Functional analysis of rice DREB1/CBF type transcription factors involved in cold responsive gene expression in transgenic rice. The Plant Cell Physiol,2006.47:p.141-153.
    [135]Jakoby M, Weisshaar B, Droge-Laser W, et al, bZIP transcription factors in Arabidopsis. Trends in Plant Science,2002.7:p.106-111.
    [136]Jaleel C. A, Gopi R, Manivannan P, et al, Endogenous hormonal and enzymatic responses of Catharanthus roseus with triadimefon application under water deficits. Comptes Rendus Biologies, 2008.331(11):p.844-852.
    [137]Jang I. C, Oh S. J, Seo J. S, et al, Expression of a bifunctional fusion of the Escherichia coli genes for trehalose-6-phosphate synthase and trehalose-6-phosphate phosphatase in transgenic rice plants increases trehalose accumulation and abiotic stress tolerance without stunting growth. Plant Physiology,2003.131:p.516-524.
    [138]Jang J. Y, Kim D. G, Kim Y. O, et al, An expression analysis of a gene family encoding plasma membrane aquaporins in response to abiotic stresses in Arabidopsis thaliana. Plant Molecular Biology.,2004.54:p.713-725.
    [139]Javot H and Maurel C, The role of aquaporins in root water uptake. Annals of Botany,2002. 90:p.301-313.
    [140]Jesus A. J, Alonso-Ramirez A, and Carlos N, Two cDNA clones (FsDhnl and FsClol) up-regulated by ABA are involved in drought responses in Fasus sylvatica L. seeds. Journal of Plant Physiology,2008.165(17):p.1798-1807.
    [141]Ji J, Yang S. H, and Tian D. C, Patterns of positive selection and gene conversion in the complete disease resistance genes of rice. Scientia Agricultura Sinica,2007.40(9):p.1856-1863.
    [142]Johanson U, Karlsson M, Johansson I, et al, The complete set of genes encoding major intrinsic proteins in Arabidopsis provides a framework for a new nomenclature for major intrinsic proteins in plants. Plant Physiology,2001.126:p.1358-1369.
    [143]Jung S, Staton M, Lee T, et al, GDR (Genome Database for Rosaceae):integrated web-database for Rosaceae genomics and genetics data. Nucleic Acids Research,2008.36:p. D1034-D1040.
    [144]Karim S, Aronsson H, Ericson H, et al, Improved drought tolerance without undesired side effects in transgenic plants producing trehalose. Plant Molecular Biology,2007.64:p.371-386.
    [145]Kathuria H, Giri J, Nataraja K. N, et al, Glycinebetaine-induced water-stress tolerance in codA-expressing transgenic indica rice is associated with upregulation of several stress responsive genes. Plant Biotechnol Journal,2009.7:p.512-526.
    [146]Kavi Kishore P. B, Sangam S, Amrutha R. N, et al, Regulation of proline biosynthesis, degradation, uptake and transport in higher plants:its implications in plant growth and abiotic stress tolerance. Current Science,2005.88:p.424-438.
    [147]Kaye C, Neven L, Hofig A, et al, Characterization of a gene for spinach CAP160 and expression of two spinach cold-acclimation proteins in tobacco. Plant Physiology,1998.116:p. 1367-1377.
    [148]Kazuoka T and Oeda K, Purification and characterization of COR85-oligomeric complex from cold acclimated spinach. Plant and Cell Physiology,1994.35:p.601-611.
    [149]Keeler S. J, Boettger C. M, Haynes J. C, et al, Acquired thermotolerance and expression of the HSP100/ClpB genes of lima bean. Plant Physiology,2000.123:p.1121-1132.
    [150]Kenward K. D, Type Ⅱ fish antifreeze protein accumulation in transgenic tobacco does not confer frost resistance. Transgenic Research,1999.8:p.105-117.
    [151]Ketchum R. E. B, Warren R. C, Klima L. J, et al, The mechanism and regulation of proline accumulation in suspension cultures of the halophytic grass Distichlis spicata L. Journal of Plant Physiology,1991.137:p.368-374.
    [152]Khan Samiullah N. A, Singh S, and Nazar R, Activities of antioxidative enzymes, sulphur assimilation, photosynthetic activity and growth of wheat (Triticum aestivum) cultivars differing in yield potential under cadmium stress. Journal of Agronomy and Crop Science,2007.193:p. 435-444.
    [153]Kim F. J, Kim H. P, Hah Y. C, et al, Differential expression of superoxide dismutases containing Ni and Fe/Zn in Streptomyces coelicolor. European Journal of Biochemistry,1996.241: p.178-185.
    [154]Kim J. S, Mizoi J, Yoshida T, et al, An ABRE promoter sequence is involved in osmotic stress-responsive expression of the DREB2A gene, which encodes a transcription factor regulating drought-inducible genes in Arabidopsis. Plant and Cell Physiology,2011.52(12):p.2136-2146.
    [155]Knight C. A, Adsorption of a-helical antifreeze peptides on specific ice crystal surface planes. Biophysical Journal,1991.59:p.409-418.
    [156]Kornyeyev D, Logan B. A, Payton P, et al, Elevated chloroplastic glutathione reductase activities decrease chilling-induced photoinhibition by increasing rates of photochemistry, but not thermal energy dissipation, in transgenic cotton. Functional Plant Biology,2003.30:p.101-110.
    [157]Koussevitzky S, Suzuki N, Huntington S, et al, ASCORBATE PEROXIDASE 1 plays a key role in the response of Arabidopsis thaliana to stress combination. Journal of Biological Chemistry, 2008.283:p.34197-34203.
    [158]Kovacs D, Kalmar E, Torok Z, et al, Chaperone activity of ERD10 and ERD14, two disordered stressrelated plant proteins. Plant Physiology,2008.147:p.381-390.
    [159]Krishna P, Sacco M, Cherutti J. F, et al, Cold-induced accumulation of hsp90 transcripts in Brassica napus. Plant Physiology,1995.107:p.915-923.
    [160]Kriiger C, Berkowitz O, Stephan U. W, et al, Metal-binding member of the late embryogenesis abundant protein family transports iron in the phloem of Ricinus communis L. Journal of Biological Chemistry,2002.277:p.25062-25069.
    [161]Kuiper M, A theoretical model of a plant antifreeze protein from Lolium perenne. Biophysical Journal,2001.81:p.3560-3565.
    [162]Low D, Brandle K, Nover L, et al, Cytosolic heat-stress proteins Hsp17.7 class I and Hsp17. 3 class II of tomato act as molecular chaperones in vivo. Planta,2000.211:p.575-582.
    [163]Labhilili M, Joudrier P, and Gautier M. F, Characterization of cDNAs encoding Triticum durum dehydrins and their expression patterns in cultivars that differ in drought tolerance. Plant Science,1995.112:p.219-230.
    [164]Larkin M. A, Blackshields G, Brown N. P, et al, Clustal W and clustal X version 2.0. Bioinformatics,2007.23(21):p.2947-2948.
    [165]Ledford H. K, Chin B. L, and Niyogi K. K, Acclimation to singlet oxygen stress in Chlamydomonas reinhardtii. Eukaryotic Cell,2007.6(6):p.919-930.
    [166]Lee J. H and Schiffl F, An Hsp70 antisense gene affects the expression of HSP70/HSC70, the regulation of HSF and the acquisition of thermotolerance in transgenic Arabidopsis thaliana. Molecular Genetics Genomics,1996.252:p.11-19.
    [167]Lee S. H, Ahsan N, Lee K. W, et al, Simultaneous overexpression of both Cu/Zn superoxide dismutase and ascorbate peroxidase in transgenic tall fescue plants confers increased tolerance to a wide range of abiotic stresses. Journal of Plant Physiology,2007.164(12):p.1626-1638.
    [168]Leon A. M, Palma J. M, Corpas F. J, et al, Antioxidant enzymes in cultivars of pepper plants with different sensitivity to candium. Plant Physiology and Biochemistry,2002.40:p.813-820.
    [169]Leon Dure III, Occurrence of a repeating 11-mer amino acid sequence motif in diverse organisms, Protein and Peptide Letters.2001. p.115-122.
    [170]Leon D, Martha C, John H, et al, Common amino acid sequence domains among the LEA proteins of higher plants. Plant Molecular Biology,1989.12(5):p.475-486.
    [171]Leon III. D and Glenn A. G, Developmental biochemistry of cottonseed embryogenesis and germination XIII. REGULATION OF BIOSYNTHESIS OF PRINCIPAL STORAGE PROTEINS. Plant Physiology,1981.68(1):p.187-194.
    [172]Li Z, Zhang H, Ge S, et al, Expression pattern divergence of duplicated genes in rice. BMC Bioinformatics,2009.10:S8.
    [173]Lin R. C, Park H. J, and Wang H. Y, Role of Arabidopsis RAP2.4 in regulating light-and ethylene-mediated developmental processes and drought stress tolerance. Molecular Plant,2008.1: p.42-57.
    [174]Liu J and Zhu J. K, A calcium sensor homolog required for plant salt tolerance. Science,1998. 280:p.1943-1945.
    [175]Liu M, Lu C, Shen X, et al, Characterization and function analysis of a cold-induced AmCIP gene encoding a dehydrin-like protein in Ammopiptanthus mongolicus. DNA Sequence,2006.17: p.342-349.
    [176]Lopez-Matas M. A, Nunez P, Soto A, et al, Protein cryoprotective activity of a cytosolic small heat shock protein that accumulates constitutively in chestnut stems and is up-regulated by low and high temperatures. Plant Physiology,2004.134:p.1708-1717.
    [177]Lu Z. Q, Liu D, and Liu S. K, Two rice cytosolic ascorbate peroxidases differentially improve salt tolerance in transgenic Arabidopsis. Plant Cell Reports,2007.26:p.1909-1917.
    [178]Lutts S, Majerus V, and Kinet J. M, NaCl effects on proline metabolism in rice (Oryza saliva) seedlings. Physiologia Plantarum,1999.105:p.450-458.
    [179]Maathuis F. J, Filatov V, Herzyk P, et al, Transcriptome analysis of root transporters reveals participation of multiple gene families in the response to cation stress. Plant Journal,2003.35:p. 675-692.
    [180]Madan S, Nainawatee H. S, Jain R. K, et al, Proline and proline metabolizing enzymes in in-vitro selected NaCl-tolerant Brassica juncea L. under salt stress. Annals of Botany,1995.76:p. 51-57.
    [181]Maher C, Stein L, and Ware D, Evolution of Arabidopsis microRNA families through duplication events. Genome Research,2006.16(4):p.510-519.
    [182]Makela P, Jokinen K, Kontturi M, et al, Foliar application of glycine betaine-a novel product from sugarbeet as an approach to increase tomato yield. Industrial Crops and Products,1998.7:p. 139-148.
    [183]Marentes E, Proteins accumulate in the apoplast of winter rye leaves during cold acclimation. Physiologia Plantarum,1993.87:p.499-507.
    [184]Martre P, Morillon R, Barrieu F, et al, Plasma membrane aquaporins play a significant role during recovery from water deficit. Plant Physiology,2002.130:p.2101-2110.
    [185]Maurel C, Javot H, Lauvergeat V, et al, Molecular physiology of aquaporins in plants. International Review of Cytology,2002.215:p.105-148.
    [186]McCue R. F and Hanson A. D, Drought and salt tolerance:towards understanding and application. TIBTECH,1990.8:p.358-362.
    [187]McDowall J and Hunter S, InterPro protein classification. Methods in Molecular Biology (Clifton, N. J.),2011.694:p.37-47.
    [188]Melchiorre M, Robert G, Trippi V, et al, Superoxide dismutase and glutathione reductase overexpression in wheat protoplast:photooxidative stress tolerance and changes in cellular redox state. Plant Growth Regulation,2009.57:p.57-68.
    [189]Meloni D. A, Oliva M. A, Martinez C. A, et al, Photosynthesis and activity of superoxide dismutase, peroxidase and glutathione reductase in cotton under salt stress. Environmental and Experimental Botany,2003.49(1):p.69-76.
    [190]Meyer K, A leucine-rich repeat protein of carrot that exhibits antifreeze activity. FEBS Letters, 1999.447:p.171-178.
    [191]Michael W, Carole B, Timothy A, et al, Differential patterns of expression and regulation of two dehydrin genes from peach (Prunus persica) bark tissues. Hortscience,2005.40(4):p. 1036-1036.
    [192]Michaela H and Dirk K. H, LEA (Late Embryogenesis Abundant) proteins and their encoding genes in Arabidopsis thaliana. BMC Genomics,2008.9:118.
    [193]Milioni D and Hatzopoulos P, Genomic organization of Hsp90 gene family in Arabidopsis. Plant Molecular Biology,1997.35:p.955-961.
    [194]Miranda J. A, Avonce N, Suarez R, et al, A bifunctional TPS-TPP enzyme from yeast confers tolerance to multiple and extreme abiotic-stress conditions in transgenic Arabidopsis. Planta,2007. 226:p.1411-1421.
    [195]Mittler R, Oxidative stress, antioxidants and stress tolerance. Trends in Plant Science,2002.7: p.405-410.
    [196]Mobin M and Khan N. A, Photosynthetic activity, pigment composition and antioxidative response of two mustard (Brassica juncea) cultivars differing in photosynthetic capacity subjected to cadmium stress. Journal of Plant Physiology,2007.164:p.601-610.
    [197]Moez H, Fanal B, Chantal E, et al, Plant dehydrins and stress tolerance:Versatile proteins for complex mechanisms. Plant Signaling & Behavior,2011.6(10):p.1503-1509.
    [198]Mogk A, Schlieker C, Friedrich K. L, et al, Refolding of substrates bound to small Hsps relies on a disaggregation reaction mediated most efficiently by ClpB/DnaK. Journal of Biological Chemistry,2003.278:p.31033-31042.
    [199]Monteiro C. C, Santa B. A, Borges B, et al, Levels of MeLEA3, a cDNA sequence coding for an atypical late embryogenesis abundant protein in cassava, increase under in vitro salt stress treatment. Plant Molecular Biology Reporter,2011.29(4):p.997-1005.
    [200]Mouillon J. M, Eriksson S. K, and Harryson P, Mimicking the plant cell interior under water stress by macromolecular crowding:Disordered dehydrin proteins are highly resistant to structural collapse. Plant Physiology,2008.148:p.1925-1937.
    [201]Nagamiya K, Motohashi T, Nakao K, et al, Enhancement of salt tolerance in transgenic rice expressing an Escherichia coli catalase gene, katE. Plant Biotechnology Reports,2007.1(1):p. 49-55.
    [202]Nanjo T, Fujita M, Seki M, et al, Toxicity of free proline revealed in an Arabidopsis T-DNA-tagged mutant deficient in proline dehydrogenase. Plant and Cell Physiology,2003.44:p. 541-548.
    [203]Natacha B. E, Pascale G. C, Anne D, et al, Inventory, evolution and expression profiling diversity of the LEA (late embryogenesis abundant) protein gene family in Arabidopsis thaliana. Plant Molecular Biology,2008.67(1-2):p.107-124.
    [204]Nayyar H and Walia D. P, Water stress induced proline accumulation in contrasting wheat genotypes as affected by calcium and abscisic acid. Biologia Plantarum,2003.46:p.275-279.
    [205]Neslihan Oztur Z, Valentina T, Michael D, et al, Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Molecular Biology,2002.48(5-6):p.551-73.
    [206]Niu X, Zheng W, Lu B. R, et al, An unusual post-transcriptional processing in two betaine aldehyde dehydrogenase (BADH) loci of cereal crops directed by short-direct repeats in response to stress conditions. Plant Physiology,2007.143:p.1929-1942.
    [207]Noctor G and Foyer C. H, A re-evaluation of the ATP:NADPH budget during C3 photosynthesis. A contribution from nitrate assimilation and its associated respiratory activity? Journal of Experimental Botany.,1998.49:p.1895-1908.
    [208]Nuccio M. L, Russell B. L, Nolte K. D, et al, The endogenous choline supply limits glycine betaine synthesis in transgenic tobacco expressing choline monooxygenase. Plant Journal,1998.16: p.487-496.
    [209]Nylander M, Svensson J, Palva E. T, et al, Stress induced accumulation and tissue-specific localization of dehydrins in Arabidopsis thaliana. Plant Molecular Biology,2001.45:p.263-279.
    [210]Oh S. J, Kwon C. W, Choi D. W, et al, Expression of barley HvCBF4 enhances tolerance to abiotic stress in transgenic rice. Plant Biotechnology Journal,2007.5:p.646-656.
    [211]Ohme-Takagi M and Shinshi H, Ethylene-inducible DNA binding proteins that interact with an ethylene-responsive element. The Plant Cell,1995.7(2):p.173-182.
    [212]Olvera-Carrillo Y, Campos F, Luis Reyes J, et al, Functional analysis of the group 4 late embryogenesis abundant proteins reveals their relevance in the adaptive response during water deficit in Arabidopsis. Plant Physiology,2010.154(1):p.373-390.
    [213]Olvera-Carrillo Y, Luis Reyes J, and Covarrubias A, Late embryogenesis abundant proteins: versatile players in the plant adaptation to water limiting environments. Plant Signaling & Behavior,2011.6(4):p.586-589.
    [214]Ooka H, Satoh K, Doi K, et al, Comprehensive analysis of NAC family genes in Oryza sativa and Arabidopsis thaliana. DNA Research,2003.10:p.239-247.
    [215]Osada N and Innan H, Duplication and gene conversion in the Drosophila melanogaster genome. PloS Genetics,2008.4(12):e1000305.
    [216]Ouellet F, Houde M, and Sarhan F, Purification, characterization and cDNA cloning of the 200 kDa protein induced by cold acclimation in wheat. Plant and Cell Physiology,1993.34:p.59-65.
    [217]Ozturk L and Demir Y, In vivo and in vitro protective role of proline. Plant Growth Regulation,2002.38:p.259-264.
    [218]Park S. C, Kim Y. H, Jeong J. C, et al, Sweetpotato late embryogenesis abundant 14 (IbLEA14) gene influences lignification and increases osmotic-and salt stress-tolerance of transgenic calli. Planta,2011.233(3):p.621-634.
    [219]Park S. Y, Noh K. J, Yoo J. H, et al, Rapid upregulation of dehydrin3 and dehydrin4 in response to dehydration is a characteristic of drought tolerant genotypes in barley. Journal of Plant Biology,2006.49:p.455-462.
    [220]Peel G. J, Mickelbart M. V, and Rhodes D, Choline metabolism in glycinebetaine accumulating and non-accumulating near-isogenic lines of Zea mays and Sorghum bicolor. Phytochemistry,2010.71:p.404-414.
    [221]Pekker I, Tel or E, and Mittler R, Reactive oxygen intermediates and glutathione regulate the expression of cytosolic ascorbate peroxidise during ironmediated oxidative stress in bean. Plant Molecular Biology,2002.49:p.429-438.
    [222]Pelah D, Wang W, Altman A, et al, Differential accumulation of water stress related proteins, sucrose synthase and soluble sugars in Populus species that differ in their water stress response. Plant Physiology,1997.99:p.153-159.
    [223]Pellny T. K, Ghannoum O, Conroy J. P, et al, Genetic modification of photosynthesis with E. coli genes for trehalose synthesis. Plant Biotechnology Journal,2004.2:p.71-82.
    [224]Pihakaski-Maunsbach K, Genes encoding chitinaseantifreeze proteins are regulated by cold and expressed by all cell types in winter rye shoots. Physiologia Plantarum,2001.112:p.359-371.
    [225]Pilon-Smits E. A. H, Ebstamp M. J. M, Paul M. J, et al, Improved performance of transgenic fructan-accumulating tobacco under drought stress. Plant Physiology,1995.107:p.125-130.
    [226]Pilon-Smits E. A. H, Terry N, Sears T, et al, Enhanced drought resistance in fructan-producing sugar beet. Plant Physiology and Biochemistry,1999.37:p.313-317.
    [227]Pilon-Smits E. A. H, Terry N, Sears T, et al, Trehalose-producing transgenic tobacco plants show improved growth performance under drought stress. Journal of Plant Physiology,1998.152: p.525-532.
    [228]Piqueras A, Hernandez J. M, Olmos E, et al, Changes in antioxidant enzymes and organic solutes associated with adaptation of citrus cells to salt stress. Plant Cell Tissue and Organ Culture, 1996.45:p.53-60.
    [229]Puhakainen T, Hess M. W, Makela P, et al, Overexpression of multiple dehydrin genes enhances tolerance to freezing stress in Arabidopsis. Plant Molecular Biology,2004.54(5):p. 743-753.
    [230]Qiu Y and Yu D, Over-expression of the stress-induced OsWRKY45 enhances disease resistance and drought tolerance in Arabidopsis. Environmental and Experimental Botany,2009.65: p.35-47.
    [231]Qiu Y, Jing S, Fu J, et al, Cloning and analysis of expression profile of 13 WRKY genes in rice. Chinese Science Bulletin,2004.49:p.2159-2168.
    [232]Queitsch C, Hong S. W, Vierling E, et al, Heat stress protein 101 plays a crucial role in thermotolerance in Arabidopsis. The Plant Cell,2000.12:p.479-492.
    [233]Quigley F, Rosenberg J. M, Shachar-Hill Y, et al, From genome to function:the Arabidopsis aquaporins. Genome Biology,2001.3:p.1-17.
    [234]Rahman M. S, Miyake H, and Takeoka Y, Effects of exogenous glycine betaine on growth and ultrastructure of salt-stressed rice seedlings (Oryza sativa L.). Plant Production Science,2002.5:p. 33-44.
    [235]Reyes J. L, Campos F, Wei H, et al, Functional dissection of hydrophilins during in vitro freeze protection. Plant Cell and Environment 2008.31:p.1781-1790.
    [236]Rhodes D and Hanson A. D, Quaternary ammonium and tertiary sulfonium compounds in higher-plants. Annu. Rev. Plant Physiol. Plant Molecular Biology.,1993.44:p.357-384.
    [237]Robinson S. P and Jones G. P, Accumulation of glycine betaine in chloroplasts provides osmotic adjustment during salt stress. Australian Journal of Plant Physiology,1986.13:p.659-668.
    [238]Rodriguez E. M, Svensson J. T, Malatrasi M, et al, Barley Dhn13 encodes a KS-type dehydrin with constitutive and stress responsive expression. Theoretical and Applied Genetics,2005.110:p. 852-858.
    [239]Rorat T, Grygorowicz W. J, Irzykowski W, et al, Expression of KS-type dehydrins is primarily regulated by factors related to organ type and leaf developmental stage during vegetative growth. Planta,2004.218:p.878-885.
    [240]RoyChoudhury A and Sengupta D. N, Transgenic tobacco plants overexpressing the heterologous lea gene Rabl6A from rice during high salt and water deficit display enhanced tolerance to salinity stress. Plant Cell Reports,2007.26:p.1839-1859.
    [241]Roychoudhury A and Sengupta D. N, The promoter-elements of some abiotic stress-inducible genes from cereals interact with a nuclear protein from tobacco. Biologia Plantarum,2009.53(3):p. 583-587.
    [242]Saavedra L, Svensson J, Carballo V, et al, A dehydrin gene in Physcomitrella patens is required for salt and osmotic stress tolerance. Plant Journal,2006.45:p.237-249.
    [243]Sakamoto A, Valverde R. A, Chen T. H, et al, Transformation of Arabidopsis with the codA gene for choline oxidase enhances freezing tolerance of plants. Plant Journal,2000.22:p.449-453.
    [244]Saleh A, Lumbreras V, Lopez C, et al, Maize DBF 1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1 activity in stress responses. Plant Journal,2006.46:p. 747-757.
    [245]Satoh R, Nakashima K, Sek M, et al, ACTCAT, a novel cis-acting element for proline-and hypoosmolarity-responsive expression of the ProDH gene encoding proline dehydrogenase in Arabidopsis. Plant Physiology,2002.130:p.709-719.
    [246]Satoh-Nagasawa N, Nagasawa N, Malcomber S, et al, A trehalose metabolic enzyme controls inflorescence architecture in maize. Nature,2006.441:p.227-230.
    [247]Sawyer S, Statistical tests for detecting gene conversion. Molecular Biology and Evolution, 1989.6(5):p.526-538.
    [248]Scandalios J. G, Oxygen stress and superoxide dismutases. Plant Physiology,1993.101:p. 7-12.
    [249]Scharf K. D, Siddique M, and Vierling E, The expanding family of Arabidopsis thaliana small heat stress proteins and a new family of proteins containing a-crystallin domains. Cell Stress Chaperones,2001.6:p.225-237.
    [250]Schluepmann H, Pellny T, van Dijken A, et al, Trehalose 6-phosphate is indispensable for carbohydrate utilization and growth in Arabidopsis thaliana. Proceedings of the National Academy of Sciences of the United States of America,2003.100:p.6849-6854.
    [251]Sekmen A. H, Tuerkan I, and Takio S, Differential responses of antioxidative enzymes and lipid peroxidation to salt stress in salt-tolerant Plantago maritima and salt-sensitive Plantago media. Physiologia Plantarum,2007.131(3):p.399-411.
    [252]Shalata A, Mittova V, Volokita M, et al, Response of the cultivated tomato and its wild salt-tolerant relative Lycopersicon pennellii to salt-dependent oxidative stress:The root antioxidative system. Physiologia Plantarum,2001.112:p.487-494.
    [253]Sharma P and Dubey R. S, Modulation of nitrate reductase activity in rice seedlings under aluminium toxicity and water stress:role of osmolytes as enzyme protectant. Journal of Plant Physiology,2005.162:p.854-864.
    [254]Shen Y. G, Du B. X, Zhang W. K, et al, AhCMO, regulated by stresses in Atriplex hortensis, can improve drought tolerance in transgenic tobacco. Theoretical and Applied Genetics,2002.105: p.815-821.
    [255]Sheveleva E. V, Marquez S, Chmawa W, et al, Sorbitol-6-phosphate dehydrogenase expression in transgenic tobacco:high amounts of sorbitol lead to necrotic lesions. Plant Physiology,1998.117:p.831-839.
    [256]Shi Q. H and Zhu Z. J, Effects of exogenous salicylic acid on manganese toxicity, element contents and antioxidative system in cucumber. Environmental and Experimental Botany,2008. 63(13):p.317-326.
    [257]Shih M. D, Hoekstra F. A, and Hsing Y. C, Late embryogenesis abundant proteins. Advances in Botanical Research,2008.48:p.211-255.
    [258]Shinozaki K and Yamaguchi-Shinozaki K, Molecular responses to dehydration and low temperature:differences and cross-talk between two stress signaling pathways. Current Opinion in Plant Biology,2000.3:p.217-223.
    [259]Siefritz F, Tyree M. T, Lovisolo C, et al, PIP1 plasma membrane aquaporins in tobacco:from cellular effects to function in plants. The Plant Cell,2002.14:p.869-876.
    [260]Skiver K and Mundy J, Gene expression in response to abscisic acid osmotic stress. The Plant Cell 1990.2:p.503-512.
    [261]Skorzynska-Polit E, Drazkiewicz M, and Krupa Z, The activity of the antioxidative system in cadmium-treated Arabidopsis thaliana. Biologia Plantarum,2004.47:p.71-78.
    [262]Smallwood M, Isolation and characterization of a novel antifreeze protein from carrot (Daucus carota). Biochemical Journal,1999.340:p.385-391.
    [263]Srivastava A. K, Bhargava P, and Rai L. C, Salinity and copper-induced oxidative damage and changes in antioxidative defense system of Anabaena doliolum. World Journal of Microbiology & Biotechnology,2005.22:p.1291-1298.
    [264]Stacy R. A and Aalen R. B, Identification of sequence homology between the internal hydrophilic repeated motifs of group 1 late-embryogenesis-abundant proteins in plants and hydrophilic repeats of the general stress protein GsiB of Bacillus subtilis. Planta,1998.206(3):p. 476-478.
    [265]Stacy R. A, Espelund M, Saeboe-Larssen S, ct al, Evolution of the Group 1 late embryogenesis abundant (Lea) genes:analysis of the Lea B19 gene family in barley. Plant Molecular Biology,1995.28(6):p.1039-1054.
    [266]Styrvold O. B and Strom A. R, Synthesis, accumulation, and excretion of trehalose in osmotically stressed Escherichia coli K-12 strains:influence of amber suppressors and function of the periplasmic trehalase. Journal of Bacteriology,1991.173:p.1187-1192.
    [267]Su J, Hirji R, Zhang L, et al, Evaluation of the stress-inducible production of choline oxidase in transgenic rice as a strategy for producing the stress-protectant glycine betaine. Journal of Experimental Botany 2006.57:p.1129-1135.
    [268]Subbarao G. V, Wheeler R. M, Levine L. H, et al, Glycine betaine accumulation, ionic and water relations of red-beet at contrasting levels of sodium supply. Journal of Plant Physiology, 2001.158:p.767-776.
    [269]Sulpice R, Tsukaya H, Nonaka H, et al, Enhanced formation of flowers in salt-stressed Arabidopsis after genetic engineering of the synthesis of glycine betaine. Plant Journal,2003.36:p. 165-176.
    [270]Sun W, Van Montagu M, and Verbruggen N, Small heat shock proteins and stress tolerance in plants. Biochimica et Biophysica Acta,2002.1577:p.1-9.
    [271]Sun X, Yuan S, and Lin H. H, Salicylic acid decreases the levels of dehydrin-like proteins in Tibetan hulless barley leaves under water stress. Zeitschrift fur Naturforschung,2006.61:p. 245-250.
    [272]Swarbreck D, Wilks C, Lamesch P, et al, The Arabidopsis Information Resource (TAIR):gene structure and function annotation. Nucleic Acids Research,2008.36:p. D1009-D1014.
    [273]Swindell W. R, Huebner M, and Weber A. P, Transcriptional profiling of Arabidopsis heat shock proteins and transcription factors reveals extensive overlap between heat and non-heat stress response pathways. BMC Genomics,2007.8:125.
    [274]Tadeusz R, Plant dehydrins-tissue location, structure and function. Cellular & Molecular Biology Letters,2006.11:p.536-556.
    [275]Tamura K, Peterson D, Peterson N, et al, MEGA5:molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Molecular Biology and Evolution,2011.28(10):p.2731-2739.
    [276]Tang H. B, Bowers J. E, Wang X. M, et al, Synteny and collinearity in plant genomes. Science, 2008.320(5875):p.486-488.
    [277]Tarczynski M. C, Jensen R. G, and Bohnert H. J, Expression of a bacterial mt1D gene in transgenic tobacco leads to production and accumulation of mannitol. Proceedings of the National Academy of Sciences of the United States of America,1992.89:p.2600-2604.
    [278]Thomas J. C, Sepahi M, Arendall B, et al, Enhancement of seed germination in high salinity by engineering mannitol expression in Arabidopsis thaliana. Plant Cell and Environment,1995.18: p.801-806.
    [279]Timperio A. M, Egidi M. G, and Zolla L, Proteomics applied on plant abiotic stresses:Role of heat shock proteins (HSP). Journal of Proteomics,2008.71:p.391-411.
    [280]Tompa P, Szasz C, and Buday L, Structural disorder throws new light on moonlighting. Trends in Biochemical Sciences 2005.30:p.484-489.
    [281]Tran L. S, Nakashima K, Sakuma Y, et al, Isolation and functional analysis of Arabidopsis stress inducible NAC transcription factors that bind to a drought responsive cis-element in the early responsive to dehydration stress promoter. The Plant Cell,2004.16:p.2481-2498.
    [282]Triantaphylides C, Krischke M, Hoeberichts F. A, et al, Singlet oxygen is the major reactive oxygen species involved in photooxidative damage to plants. Plant Physiology,2008.148(2):p. 960-968.
    [283]Tuna A. L, Kaya C, Dikilitas M, et al, The combined effects of gibberellic acid and salinity on some antioxidant enzyme activities, plant growth parameters and nutritional status in maize plants. Environmental and Experimental Botany,2008.62(1):p.1-9.
    [284]Upadhyaya H, Panda S. K, and Dutta B. K, Variation of physiological and antioxidative responses in tea cultivars subjected to elevated water stress followed by rehydration recovery. Acta Physiologiae Plantarum,2008.30(4):p.457-468.
    [285]Urrutia M. E, Plant thermal hysteresis proteins. Biochimica et Biophysica Acta,1992.1121:p. 199-206.
    [286]Van Breusegem F, Vranova E, Dat J. F, et al, The role of active oxygen species in plant signal transduction. Plant Science,2001.161:p.405-414.
    [287]Van der Heijden T. J. M, Snel B, van Noort V, et al, Orthology prediction at scalable resolution by phylogenetic tree analysis. BMC Bioinformatics,2007.8.83.
    [288]Van Dijken A. J. H, Schluepmann H, and Smeekens S. C. M, Arabidopsis trehalose-6-phosphate synthase 1 is essential for normal vegetative growth and transition to flowering. Plant Physiology,2004.135:p.969-977.
    [289]Venkatesan A and Chellappan K. P, Accumulation of proline and glycine betaine in Ipomoea pescaprae induced by NaCl. Biologia Plantarum,1998(41):p.271-276.
    [290]Vinocur B and Altman A, Recent advances in engineering plant tolerance to abiotic stress: achievements and limitations. Current Opinion in Biotechnology,2005.16:p.123-132.
    [291]Vitamvas P, Kosova K, Prailova P, et al, Accumulation of WCS120 protein in wheat cultivars grown at 9℃ or 17℃ in relation to their winter survival. Plant Breeding,2010.129:p.611-616.
    [292]Voetberg G. S and Sharp R. E, Growth of the maize primary root tip at low water potentials. III. Role of increased proline deposition in osmotic adjustment. Plant Physiology,1991.96:p. 1125-1130.
    [293]Vogel G, Fiehn O, Jean-Richard-Dit-Bressel L, et al, Trehalose metabolism in Arabidopsis: occurrence of trehalose and molecular cloning and characterization of trehalose-6-phosphate synthase homologues. Journal of Experimental Botany,2001.52:p.1817-1826.
    [294]Wallis J. G, Expression of a synthetic antifreeze protein in potato reduces electrolyte release at freezing temperatures. Plant Molecular Biology,1997.35:p.323-330.
    [295]Wang G. P, Zhang X. Y, Li F, et al, Over accumulation of glycine betaine enhances tolerance to drought and heat stress in wheat leaves in the protection of photosynthesis. Photosynthetica, 2010.48:p.117-126.
    [296]Wang G. P, Li F, Zhang J, et al, Over accumulation of glycine betaine enhances tolerance of the photosynthetic apparatus to drought and heat stress in wheat. Photosynthetica,2010.48:p. 30-41.
    [297]Wang L, Li X, Chen S, et al, Enhanced drought tolerance in transgenic Leymus chinensis plants with constitutively expressed wheat TaLEA. Biotechnology Letters,2009.31(2):p.313-319.
    [298]Wang P. R, Deng X. J, Gao X. L, et al, Progress in the study on DREB transcription factor. Yi Chuan,2006.28:p.369-374.
    [299]Wang X. S, Zhu H. B, Jin G. L, et al, Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Science,2007.172(2):p.414-420.
    [300]Warner A. H, Miroshnychenko O, Kozarova A, et al, Evidence for multiple group 1 late embryogenesis abundant proteins in encysted embryos of Artemia and their organelles. Journal of Biochemistry,2010.148(5):p.581-592.
    [301]Wei X and Rajashekar C. B, Glycine betaine involvement in freezing tolerance and water stress in Arabidopsis thaliana. Environmental and Experimental Botany,2001.46:p.21-28.
    [302]Welling A, Rinne P, Vihera-Aarnio A, et al, Photoperiod and temperature differentially regulate the expression of two dehydrin genes during overwintering of birch(Betula pubescens Ehrh.). Journal of Experimental Botany,2004.55:p.507-516.
    [303]Weretilnyk E. A, Bednarek S, McCue K. F, et al, Comparative biochemical and immunological studies of the glycine betaine synthesis pathway in diverse families of dicotyledons. Planta,1989.178:p.342-352.
    [304]Willekens H, Chamnongpol S, Davey M, et al, Catalase is a sink for H2O2 and is indispensable for stress defence in C3 plants. EMBO Journal,1997.16:p.4806-4816.
    [305]Willekens H, Villarroel R, Van Montagu M, et al, Molecular identification of catalases from Nicotiana plumbaginifolia L.. FEBS Letters,1994.352:p.79-83.
    [306]Wise M. J, LEAping to conclusions:A computational reanalysis of late embryogenesis abundant proteins and their possible roles. BMC Bioinformatics,2003.4:52.
    [307]Wisniewski M. E, Bassett C. L, Renaut J, et al, Differential regulation of two dehydrin genes from peach (Prunus persica) by photoperiod, low temperature and water deficit. Tree Physiology, 2006.26(5):p.575-584.
    [308]Wisniewski M, Bassett C, and Arora R, Distribution and partial characterization of seasonally expressed proteins in different aged shoots and roots of 'Loring' peach (Prunus persica). Tree Physiology,2004.24(3):p.339-345.
    [309]Wisniewski M, Close T. J, Artlip T, et al, Seasonal patterns of dehydrins and 70-kDa heat shock proteins in bark tissues of eight species of woody plants. Plant Physiology 1996.96:p. 496-505.
    [310]Wisniewski M, Webb R, Balsamo R, et al, Purification, immunolocalization, cryoprotective, and antifreeze activity of PCA60:A dehydrin from peach (Prunus persica) Plant Physiology,1999. 105:p.600-608.
    [311]Worrall D, A carrot leucine-rich-repeat protein that inhibits ice recrystallization. Science,1998. 282:p.115-117.
    [312]Wu G, Zhang H, Sun J, et al, Diverse LEA (late embryogenesis abundant) and LEA-like genes and their responses to hypersaline stress in post-diapause embryonic development of Artemia franciscana. Comparative Biochemistry and Physiology B-Biochemistry & Molecular Biology, 2011.160(1):p.32-39.
    [313]Wyn Jones R. G, Gorham J, and McDonnell E, Organic and inorganic solute contents as selection criteria for salt tolerance in the Triticeae. Salinity Tolerance in Plants:Strategies for Crop Improvement.1984, New York.189-203.
    [314]Wang X. S, Zhu H. B, Jin G. L, et al, Genome-scale identification and analysis of LEA genes in rice (Oryza sativa L.). Plant Science,2007.172(2):p.414-420.
    [315]Xiang Y, Tang N, Du H, et al, Charaterization of Osb-ZIP23 as a key player of the basic leucine zipper transcription factor family for conferring abscisic acid sensitivity and salinity and drought tolerance in rice. Plant Physiology,2008.148:p.1938-1952.
    [316]Xu J, Zhang Y. X, Wei W, et al, BjDHNs confer heavy-metal tolerance in plants. Molecular Biotechnology 2008.38:p.91-98.
    [317]Yamane H, Kashiwa Y, Kakehi E, et al, Differential expression of dehydrin in flower buds of two Japanese apricot cultivars requiring different chilling requirements for bud break. Tree Physiology,2006.26(12):p.1559-1563.
    [318]Yang Y, Han C, Liu Q, et al, Effect of drought and low light on growth and enzymatic antioxidant system of Picea asperata seedlings. Acta Physiologiae Plantarum,2008.30(4):p. 433-440.
    [319]Yang Z, Wu Y, Li Y, et al, OsMTla, a type 1 metallothionein, plays the pivotal role in zinc homeostasis and drought tolerance in rice. Plant Molecular Biology,2009.70:p.219-229.
    [320]Yang W. J, Rich P. J, Axtell J. D, et al, Genotypic variation for glycine betaine in sorghum. Crop Science,2003.43:p.162-169.
    [321]Yeh S, Chitinase genes responsive to cold induce antifreeze proteins in winter cereals. Plant Physiology,2000.124:p.1251-1263.
    [322]Yoon H. S, Lee I. A, Lee H, et al, Overexpression of a eukaryotic glutathione reductase gene from Brassica campestris improved resistance to oxidative stress in Escherichia coli. Biochemical and Biophysical Research Communications,2005.326:p.618-623.
    [323]Yu X. M, Ethylene induces antifreeze activity in winter rye leaves. Plant Physiology,2001. 126:p.1232-1240.
    [324]Yu X. M and Griffith M, Antifreeze proteins in winter rye leaves form oligomeric complexes. Plant Physiology,1999.119:p.1361-1369.
    [325]Yu X. M and Griffith M, Winter rye antifreeze activity increases in response to cold and drought, but not abscisic acid. Physiologia Plantarum,2001.112:p.78-86.
    [326]Zamani A, Endochitinase and antifreeze activity in the apoplastic fluid of Douglas-fir in response to Phellinus weirii infection. Forest Pathology,2003.33:p.299-316.
    [327]Zhang M, Barg R, Yin M, et al, Modulated fatty acid desaturation via overexpression of two distinct omega-3 desaturases diff erentially alters tolerance to various abiotic stresses in transgenic tobacco cells and plants. Plant Journal,2005.44:p.361-371.
    [328]Zhang Q. F, Li Y. Y, Pang C. H, et al, NaCl enhances thylakoid-bound SOD activity in the leaves of C3 halophyte Suaeda salsa L. Plant Science,2005.168:p.423-430.
    [329]Zhang Q. X, Chen W. B, Sun L. D, et al, The genome of Prunus mume. Nature Communications,2012.3:p.1318-1325.
    [330]Zhang X, Wollenweber B, Jiang D, et al, Water deficit and heat shock effects on photosynthesis of a transgenic Arabidopsis thaliana constitutively expressing ABP9, a bZIP transcription factor. Journal of Experimental Botany,2008.59:p.839-848.
    [331]Zhang Y, Li J, Yu F, et al, Cloning and expression analysis of SKn-type dehydrin gene from bean in response to heavy metals. Molecular Biotechnology,2006.32:p.205-218.
    [332]Zhang Y, Wang Z, and Jin X, Molecular mechanism of dehydrin in response to environmental stress in plant. Progress in Natural Science,2007.17(3):p.237-246.
    [333]Zhao P. S, Liu F, Zheng G. C, et al, Group 3 late embryogenesis abundant protein in Arabidopsis:structure, regulation, and function. Acta Physiologiae Plantarum,2011.33(4):p. 1063-1073.
    [334]Zhao P, Liu F, Ma M, et al, Overexpression of AtLEA3-3 confers resistance to cold stress in Escherichia coli and provides enhanced osmotic stress tolerance and ABA sensitivity in Arabidopsis thaliana. Molecular Biology,2011.45(5):p.785-796.
    [335]Zheng X, Chen B, Lu G, et al, Overexpression of a NAC transcription factor enhances rice drought and salt tolerance. Biochemical and Biophysical Research Communications,2009.379:p. 985-989.
    [336]Zlatev Z. S, Lidon F. C, Ramalho J. C, et al, Comparison of resistance to drought of three bean cultivars. Biologia Plantarum,2006.50:p.389-394.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700