湖南省森林碳平衡空间分异及对气候响应的模拟预测
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
森林生态系统碳平衡是指在一定时间内特定区域的林分在单位时间和单位面积上的碳循环(GPP, NPP)以及森林与大气之间碳交换的净通量(NEP),即森林的生物碳固持效率,碳利用效率,以及森林生态系统碳固定输入与碳排放输出的平衡状况。它既对全球气候变化起着极其重要的作用,同时又对气候变化响应敏感。因此,对区域森林碳平衡的研究,不仅有利于加深对生态系统的物质循环和能量流动的认识和理解,而且有利于揭示生态系统对全球变化的响应规律及气候变化对生态系统的影响,具有重要意义。准确估算和预测区域森林碳平衡特征以及对未来气候变化的响应可以为科学预测气候变化、服务于减缓和适应气候变化的区域碳管理提供科学依据,是生态系统与全球变化科学研究的重要科技问题。TRIPLEX1.6(三元生态混合模型)是一个基于过程的混合模型,它减少了一些参数,全面但不复杂,成为可模拟森林生长和碳、氮动态变化的森林管理模型,用于制定森林管理决策(如生长和产量预测),量化森林碳储量以及对短期和长期的气候变化效应进行评价。本研究的目的为:(1)林分尺度上验证亚热带主要树种(杉木和马尾松)的碳循环及环境耦合机理,(2)中亚热带湖南省区域杉木和马尾松碳吸存及环境相关,(3)亚热带主要森林类型碳收支及气候响应机制,(3)亚热带主要森林类型碳收支及气候响应机制,(4)未来气候变化情景下中亚热带湖南省区域森林碳平衡及敏感性特征。
     利用2000年1月至2009年1月的逐月气象数据,研究了湖南省区域主要树种,杉木和马尾松的碳贮量的现状及空间分异,建立由遥感数据驱动的湖南省内杉木马尾松碳储量在水热空间上的数学模型,揭示亚热带主要森林类型固碳潜力对气候变化的响应规律。表明TRIPLEX应用于杉木及马尾松模拟的由点到面的模拟是可行的。
     在遥感技术和地理信息系统的支持下,以湖南省内主要的68个气象站点的月气温和降水信息、基于多CMIP5模式综合的对湖南省区域低(RCP4.5)和高(RCP8.5)两种排放浓度的未来50年气候变化预估值及该地区的数字高程数据(DEM)为基础,对气温、降水等气候因子进行了空间插值分析,为碳储量、生产力的估算和空间分析奠定基础。以卫星数据、地面气象数据、地形图、森林分布图和本区域的2004年湖南省一类调查中所用的2173个森林资源清查样地数据为主要模型初始化和立地参数化数据源。以文献收集、资料整理、实地测量等数据作为生理参数化的数据源。以独立于初始化和参数化以外的其他文献数据、样地调查数据、以及2009年湖南省一类森林资源清查样地数据进行模型对主要林分碳循环过程模拟能力的验证、湖南省内主要森林类型碳收支估算能力的验证、湖南省森林生态系统碳平衡的时空动态及气候响应的预测能力的验证。以最小像元为模拟单位,以多尺度信息、数据和技术融合的元数据分析框架,并引入林分、森林类型、区域森林等定性变量,通过相关分析、样地比对、栅格值Kappa比对等验证统计量进行林分、森林类型建模与区域森林总体建模的总体应用效果的检验。
     主要结论如下:
     1)验证相关性系数(r2)均在大与0.8以上,再将模拟值与调查值进行方差分析,和偏差检验,得到偏差(Bias%)均在10%以内,说明TRIPLEX用于湖南省四种森林类型的生长模拟是可以信任的。
     2)未来50年(2010-2060年)湖南省区域平均气候变化的多模式集合预估结果表明:在RCP4.5和RCP8.5两种排放情景下,未来50年(2010-2060年)湖南省平均气温0.143℃/10a和0.52℃/10a,在RCP4.5和RCP8.5两种排放情景下,到2060年,湖南地区平均气温比2000-2009年的均值增加0.715和2.6℃。湖南省降水量在未来50年年际和全省区域变化不明显,局部差异增大这与他人预估结果基本相近。
     3)空间上看,我省森林植被GPP、NPP、NEP分布呈现自东北平原湖区向中部丘陵,再向西南部区域逐渐增大,湖南省森林总初级生产力最高的区域主要集中西南山地区域。这主要是当前局部丘陵山地的湖南省地理资源和水热状况及认为干扰决定的。当前的湖南省森林GPP的格点数量分布为负偏态分布,说明湖南森林的固碳效率在未来还有一定的提升空间。
     为TRIPLEX模型的参数化、关键过程的优化及校正、不同尺度数据的融合等技术的革新提供了科学依据,有效地降低模型模拟的不确定性,具有重要的实践意义。
Forest carbon balance refers to the carbon sequestrated in gross primary productivity (GPP), net primary productivity (NPP) and net ecosystem productivity (NEP) of forest ecosystem in unit time and unit area. It not only plays an important role in the global climate change, but also is susceptible to the climate change. Therefore, the study on the regional forest carbon balance would help to enhance the understanding of matter cycle and energy flowing of ecosystem and reveal the corresponding rules of ecosystem to the global climate change and impacts of global climate change to the ecosystem and their sensitivity to increases in atmosphere CO2concentration, changes in temperature and precipitation. Accurate estimation of forest carbon balance is important for understanding the dynamics of the terrestrial carbon resulting from human-induced climate change, and makes the foundation for land surface, ecological and hydrological modeling, carbon-and water-cycle studies, and research on global climate change. TRIPLEX is a process-based hybrid mode, it focuses on the physiological processes of C assimilation, C contrast with most existing models, also supports component overload, where two or more components that have the same or a similar role in the customized model, can work together. This further increases the flexibility of model reuse. TRIPLEX has the potential and flexibility to allow users to piece together a complete, customized forest simulation model from components that were built for other well-established models. The model could be expanded dynamically and used for research on climate change, forest carbon budgets and dynamics, forest succession, and ecosystem disturbances (e.g. harvest, fire, and insect outbreaks).
     This study aims to produce accurate estimation of forest carbon balance and potential response to future climate change with process-based hybrid model TRIPLEX1.6in Hunan province, subtropical China. The objectives of this study were to:(1) at stand level, calibrate and validate TRIPLEX for applicability to large scale C. lanceolata and P. massoniana forests,(2) simulate C. lanceolata and P. massoniana forest stand production in Hunan Province, southern China, and make quantitative analysis of relationships between simulated forest stand growth on a provincial scale and spatial patterns of controlling factors;(3) regional validate TRIPLEX for applicabilities to four forest types;(4) predict long-term spatial-temporal patterns of forest carbon balance in Hunan province with the climate inputs from multi-CMIP5emsembled outputs and its responses to climate change, and make sensitive analysis of relationships between projected potential of forest carbon balance on multi-scale spatial-temporal impacts.
     In the support of Remote Sensing and Geographic Information System, based on the meteorological records of temperature and precipitation data measured at68stations, year1956-2009; the multi-CMIP5model ensembled half-Century projections of future climate trends over Hunan province under the RCP4.5and RCP8.5scenario; and the DEM data of the Hunan province region, the raster of climate inputs were intepolated, which would be the environment inputs of the carbon storage and NPP. MODIS data with250m spatial resolution, climate data,30m DEM, forest map and2173permanent sample plot (PSP2004) and1973plots of PSP2009data of National Forest Inventory (NFI) were used to the carbon model. To get a more accurate model of estimating forest carbon storage, the forest was divided into four types (pine forest, PF; fir forest, FF; deciduous broadleaved forest, DBF; evergreen broadleaved forest, EBF).
     Our results indicate that:By the use of monthly climate data from Jan.2000to Jan.2009at each stand level, the spatial pattern and dynamics of carbon storage for Cunninghamia lanceolata and Pinus massoniana forest stand production in Hunan Province, China. The process-based hybrid model is a promising tool for predicting forest stand roduction on regional scales. TRIPLEX1.6is capable in predicting forest growth and biomass dynamics of subtropical coniferous forests. Moreover, independent validations determined that TRIPLEX1.6demonstrated competence in extrapolating outcomes on regional scales as well as withstanding rigorous testing in predicting C storage in subtropical forest ecosystems.
     net primary production (NPP) flux for atmospheric carbon dioxide has varied slightly from year-to-year, but was predicted to have increased over short multi-year periods in the regions of the forested area, and the western since the year2000. These results for were found to be in contrast to other recently published modeling trends for terrestrial NPP with high sensitivity to regional drying patterns. Nonetheless, periodic declines in regional NPP were predicted by TRIPPLEX for the southern and western, the southern Hunan, and southern and eastern Hunan. NPP in subtropical forest zones was examined in greater detail to discover lower annual production values than previously reported in many global models across the subtropical forest zones, likely due to the enhanced detection of lower production ecosystems replacing primary subtropical forest.
     Nevertheless, TRIPLEX model validation is as yet incomplete. This is primarily the result of the absence of observed soil C data in the plots selected for this study. More rigorous testing of the ability of the model to simulate soil C, N, and water dynamics for various forest ecosystems is a priority in its ongoing development. There are, however, several sources of uncertainty associated with model estimates such as PSP measurement uncertainty, input data uncertainty, model structural uncertainty, and uncertainties pertaining to how strongly limited validation sources represent forest dynamics. Parameter values derived from different sources also contain substantial uncertainties as do impacts from natural and anthropogenic disturbances such as land use change, forest fires, insect-induced mortality and harvesting as well as uncertainties related to the techniques used to fill data gaps. However, despite these limitations, TRIPLEX simulation results fall into the reasonable bounds of measured and published values. Furthermore, additional modules related to the effects of CO2fertilization, ecosystem disturbances (e.g., fire, harvesting, insects, and disease), and soil water stress on forest growth and C and N dynamics must be included in the future development and application of TREPLEX.
引文
[1]Guixia Q, Xiaochuan G, Jianjun G, et al. China's dairy crisis:impacts, causes and policy implications for a sustainable dairy industry[J]. International Journal of Sustainable Development & World Ecology 2011,18(5):434-441.
    [2]Johnson J A. Crisis, change and creativity in science and technology:chemistry in the aftermath of twentieth-century global wars[J]. Ambix.2011,58(2):101-115.
    [3]Mitchell E, Frisbie S, Sarkar B. Exposure to multiple metals from groundwater-a global crisis: geology, climate change, health effects, testing, and mitigation[J]. Metallomics.2011, 3(9):874-908.
    [4]Nepstad D C, Boyd W, Stickler C M, et al. Responding to climate change and the global land crisis: REDD+, market transformation and low-emissions rural development[J]. Philos Trans R Soc Lond B Biol Sci.2013,368(1619):20120167.
    [5]Myers S S, Bernstein A. The coming health crisis:indirect health effects of global climate change[J]. F1000 Biol Rep.2011,3:3.
    [6]Baker F D. Reassessing Carbon Sinks [J]. Science,2008,317:1708-1709
    [7]贾学军.现代工业文明与全球生态危机的根源[J].生态经济.2013(1):18-23.
    [8]王庚辰,温玉璞,孔琴心,等.中国大陆上空CO2的本底浓度及其变化[J].科学通报.2002,47(10):780-783.
    [9]赵兴云,王建,钱君龙.用树轮613C重建1685年以来的大气CO2浓度变化趋势[J].第四纪研究.2005,25(5):545-551.
    [10]秦大河,陈振林,罗勇,等.气候变化科学的最新认知[J].气候变化研究进展.2007,3(2):63-73.
    [11]Ding Y H, Ren G Y., Zhao Z C, et al. Detection, causes and projection of climate change over China:an overview of recent progress[J]. Advances in Atmospheric Sciences,2007,24 (6),954-9712007,24(6):954-971.
    [12]Loriu s C, Jouzel J, Rit z C, et al. A 150000-year climatic record from Antarcti c ice[J]. Nature,1985,316:591-596.
    [13]Manabe S, Wetherald RT. Thermal equlibrium of the atmosphere with a given distribution of relative humidity[J]. Journal of Atmospheric Science,1967,24:241-259.
    [14]丁一汇,任国玉,石广玉,等.气候变化国家评估报告(I):中国气候变化的历史和未来趋势[J].气候变化研究进展.2006,2(1):3-8.
    [15]Yoshimura T. Matsushita Electric's Activities for Environmental Protection[J].1999,45(3): 222-225.
    [16]Lin S J, Rogers P, Lu I J. Decoupling effects among energy use, economic growth and CO_2 emission from the transportation sector[C]. New Forest, England:2007.
    [17]Dawson T P. ESTIMATING CARBON IN THE LANDSCAPE:A SYNERGY OF REMOTE SENSING AND ECOSYSTEM MODELLING[C]. Ottawa(CA):1999.
    [18]Chromec P R, Ferraro F A. WASTE-TO-ENERGY IN THE CONTEXT OF GLOBAL WARMING[C]. Philadelphia (US).
    [19]Huang W M, Lee G W M, Wu C C. GHG emissions, GDP growth and the Kyoto Protocol: A revisit of Environmental Kuznets Curve hypothesis[J].2008,36(1):239-247.
    [20]Narayan C, Fernandes P M, van Brusselen J, et al. Potential for CO2 emissions mitigation in Europe through prescribed burning in the context of the Kyoto Protocol[J].2007,251(3): 164-173.
    [21]Laurijssen J, Faaij A P, C. Trading biomass or GHG emission credits?[J].2009,94(3/4): 287-317.
    [22]胡鞍钢,管清友.应对全球气候变化:中国的贡献——兼评托尼·布莱尔《打破气候变化僵局:低碳未来的全球协议》报告[J].当代亚太.2008(4):7-25.
    [23]王剑虹.非政府组织在应对全球气候变化中的作用[D].黑龙江大学,2011.
    [24]方德声.化石银杏反映气候变化和全球碳循环的准确信息[J].科学(上海).2003,55(5):33.
    [25]Dolman A J, van der Werf G R, van der Molen M K, et al. A carbon cycle science update since IPCC AR-4[J]. Ambio.2010,39(5-6):402-412.
    [26]陈建芳,张海生,金海燕,等.北极陆架沉积碳埋藏及其在全球碳循环中的作用[J].极地研究.2004,16(3):193-201.
    [27]Shanin V N, Mikhailov A V, Bykhovets S S, et al. [Global climate change and carbon balance in forest ecosystems of boreal zones:imitating modeling as a forecast tool][J]. Izv Akad Nauk Ser Biol.2010(6):719-730.
    [28]Cox P M, Pearson D, Booth B B, et al. Sensitivity of tropical carbon to climate change constrained by carbon dioxide variability[J]. Nature.2013,494(7437):341-344.
    [29]Abrams M D. Adaptations of forest ecosystems to air pollution and climate change[J]. Tree Physiol.2011,31(3):258-261.
    [30]Aldy J E, Stavins R N. Climate change. Climate negotiators create an opportunity for scholars[J]. Science.2012,337(6098):1043-1044.
    [31]于新文.中国参与长期(2000-2050年)CO_2减排的情景选择[J].气候变化研究进展.2010,6(1):53-59.
    [32]Villela D M, Mattos E A, Pinto A S, et al. Carbon and nitrogen stock and fluxes in coastal Atlantic Forest of southeast Brazil:potential impacts of climate change on biogeochemical functioning[J]. Braz J Biol.2012,72(3 Suppl):633-642.
    [33]Wang B, Gao P, Guo H, et al. [Responses of tree-ring width of Cinnamomum camphora to climate change in Dagangshan forest area of Jiangxi Province][J]. Ying Yong Sheng Tai Xue Bao.2009,20(1):71-76.
    [34]Kurita N. Climate change. Dancing to the tune of the glacial cycles[J]. Science.2012, 336(6086):1242-1243.
    [35]Kutsch W L, Kolle O, Rebmann C, et al. Advection and resulting CO2 exchange uncertainty in atall forest in central Germany[J]. Ecol Appl.2008,18(6):1391-1405.
    [36]Kerr R A. Global change. Forecasting regional climate change flunks its first test[J]. Science. 2013,339(6120):638.
    [37]Chen X M, Liu J X, Deng Q, et al. [Effects of precipitation intensity on soil organic carbon fractions and their distribution under subtropical forests of South China][J]. Ying Yong Sheng Tai Xue Bao.2010,21(5):1210-1216.
    [38]李少娟,黄樱,屠拉IPCC AR4气候多模式对云南特征气温变化的模拟预估----滇西南区案例分析(1960-2050年)[J].资源与生态学报(英文版).2012,03(1):33-42.
    [39]Zhou G, Peng C, Li Y, et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China[J]. Glob Chang Biol. 2013,19(4):1197-1210.
    [40]Cai H, Zhang S, Yang X. Forest dynamics and their phenological response to climate warming in the Khingan Mountains, northeastern China[J]. Int J Environ Res Public Health. 2012,9(11):3943-3953.
    [41]Song L, Liu W Y, Ma W Z, et al. Response of epiphytic bryophytes to simulated N deposition in a subtropical montane cloud forest in southwestern China[J]. Oecologia.2012, 170(3):847-856.
    [42]Ma K M, Zu Y G, Godron M. Scale correlation between vegetation and soil in larch forest, NE China[J]. J Environ Sci (China).2001,13(1):51-57.
    [43]Fang D M, Zhou G S, Jiang Y L, et al. [Impact of fire on carbon dynamics of Larix gmelinii forest in Daxing'an Mountains of North-East China:a simulation with CENTURY model][J]. Ying Yong Sheng Tai Xue Bao.2012,23(9):2411-2421.
    [44]He J J, Peng X Y, Chen Z J, et al. [Responses of Pinus tabulaeformis forest ecosystem in North China to climate change and elevated CO2:a simulation based on BIOME-BGC model and tree-ring data][J]. Ying Yong Sheng Tai Xue Bao.2012,23(7):1733-1742.
    [45]Zheng ZM,Yu G R, Sun X M, et al. Spatio-temporal variability of soil respiration of forest ecosystems in China:influencing factors and evaluation model[J]. Environ Manage.2010, 46(4):633-642.
    [46]Zhang M, Wen X F, Yu G R, et al. [Effects of CO2 storage flux on carbon budget of forest ecosystem][J]. Ying Yong Sheng Tai Xue Bao.2010,21(5):1201-1209.
    [47]Zhao L, Wang J, Zhou J, et al. [Modification of carbon flux in Sacchromyces cerevisiae to improve L-lactic acid production][J]. Wei Sheng Wu Xue Bao.2011,51(1):50-58.
    [48]王旭,尹光彩,周国逸,等.鼎湖山针阔混交林旱季能量平衡研究[J].热带亚热带植物学报.2005,13(3):205-210.
    [49]郭家选,李玉中,梅旭荣.冬小麦农田尺度瞬态CO2通量与水分利用效率日变化及影响因素分析[J].中国生态农业学报.2006,14(3):78-81.
    [50]桑玉强,吴文良,张劲松,等.毛乌素沙地杨树防护林内紫花苜蓿蒸散耗水规律的研究[J].农业工程学报.2006,22(5):44-49.
    [51]朱治林,孙晓敏,张仁华.用微气象方法估算淮河流域能量平衡(HUBEX/IOP 1998/99)的统计分析和比较研究[J].大气科学进展(英文版).2003,20(2):285-291.
    [52]赵亮,徐世晓,伏玉玲,等.积雪对藏北高寒草甸CO2和水汽通量的影响[J].草地学报.2005,13(3):242-247.
    [53]方显瑞,张志强,查同刚,等.永定河沿河沙地杨树人工林生态系统呼吸特征[J].生态学报.2012,32(8):2400-2409.
    [54]李琪,王云龙,胡正华,等.基于涡度相关法的中国草地生态系统碳通量研究进展[J].草业科学.2010,27(12):38-44.
    [55]孙丽,宋长春.三江平原典型沼泽湿地蒸散发估测[J].应用生态学报.2008,19(9):1925-1930.
    [56]宋霞,刘允芬,徐小锋.箱法和涡度相关法测碳通量的比较研究[J].江西科学.2003,21(3):206-210.
    [57]Rogelj J, Mccollum D L, Reisinger A, et al. Probabilistic cost estimates for climate change mitigation[J]. Nature.2013,493(7430):79-83.
    [58]王修信,朱启疆,陈声海,等.城市绿地水热通量的遥感反演与实验验证[J].地域研究与开发.2010,29(3):63-66.
    [59]吴家兵,关德新,孙晓敏,等.长白山阔叶红松林二氧化碳湍流交换特征[J].应用生态学报.2007,18(5):951-956.
    [60]彭珍,胡非,蒋维楣,等.地气通量中存贮和平流项计算方案的探讨[J].气候与环境研究.2009,14(2):113-119.
    [61]林茂.土壤温室气体通量测定方法的比较和评价[J].湖南农业科学.2012(9):44-46,50.
    [62]刘恩民,张代桥,刘万章,等.鲁西北平原农田耗水规律与测定方法比较[J].水科学进展.2009,20(2):190-196.
    [63]李双江,刘文兆,高桥厚裕,等.黄土塬区麦田C02通量季节变化[J].生态学报.2007,27(5):1987-1992.
    [64]朱咏莉,童成立,吴金水,等.亚热带稻田生态系统C02通量的季节变化特征[J].环境科学.2007,28(2):283-288.
    [65]宋涛,王跃思,宋长春,等.三江平原稻田C02通量及其环境响应特征[J].中国环境科学.2006,26(6):657-661.
    [66]延芳芳.陆地生态系统碳通量观测方法的研究进展[J].科技促进发展.2012(4):158-159.
    [67]于成龙,刘丹.小兴安岭天然阔叶混交林生长季C02通量特征分析[J].中国农业气象.2011,32(4):525-529,537.
    [68]魏远,张旭东,江泽平,等.湖南岳阳地区杨树人工林生态系统净碳交换季节动态研究[J].林业科学研究.2010,23(5):656-665.
    [69]王修信,朱启疆,陈声海,等.北京市海淀公园绿地C02通量变化特征[J].应用基础与工程科学学报.2011,19(1):166-172.
    [70]谌志刚,卞林根,陆龙骅,等.涡度相关仪倾斜订正方法的比较及应用[J].气象科技.2008,36(3):355-359.
    [71]郭家选,李巧珍,李玉中.黄土高原旱作春玉米农田能量交换变化研究[J].北京农学院学报.2012,27(1):1-5.
    [72]黄祥忠,郝彦宾,王艳芬,等.极端干旱条件下锡林河流域羊草草原净生态系统碳交换特征[J].植物生态学报.2006,30(6):894-900.
    [73]王建林,杨新民,房全孝.不同尺度农田水分利用效率测定方法评述[J].中国农学通报.2010,26(6):77-80.
    [74]杨存建,刘纪远,黄河,等.热带森林植被生物量与遥感地学数据之间的相关性分析[J].地理研究.2005,24(3):473-479.
    [75]季碧勇,陶吉兴,张国江,等.高精度保证下的浙江省森林植被生物量评估[J].浙江农林大学学报.2012,29(3):328-334.
    [76]朱瑞亮.浅谈资产清查数据收集与整理中的问题[J].科技创新导报.2007(32):135.
    [77]张明园,魏燕华,孔凡磊,等.耕作方式对华北农田土壤有机碳储量及温室气体排放的影响[J].农业工程学报.2012,28(6):203-209.
    [78]杨玉盛,董彬,谢锦升,等.森林土壤呼吸及其对全球变化的响应[J].生态学报.2004,24(3):583-591.
    [79]陈全胜,李凌浩,韩兴国,等.水分对土壤呼吸的影响及机理[J].生态学报.2003, 23(5):972-978.
    [80]郝旺林,梁银丽,吴兴,等.不同前茬冬小麦土壤呼吸特征及影响因子分析[J].环境科学.2011,32(11):3167-3173.
    [81]彭少麟,李跃林,任海,等.全球变化条件下的土壤呼吸效应[J].地球科学进展.2002,17(5):705-713.
    [82]卫云燕,尹华军,刘庆,等.气候变暖背景下森林土壤碳循环研究进展[J].应用与环境生物学报.2009,15(6):888-894.
    [83]闫宗平,仝川.外来植物入侵对陆地生态系统地下碳循环及碳库的影响[J].生态学报.2008,28(9):4440-4450.
    [84]王清奎.碳输入方式对森林土壤碳库和碳循环的影响研究进展[J].应用生态学报.2011,22(4):1075-1081.
    [85]王义东,王辉民,马泽清,等.土壤呼吸对降雨响应的研究进展[J].植物生态学报.2010,34(5):601-610.
    [86]张丽华,陈亚宁,赵锐锋,等.干旱区杨树、榆树人工防护林地土壤Co_2释放通量研究[J].植物生态学报.2010,34(5):526-534.
    [87]Ruhl M, Rupp B, Noh K, et al. Collisional fragmentation of central carbon metabolites in LC-MS/MS increases precision of (1)(3)C metabolic flux analysis[J]. Biotechnol Bioeng. 2012,109(3):763-771.
    [88]De RK, Tomar N. Modeling the optimal central carbon metabolic pathways under feedback inhibition using flux balance analysis[J]. J Bioinform Comput Biol.2012,10(6):1250019.
    [89]Mongelard G, Seemann M, Boisson A M, et al. Measurement of carbon flux through the MEP pathway for isoprenoid synthesis by (31)P-NMR spectroscopy after specific inhibition of 2-C-methyl-d-erythritol 2,4-cyclodiphosphate reductase. Effect of light and temperature [J]. Plant Cell Environ.2011,34(8):1241-1247.
    [90]Geohegan D B, Puretzky A A, Jackson J J, et al. Flux-dependent growth kinetics and diameter selectivity in single-wall carbon nanotube arrays[J]. ACS Nano.2011,5(10): 8311-8321.
    [91]Lee P, Leong W, Tan T, et al. In vivo hyperpolarized carbon-13 magnetic resonance spectroscopy reveals increased pyruvate carboxylase flux in an insulin-resistant mouse model[J]. Hepatology.2013,57(2):515-524.
    [92]Tyurin M. Gene replacement and elimination using lambdaRed-and FLP-based tool to re-direct carbon flux in acetogen biocatalyst during continuous CO/H blend fermentation[J]. J Ind Microbiol Biotechnol.2013.
    [93]Liu X, Xu L, Sun L, et al. A 400-year record of black carbon flux in the Xisha archipelago, South China Sea and its implication[J]. Mar Pollut Bull.2011,62(10):2205-2212.
    [94]Wankel S D, Adams M M, Johnston D T, et al. Anaerobic methane oxidation in metalliferous hydrothermal sediments:influence on carbon flux and decoupling from sulfate reduction[J]. Environ Microbiol.2012,14(10):2726-2740.
    [95]Fares S, Vargas R, Detto M, et al. Tropospheric ozone reduces carbon assimilation in trees: estimates from analysis of continuous flux measurements[J]. Glob Chang Biol.2013.
    [96]Beste D J, Bonde B, Hawkins N, et al. (1)(3)C metabolic flux analysis identifies an unusual route for pyruvate dissimilation in mycobacteria which requires isocitrate lyase and carbon dioxide fixation[J]. PLoS Pathog.2011,7(7):e1002091.
    [97]Corea O R, Bedgar D L, Davin L B, et al. The arogenate dehydratase gene family:towards understanding differential regulation of carbon flux through phenylalanine into primary versus secondary metabolic pathways[J]. Phytochemistry.2012,82:22-37.
    [98]Liu Y, Wan K Y, Tao Y, et al. Carbon dioxide flux from rice paddy soils in central China: effects of intermittent flooding and draining cycles[J]. PLoS One.2013,8(2):e56562.
    [99]Jones G, Del S R, Dudley E, et al. Forkhead-associated proteins genetically linked to the serine/threonine kinase PknB regulate carbon flux towards antibiotic biosynthesis in Streptomyces coelicolor[J]. Microb Biotechnol.2011,4(2):263-274.
    [100]Pearce R C, Vasenkov A V, Hensley D K, et al. Role of ion flux on alignment of carbon nanofibers synthesized by DC plasma on transparent insulating substrates[J]. ACS Appl Mater Interfaces.2011,3(9):3501-3507.
    [101]Taubert M, Vogt C, Wubet T, et al. Protein-SIP enables time-resolved analysis of the carbon flux in a sulfate-reducing, benzene-degrading microbial consortium[J]. ISME J.2012,6(12): 2291-2301.
    [102]Beckingham B, Ghosh U. Polyoxymethylene passive samplers to monitor changes in bioavailability and flux of PCBs after activated carbon amendment to sediment in the field[J]. Chemosphere.2013,91(10):1401-1407.
    [103]Xu P, Ranganathan S, Fowler Z L, et al. Genome-scale metabolic network modeling results in minimal interventions that cooperatively force carbon flux towards malonyl-CoA[J]. Metab Eng.2011,13(5):578-587.
    [104]Usui Y, Hirasawa T, Furusawa C, et al. Investigating the effects of perturbations to pgi and eno gene expression on central carbon metabolism in Escherichia coli using (13)C metabolic flux analysis[J]. Microb Cell Fact.2012,11:87.
    [105]Ge X Y, Xu Y, Chen X. Improve carbon metabolic flux in Saccharomyces cerevisiae at high temperature by overexpressed TSL1 gene[J]. J Ind Microbiol Biotechnol.2013,40(3-4): 345-352.
    [106]Ward J L, Baker J M, Llewellyn A M, et al. Metabolomic analysis of Arabidopsis reveals hemiterpenoid glycosides as products of a nitrate ion-regulated, carbon flux overflow[J]. Proc Natl Acad Sci U S A.2011,108(26):10762-10767.
    [107]Ac A, Malenovsky Z, Urban O, et al. Relation of chlorophyll fluorescence sensitive reflectance ratios to carbon flux measurements of montanne grassland and norway spruce forest ecosystems in the temperate zone[J]. ScientificWorldJournal.2012,2012:705872.
    [108]Allen D K, Young J D. Carbon and nitrogen provisions alter the metabolic flux in developing soybean embryos[J]. Plant Physiol.2013,161(3):1458-1475.
    [109]Mei H Y, Wang F S, Yao C C, et al. [Diffusion flux of partial pressure of dissolved carbon dioxide in Wan'an reservoir in spring][J]. Huan Jing Ke Xue.2011,32(1):58-63.
    [110]Song X M, Liu J G, Zhang Y J, et al. [Monitoring the flux of carbon dioxide gas with tunable diode laser absorption spectroscopy][J]. Guang Pu Xue Yu Guang Pu Fen Xi.2011, 31(1):184-187.
    [111]Hayden D M, Rolletschek H, Borisjuk L, et al. Cofactome analyses reveal enhanced flux of carbon into oil for potential biofuel production[J]. Plant J.2011,67(6):1018-1028.
    [112]Stewart J R, Stringer C B. Human evolution out of Africa: the role of refugia and climate change[J]. Science.2012,335(6074):1317-1321.
    [113]Pringle H. Archaeology. Did pulses of climate change drive the rise and fall of the Maya?[J]. Science.2012,338(6108):730-731.
    [114]Kerr R A. Predicting climate change. Vital details of global warming are eluding forecasters [J]. Science.2011,334(6053):173-174.
    [115]Jiao L, Stone R. Climate change. China looks to balance its carbon books[J]. Science.2011, 334(6058):886-887.
    [116]Clusella-Trullas S, Chown S L. Comment on "Erosion of lizard diversity by climate change and altered thermal niches"[J]. Science.2011,332(6029):537,537.
    [117]Secord R, Bloch J I, Chester S G, et al. Evolution of the earliest horses driven by climate change in the Paleocene-Eocene Thermal Maximum[J]. Science.2012,335(6071):959-962.
    [118]Malakoff D. Climate change. Researchers struggle to assess responses to ocean acidification[J]. Science.2012,338(6103):27-28.
    [119]Velders G J, Ravishankara A R, Miller M K, et al. Climate change. Preserving Montreal Protocol climate benefits by limiting HFCs[J]. Science.2012,335(6071):922-923.
    [120]Kerr R A. Climate change. Ice-free Arctic sea may be years, not decades, away[J]. Science. 2012,337(6102):1591.
    [121]Kintisch E. Climate change. Hansen's retirement from NASA spurs look at his legacy [J]. Science.2013,340(6132):540-541.
    [122]Shindell D, Kuylenstierna J C, Vignati E, et al. Simultaneously mitigating near-term climate change and improving human health and food security[J]. Science.2012,335(6065): 183-189.
    [123]Scheffran J, Brzoska M, Kominek J, et al. Climate change and violent conflict[J]. Science. 2012,336(6083):869-871.
    [124]Willis J K, Church J A. Climate change. Regional sea-level projection[J]. Science.2012, 336(6081):550-551.
    [125]Lindgren E, Andersson Y, Suk J E, et al. Public health. Monitoring EU emerging infectious disease risk due to climate change[J]. Science.2012,336(6080):418-419.
    [126]Kennett D J, Breitenbach S F, Aquino V V, et al. Development and disintegration of Maya political systems in response to climate change[J]. Science.2012,338(6108):788-791.
    [127]Sandel B, Arge L, Dalsgaard B, et al. The influence of Late Quaternary climate-change velocity on species endemism[J]. Science.2011,334(6056):660-664.
    [128]Reardon S. Science education. Climate change sparks battles in classroom[J]. Science.2011, 333(6043):688-689.
    [129]Solomon S, Daniel J S, Neely R R, et al. The persistently variable "background" stratospheric aerosol layer and global climate change[J]. Science.2011,333(6044):866-870.
    [130]Brook E. Climate change. The ice age carbon puzzle[J]. Science.2012,336(6082):682-683.
    [131]Zhang C, Lu X L, Yang G P, et al. [Distribution, flux and photoproduction of carbon monoxide in the Yellow Sea and the Bohai Sea in spring][J]. Huan Jing Ke Xue.2011, 32(8):2204-2211.
    [132]Zhang Y, Li S, Liu L, et al. Acetoin production enhanced by manipulating carbon flux in a newly isolated Bacillus amyloliquefaciens[J]. Bioresour Technol.2013,130:256-260.
    [133]Song X M, Liu J G, Zhang Y J, et al. [Study of remote sensing the flux of carbon dioxide gas with tunable diode laser absorption spectroscopy][J]. Guang Pu Xue Yu Guang Pu Fen Xi.2011,31(3):803-807.
    [134]Brandes A, Lun D S, Ip K, et al. Inferring carbon sources from gene expression profiles using metabolic flux models[J]. PLoS One.2012,7(5):e36947.
    [135]Deretzis I, La Magna A. Interaction between hydrogen flux and carbon monolayer on SiC(0001):graphene formation kinetics[J]. Nanoscale.2013,5(2):671-680.
    [136]Lequeux G, Beauprez J, Maertens J, et al. Dynamic metabolic flux analysis demonstrated on cultures where the limiting substrate is changed from carbon to nitrogen and vice versa[J]. J Biomed Biotechnol.2010,2010.
    [137]Wilson L, Wilson J, Holden J, et al. Ditch blocking, water chemistry and organic carbon flux:evidence that blanket bog restoration reduces erosion and fluvial carbon loss[J]. Sci Total Environ.2011,409(11):2010-2018.
    [138]Qiu L, Zu Y G, Wang W J, et al. [CO2 flux characteristics and their influence on the carbon budget of a larch plantation in Maoershan region of Northeast China][J]. Ying Yong Sheng Tai Xue Bao.2011,22(1):1-8.
    [139]Mou M J, Zhu W Q, Wang L L, et al. [Evaluation of remote sensing extraction methods for vegetation phenology based on flux tower net ecosystem carbon exchange data][J]. Ying Yong Sheng Tai Xue Bao.2012,23(2):319-327.
    [140]Deng Y, Olson D G, Zhou J, et al. Redirecting carbon flux through exogenous pyruvate kinase to achieve high ethanol yields in Clostridium thermocellum[J]. Metab Eng.2013,15: 151-158.
    [141]Kondo T, Tezuka H, Ishii J, et al. Genetic engineering to enhance the Ehrlich pathway and alter carbon flux for increased isobutanol production from glucose by Saccharomyces cerevisiae[J]. J Biotechnol.2012,159(1-2):32-37.
    [142]Galbraith D, Levy P E, Sitch S, et al. Multiple mechanisms of Amazonian forest biomass losses in three dynamic global vegetation models under climate change[J]. New Phytol.2010, 187(3):647-665.
    [143]Andriamasimanana R H, Cameron A. Predicting the impacts of climate change on the distribution of threatened forest-restricted birds in Madagascar[J]. Ecol Evol.2013,3(4): 763-769.
    [144]Archetti M, Richardson A D, O'Keefe J, et al. Predicting climate change impacts on the amount and duration of autumn colors in a New England forest[J]. PLoS One.2013,8(3): e57373.
    [145]Wang F, Xu Y J, Dean T J. Projecting climate change effects on forest net primary productivity in subtropical Louisiana, USA[J]. Ambio.2011,40(5):506-520.
    [146]李超,胡海波.次生栎林生态系统碳通量与环境因子非对称响应机制[J].中南林业科技大学学报.2012,32(9):94-101.
    [147]王春林,周国逸,王旭,等.鼎湖山针阔叶混交林生态系统能量平衡分析[J].热带气象学报.2007,23(6):643-651.
    [148]刘渡,李俊,于强,等.涡度相关观测的能量闭合状况及其对农田蒸散测定的影响[J].生态学报.2012,32(17):5309-5317.
    [149]薛红喜,李峰,李琪,等.基于涡度相关法的中国农田生态系统碳通量研究进展[J].南 京信息工程大学学报.2012(3):226-232.
    [150]姚玉刚,张一平,于贵瑞,等.热带森林植被冠层C02储存项的估算方法研究[J].北京林业大学学报.201 1,33(1):23-29.
    [151]郭家选,李巧珍,严昌荣,等.干旱状况下小区域灌溉冬小麦农田生态系统水热传输[J].农业工程学报.2008,24(12):20-24.
    [152]宋霞,刘允芬,徐小锋,等.红壤丘陵区人工林冬春时段碳、水、热通量的观测与分析[J].资源科学.2004,26(3):96-104.
    [153]赵亮,李英年,赵新全,等.青藏高原3种植被类型净生态系统C02交换量的比较[J].科学通报.2005,50(9):926-932.
    [154]郭家选,何桂梅,师光禄,等.生草免耕桃园生态系统的碳交换动态变化特征[J].农业工程学报.2012,28(12):216-222.
    [155]郭家选,梅旭荣,卢志光.冬小麦冠层温度及其影响因素探析[J].中国生态农业学报.2003,11(4):24-26.
    [156]宋涛,王跃思,赵晓松,等.三江平原农田夜间呼吸的涡度相关法和箱法观测比对[J].环境科学.2007,28(8):1854-1860.
    [157]赵亮,徐世晓,李英年,等.青藏高原矮嵩草草甸和金露梅灌丛草甸C02通量变化与环境因子的关系[J].西北植物学报.2006,26(1):133-142.
    [158]雷慧闽,杨大文,沈彦俊,等.黄河灌区水热通量的观测与分析[J].清华大学学报(自然科学版).2007,47(6):801-804,813.
    [159]王春林,周国逸,王旭,等.复杂地形条件下涡度相关法通量测定修正方法分析[J].中国农业气象.2007,28(3):233-240,267.
    [160]田红,伍琼,童应祥.安徽省寿县农田能量平衡评价[J].应用气象学报.2011,22(3):356-361.
    [161]刘晨峰,张志强,查同刚,等.涡度相关法研究土壤水分状况对沙地杨树人工林生态系统能量分配和蒸散日变化的影响[J].生态学报.2006,26(8):2549-2557.
    [162]李泽晖,王云龙,魏远,等.湖南岳阳杨树人工林光能利用率动态特征分析1007—7588(2012)10——1832——07[J].资源科学.2012,34(10):1832-1838.
    [163]刘海军,黄冠换,Joseftanny,等.用涡度相关法测定网室内香蕉树蒸散量[J].农业工程学报.2008,24(9):1-5.
    [164]赵晓松,关德新,吴家兵,等.长白山阔叶红松林C02通量与温度的关系[J].生态学报.2006,26(4):1088-1095.
    [165]郭家选,梅旭荣,欧阳兆鹏,等.华北粗砂土免耕桃园生态尺度水分利用效率研究[J].农学学报.2012,2(11):21-28.
    [166]李婧梅,蔡海,程茜,等.青海省三江源地区退化草地蒸散特征[J].草业学报.2012, 21(3):223-233.
    [167]Spadavecchia L, Williams M, Law B E. Uncertainty in predictions of forest carbon dynamics: separating driver error from model error[J]. Ecol Appl.2011,21(5):1506-1522.
    [168]Larson C. Climate change. An unsung carbon sink[J]. Science.2011,334(6058):886-887.
    [169]Zhang H X, Zhang M L, Sanderson S C. Retreating or standing: responses of forest species and steppe species to climate change in arid eastern central Asia[J]. PLoS One.2013,8(4): e61954.
    [170]Yousefpour R, Temperli C, Bugmann H, et al. Updating beliefs and combining evidence in adaptive forest management under climate change:A case study of Norway spruce (Picea abies L. Karst) in the Black Forest, Germany[J]. J Environ Manage.2013,122:56-64.
    [171]Seidl R, Lexer M J. Forest management under climatic and social uncertainty:trade-offs between reducing climate change impacts and fostering adaptive capacity[J]. J Environ Manage.2013,114:461-469.
    [172]Koch F H, Yemshanov D, Mckenney D W, et al. Evaluating critical uncertainty thresholds in a spatial model of forest pest invasion risk[J]. Risk Anal.2009,29(9):1227-1241.
    [173]Verbeeck H, Samson R, Verdonck F, et al. Parameter sensitivity and uncertainty of the forest carbon flux model FORUG:a Monte Carlo analysis[J]. Tree Physiol.2006,26(6): 807-817.
    [174]Linkov I, Burmistrov D. Sources of uncertainty in model predictions:lessons learned from the IAEA Forest and Fruit Working Group model intercomparisons[J]. J Environ Radioact. 2005,84(2):297-314.
    [175]Smith J E, Heath L S. Identifying influences on model uncertainty:an application using a forest carbon budget model[J]. Environ Manage.2001,27(2):253-267.
    [176]Peng C, Liu J, Dang Q, et al. TRIPLEX:a generic hybrid model for predicting forest growth and carbon and nitrogen dynamics[J]. Ecological Modelling.2002,153(1):109-130.
    [177]Zhou X, Peng C, Dang Q. Assessing the generality and accuracy of the TRIPLEX model using in situ data of boreal forests in central Canada[J]. Environmental Modelling & Software.2004,19(1):35-46.
    [178]Wang W, Peng C, Zhang S Y, et al. Development of TRIPLEX-Management model for simulating the response of forest growth to pre-commercial thinning[J]. Ecological Modelling.2011,222(14):2249-2261.
    [179]Zhang J, Chu Z, Ge Y, et al. TRIPLEX model testing and application for predicting forest growth and biomass production in the subtropical forest zone of China's Zhejiang Province[J]. Ecological Modelling.2008,219(3):264-275.
    [180]Zhou X, Peng C, Dang Q, et al. Predicting forest growth and yield in northeastern Ontario using the process-based model of TRIPLEX1.0[J]. Canadian Journal of Forest Research. 2005,35(9):2268-2280.
    [181]Donner S D, Kandlikar M, Zerriffi H. Environment and development. Preparing to manage climate change financing[J]. Science.2011,334(6058):908-909.
    [182]de Sherbinin A, Castro M, Gemenne F, et al. Climate change. Preparing for resettlement associated with climate change[J]. Science.2011,334(6055):456-457.
    [183]廖宏,朱懿旦.全球碳循环与中国百年气候变化[J].第四纪研究.2010,30(3):445-455.
    [184]姚冠荣,高全洲.河流碳循环对全球变化的响应与反馈[J].地理科学进展。2005,24(5):50-60.
    [185]曲建升,孙成权,张志强,等.全球变化科学中的碳循环研究进展与趋向[J].地球科学进展.2003,18(6):980-987.
    [186]王淑红,宋海斌,颜文.地球系统中的天然气水合物-天然气体系研究展望[J].地球物理学进展.2006,21(1):232-243.
    [187]高全洲,沈承德,孙彦敏,等.北江流域有机碳侵蚀通量的初步研究[J].环境科学.2001,22(2):12-18.
    [188]徐小锋,宋长春.全球碳循环研究中”碳失汇”研究进展[J].中国科学院研究生院学报.2004,21(2):145-152.
    [189]孙政国,孙成明,李建龙,等.我国草地生态系统碳循环机制及碳蓄积核算研究回顾与展望[J].草业科学.2011,28(9):161 1-1616.
    [190]刘焰.深部碳循环:来自火成碳酸岩的启示[J].自然杂志.2012,34(4):201-207.
    [191]Fleischer Siegfried土壤中氮碳间相互作用对全球碳循环的影响[J].资源与生态学报(英文版).2012,03(1):16-19.
    [192]张洪波,管东生,郑淑颖.热带雨林的碳循环及其意义[J].热带地理.2001,21(2):178-182.
    [193]周广胜,王玉辉,蒋延玲,等.陆地生态系统类型转变与碳循环[J].植物生态学报.2002,26(2):250-254.
    [194]Liu J, Huang W, Zhou G, et al. Nitrogen to phosphorus ratios of tree species in response to elevated carbon dioxide and nitrogen addition in subtropical forests[J]. Glob Chang Biol. 2013,19(1):208-216.
    [195]Zhang Y J, Yang Q Y, Lee D W, et al. Extended leaf senescence promotes carbon gain and nutrient resorption:importance of maintaining winter photosynthesis in subtropical forests[J]. Oecologia.2013.
    [196]Sheikh M A, Kumar M, Bussmann R W. Altitudinal variation in soil organic carbon stock in coniferous subtropical and broadleaf temperate forests in Garhwal Himalaya[J]. Carbon Balance Manag.2009,4:6.
    [197]Wang F, Xu Y J, Dean T J. Projecting climate change effects on forest net primary productivity in subtropical Louisiana, USA[J]. Ambio.2011,40(5):506-520.
    [198]Mi N, Yu G R, Wen X F, et al. [Responses of subtropical conifer plantation to future climate change:a simulation study][J]. Ying Yong Sheng Tai Xue Bao.2008,19(9):1877-1883.
    [199]Zhou G, Peng C, Li Y, et al. A climate change-induced threat to the ecological resilience of a subtropical monsoon evergreen broad-leaved forest in Southern China[J]. Glob Chang Biol. 2013,19(4):1197-1210.
    [200]蒋倩,李心清,丁文慈,等.岩溶水系统对大气C02的潜在影响——基于热力学的研究[J].矿物岩石地球化学通报.2006,25(3):226-235.
    [201]李娜,王根绪,高永恒,等.青藏高原生态系统土壤有机碳研究进展[J].土壤.2009,41(4):512-519.
    [202]张正斌,宫海东,刘莲生,等.海洋碳循环过程中的海水微表层泵[J].中国科学B辑.2005,35(6):459-465.
    [203]牟长城,石兰英,孙晓新.小兴安岭典型草丛沼泽湿地CO2、CH4和N20的排放动态及其影响因素[J].植物生态学报.2009,33(3):617-623.
    [204]乔然,王彰贵,陈陟,等.太平洋中低纬海水中的二氧化碳分布特征及其与海洋环境条件的关系[J].海洋学报(中文版).2005,27(6):30-37.
    [205]刁一伟,王安志,金昌杰,等.林冠与大气间二氧化碳交换过程的模拟[J].应用生态学报.2006,17(12):2261-2265.
    [206]张鸿祥,肖群,李小军,等.稻田土壤有机碳固定研究及其展望[J].现代农业科技.2011(11):257-258,270.
    [207]乔然,王彰贵,张滨,等.海洋中的CO2观测与研究[J].海洋预报.2005,22(z1):106-114.
    [208]柴仲平,王雪梅,贾宏涛,等.干旱区绿洲冬小麦生态系统CO2源/汇关系研究[J].新疆农业科学.2008,45(6):986-989.
    [209]孙政国,孙成明,李建龙,等.我国草地生态系统碳循环机制及碳蓄积核算研究回顾与展望[J].草业科学.2011,28(9):1611-1616.
    [210]乔春连,李婧梅,王基恒,等.青藏高原高寒草甸生态系统CO2通量研究进展[J].草业科学.2012,29(2):204-210.
    [211]浦静姣,徐宏辉,康丽莉,等.临安区域大气本底站CO_2浓度特征及其碳源汇变化研究[J].环境科学.2011,32(8):2221-2225.
    [212]陈永根,李香华,胡志新,等.中国八大湖泊冬季水-气界面CO2通量[J].生态环境. 2006,15(4):665-669.
    [213]周凌晞,周秀骥,张晓春,等.瓦里关温室气体本底研究的主要进展[J].气象学报.2007,65(3):458-468.
    [214]郭劲松,蒋滔,李哲,等.三峡水库澎溪河春季水华期p(C02)及影响因素分析[J].水科学进展.2011,22(6):829-838.
    [215]李熠,何海伦,陈大可.基于海水环境和气象参数经验公式估算的东海海-气C02通量[J].海洋学研究.2012,30(3):5-15.
    [216]张乃星,孙旭,曹丛华,等.渤海海峡冬季无机碳的立体分布特征及其源汇变化[J].海洋学报(中文版).2012,34(6):94-101.
    [217]贾宏涛,赵成义,蒋平安,等.天山云杉林地生态系统C02源/汇关系研究[J].干旱区地理.2005,28(2):244-247.
    [218]贾宏涛,蒋平安,程路明,等.巴音布鲁克亚高山草原生态系统CO2源/汇关系初步研究[J].新疆农业大学学报.2006,29(4):37-40.
    [219]周莉,李保国,周广胜.土壤有机碳的主导影响因子及其研究进展[.J].地球科学进展.2005,20(1):99-105.
    [220]张小全.《京都议定书》第二承诺期森林管理基准线分析[J].气候变化研究进展.2011,07(6):428-434.
    [221]秦小光,蔡炳贵,吴金水,等.北京灵山草地土壤C02源汇和排放通量与温度湿度昼夜变化的关系[J].生态环境.2004,13(4):470-475.
    [222]Long-Jun Zhang,张云.夏季渤海表层海水pC02分布特征[J].中国海洋大学学报(自然科学版).2008,38(4):635-639.
    [223]张孝青,连宾,侯卫国,等.模拟污水对碳酸盐岩的溶蚀作用及其潜在的环境意义[J]。矿物岩石地球化学通报.2011,30(3):317-327.
    [224]李昭,黄克玲,刘仁义,等.海洋-大气二氧化碳通量三维时空可视化研究[J].浙江大学学报(理学版).2011,38(2):229-233.
    [225]刘再华,Dreybrodt W.,刘洹.大气C02汇:硅酸盐风化还是碳酸盐风化的贡献?[J].第四纪研究.2011,31(3):426-430.
    [226]王晓峰.温室气体的“源”与“汇”及其防治对策[J].黑龙江环境通报.2012(2):13-15.
    [227]曹兴,陈荣毅,季枫,等.干旱区绿洲棉田土壤C02通量变化特征及温湿度影响分析[J].中国农学通报.2012,28(8):199-207.
    [228]牟长城,程伟,孙晓新,等.小兴安岭落叶松沼泽林土壤CO2,N2O和CH4的排放规律[J].林业科学.2010,46(7):7-15.
    [229]张小全,武曙红,何英,等.森林、林业活动与温室气体的减排增汇[J].林业科学.2005,41(6):150-156.
    [230]黄斌,王敬国,龚元石,等.冬小麦夏玉米农田土壤呼吸与碳平衡的研究[J].农业环境科学学报.2006,25(1):156-160.
    [231]潘根兴,李恋卿,张旭辉.土壤有机碳库与全球变化研究的若干前沿问题——兼开展中国水稻土有机碳固定研究的建议[J].南京农业大学学报.2002,25(3):100-109.
    [232]杨昕,王明星.陆面碳循环研究中若干问题的评述[J].地球科学进展.2001,16(3):427-435.
    [233]沈艳,缪启龙,刘允芬.亚热带红壤丘陵人工混交林区C02源汇及变化[J].生态学报.2005,25(6):1371-1375.
    [234]方精云,位梦华.北极陆地生态系统的碳循环与全球温暖化[J].环境科学学报.1998,18(2):113-121.
    [235]牟长城,刘霞,孙晓新,等.小兴安岭阔叶林沼泽土壤CO2、CH4和N20排放规律及其影响因子[J].生态学报.2010,30(17):4598-4608.
    [236]刘再华,Dreybrodt Wolfgang,王海静.一种由全球水循环产生的可能重要的C02汇[J].科学通报.2007,52(20):2418-2422.
    [237]李忠佩,林心雄,车玉萍.中国东部主要农田土壤有机碳库的平衡与趋势分析[J].土壤学报.2002,39(3):35 1-360.
    [238]乔春连,李婧梅,王基恒,等.青藏高原高寒草甸生态系统C02通量研究进展[J].山地学报.2012,30(2):248-255.
    [239]李灿,许黎,邵敏,等.一种大气C02源汇反演模式方法的建立及应用[J].中国环境科学.2003,23(6):610-613.
    [240]焦振,王传宽,王兴昌.温带落叶阔叶林冠层C02浓度的时空变异[J].植物生态学报.201 1,35(5):512-522.
    [241]匡耀求,欧阳婷萍,邹毅,等.广东省碳源碳汇现状评估及增加碳汇潜力分析[J].中国人口·资源与环境.2010,20(12):56-61.
    [242]王仕禄,万国江,刘丛强,等.云贵高原湖泊C02的地球化学变化及其大气C02源汇效应[J].第四纪研究.2003,23(5):581.
    [243]张玉铭,胡春胜,张佳宝,等.农田土壤主要温室气体(CO2、CH4、N2O)的源/汇强度及其温室效应研究进展[J].中国生态农业学报.2011,19(4):966-975.
    [244]郑国侠,宋金明,魏俊峰,等.重金属(铜、镉、锌和铅)对海水无机碳体系影响的模拟研究[J].生态学报.2009,29(6):3009-3018.
    [245]周凌晞,李金龙,温玉璞,等.瓦里关山大气CO2及其813C本底变化[J].环境科学学报.2003,23(3):295-300.
    [246]贺玉龙,戴本林.大气中CO2的源与汇及其含量增加对环境的影响[J].工业安全与环保.2010,36(5):25-27.
    [247]王修信,朱启疆,陈声海,等.北京市海淀公园绿地CO2通量变化特征[J].应用基础与工程科学学报.2011,19(1):166-172.
    [248]江春波,张龙军,王峰.南黄海夏季海水pCO2研究Ⅱ--下层海水涌升和长江冲淡水对海-气界面CO2通量的贡献[J].中国海洋大学学报(自然科学版).2006,36(z1):147-152.
    [249]方精云,朴世龙,赵淑清.CO2失汇与北半球中高纬度陆地生态系统的碳汇[J].植物生态学报.2001,25(5):594-602.
    [250]赵凤君,舒立福,姚树人.森林火灾碳排放估算方法与研究进展[J].森林防火.2012(1):25-29.
    [251]高进长,苏永红.土壤呼吸对不同来源水分响应的研究进展[J].干旱区研究.2012,29(6):1014-1021.
    [252]尉海东,马祥庆,刘爱琴,等.森林生态系统碳循环研究进展[J].中国生态农业学报.2007,15(2):188-192.
    [253]邱冬生,庄大方,胡云锋,等.中国岩石风化作用所致的碳汇能力估算[J].地球科学-中国地质大学学报.2004,29(2):177-182,190.
    [254]杨玉盛,董彬,谢锦升,等.森林土壤呼吸及其对全球变化的响应[J].生态学报.2004,24(3):583-591.
    [255]陈跃琴,李金龙.一维全球碳循环模式研究[J].环境科学研究.2002,15(4):60-64.
    [256]杨海军,邵全琴,陈卓奇,等.森林碳蓄积量估算方法及其应用分析[J].地球信息科学.2007,9(4):5-12.
    [257]戴民汉,翟惟东,鲁中明,等.中国区域碳循环研究进展与展望[J].地球科学进展.2004,19(1):120-130.
    [258]Bernier P Y, Wang Z, Grant R F, et al. A model inter-comparison study of forest growth on two coastal and boreal forest landscapes in Canada[C].2009.
    [259]Peng C, Dang Q, Liu J, et al. I. Developing and Testing a Dynamic Forest Carbon Budget Model for Ontario[J]. Forest Research Note.2003(65).
    [260]Wang W, Peng C, Lei X, et al. Simulating the effects of forest managements on carbon sequestration:TREPLEX-Management model development[C].2009.
    [261]Lei X, Peng C, Lu Y, et al. A Matrix Growth Model of Natural Spruce-Balsam Fir Forest in New Brunswick, Canada[C]. IEEE,2006.
    [262]Zhou X, Peng C, Hua D, et al. Simulating Carbon Dynamics at Landscape Level:A Case Study for Lake Abitibi Model Forest in Ontario, Canada[C].2004.
    [263]Wang W, Peng C, Kneeshaw D D, et al. Modeling the effects of varied forest management regimes on carbon dynamics in jack pine stands under climate change[J]. Canadian Journal of Forest Research.2013,43(999):469-479.
    [264]赵梅芳.基于3-PG机理模型的杉木林碳固定及蒸散量模拟研究[D].中南林业科技大学,2008.
    [265]Baker F D. Reassessing Carbon Sinks [J]. Science,2008,317:1708-1709
    [266]Zhou X, Peng C, Dang Q. Formulating and parameterizing the allocation of net primary productivity for modeling overmature stands in boreal forest ecosystems[J]. ecological modelling.2006,195(3):264-272.
    [267]Zhou X, Peng C, Dang Q, et al. Simulating carbon exchange in Canadian Boreal forests:I. Model structure, validation, and sensitivity analysis[J]. ecological modelling.2008,219(3): 287-299.
    [268]Zhang J, Ge Y, Chang J, et al. Carbon storage by ecological service forests in Zhejiang Province, subtropical China[J]. Forest Ecology and Management.2007,245(1):64-75.
    [269]Liu J, Peng C, Dang Q, et al. A component object model strategy for reusing ecosystem models[J]. Computers and Electronics in Agriculture.2002,35(1):17-33.
    [270]Sun J, Peng C, Mccaughey H, et al. Simulating carbon exchange of Canadian boreal forests: II. Comparing the carbon budgets of a boreal mixedwood stand to a black spruce forest stand[J]. ecological modelling.2008,219(3):276-286.
    [271]Zhou X, Peng C, Dang Q. Formulating and parameterizing the allocation of net primary productivity for modeling overmature stands in boreal forest ecosystems[J]. ecological modelling.2006,195(3):264-272.
    [272]Scholes R J, Nobel I R. Storing carbon on land[J]. Science,2001.
    [273]Peng C, Wen X. Forest simulation models[M]. Computer Applications in Sustainable Forest Management, Springer,2006,101-125.
    [274]Zhou X, Peng C, Dang Q, et al. A simulation of temporal and spatial variations in carbon at landscape level:a case study for Lake Abitibi Model Forest in Ontario, Canada[J]. Mitigation and Adaptation Strategies for Global Change.2007,12(4):525-543.
    [275]Montane F, Fortin M, Colombo S, et al. Quantifying the response of forest carbon balance to future climate change in Ontario boreal forests[J]. Modelling Forest Ecosystems-Concepts, Data and Application.:99.
    [276]王灿,项文化,赵梅芳,等.基于TRIPLEX模型的湖南省杉木林生产力模拟及预测[J].中南林业科技大学学报.2012(06):104-109.
    [277]王灿TRIPLEX模型对湖南杉木林生产量的模拟和预测[D].中南林业科技大学,2012.
    [278]Zhang J, Ge Y, Chang J, et al. Carbon storage by ecological service forests in Zhejiang Province, subtropical China[J]. Forest Ecology and Management.2007,245(1):64-75.
    [279]Le U E D S, Noir P. The advantages of coupling stand description from growth models to tree description from architectural models[J].
    [280]Larocque G R, Mailly D, Gaudreault M. Forest modelling in Quebec:Context, challenges and perspectives[J]. The Forestry Chronicle.2009,85(5):702-705.
    [281]Zhu Q, Jiang H, Liu J, et al. FORECASTING CARBON BUDGET UNDER CLIMATE CHANGE AND CO[J]. Pol. J. Ecol.2011,59(1):3-23.
    [282]Zhu Q, Jiang H, Liu J, et al. FORECASTING CARBON BUDGET UNDER CLIMATE CHANGE AND CO[J]. Pol. J. Ecol.2011,59(1):3-23.
    [283]Peng C, Zhou X, Zhao S, et al. Quantifying the response of forest carbon balance to future climate change in Northeastern China: Model validation and prediction[J]. Global and Planetary Change.2009,66(3):179-194.
    [284]Chertov O, Bhatti J S, Komarov A, et al. Influence of climate change, fire and harvest on the carbon dynamics of black spruce in Central Canada[J]. Forest Ecology and Management. 2009,257(3):941-950.
    [285]Swaty R. Beyond Ownership Boundaries in the Upper Peninsula:The Nature Conservancy-Corporate Consortium Approach to Landscape-level Planning[J]. Popular Summaries.2003:101.
    [286]布仁仓,常禹,胡远满,等.基于Kappa系数的景观变化测度-以辽宁省中部城市群为例[J].生态学报.2005,25(4):778-784.
    [287]陈曦,王成善,黄永建.古新世-始新世极热事件与地球系统的自我调节Gaia理论的应用[J].地学前缘.2006,13(6):171-176.
    [288]张晓明,王玉杰.西南亚马逊草原和森林土壤C02流通研究[J].水土保持科技情报.2005(5):26-29.
    [289]韩永明,曹军骥.环境中的黑碳及其全球生物地球化学循环[J].海洋地质与第四纪地质.2005,25(1):125-132.
    [290]鲍颖,乔方利,宋振亚.全球海洋碳循环三维数值模拟研究[J].海洋学报(中文版)2012,34(3):19-26.
    [291]郑淑颖,管东生.人类活动对全球碳循环的影响[J].热带地理.2001,21(4):369-373.
    [292]黎明,李伟.湿地碳循环研究进展[J].华中农业大学学报.2009,28(1):116-123.
    [293]陶波,葛全胜,李克让,等.陆地生态系统碳循环研究进展[J].地理研究.2001,20(5):564-575.
    [294]曹军骥,占长林.黑碳在全球气候和环境系统中的作用及其在相关研究中的意义[J].地球科学与环境学报.2011,33(2):177-184.
    [295]秦或,宜树华,李乃杰,等.青藏高原草地生态系统碳循环研究进展[J].草业学报.2012,21(6):275-285.
    [296]吴卫华,郑洪波,杨杰东,等.硅酸盐风化与全球碳循环研究回顾及新进展[J].高校地质学报.2012,18(2):215-224.
    [297]侯琳,雷瑞德,王得祥,等.森林生态系统土壤呼吸研究进展[J].土壤通报.2006,37(3):589-594.
    [298]卢龙飞,蔡进功,包于进,等.粘土矿物保存海洋沉积有机质研究进展及其碳循环意义[J].地球科学进展.2006,21(9):931-937.
    [299]刘强,刘嘉麒,贺怀宇.温室气体浓度变化及其源与汇研究进展[J].地球科学进展.2000,15(4):453-460.
    [300]裴建国,章程,张强,等.典型岩溶水系统碳汇通量估算[J].岩矿测试.2012,31(5):884-888.
    [301]学兵.湿地的低碳作用[J].林业与生态.2012(2):35.
    [302]王效科,白艳莹,欧阳志云,等.全球碳循环中的失汇及其形成原因[J].生态学报.2002,22(1):94-103.
    [303]殷建平,王友绍,徐继荣,等.海洋碳循环研究进展[J].生态学报.2006,26(2):566-575.
    [304]黄萍,黄春长.全球增温与碳循环[J].陕西师范大学学报(自然科学版).2000,28(2):104-109.
    [305]刘二东,杨耀.湖泊碳循环研究进展及研究方法[J].北方环境.2012(2):201-204.
    [306]陈玲,王中良.碳同位素在湿地碳循环研究中的应用及进展[J].生态学杂志.2012,31(7):1862-1869.
    [307]樊恒文,贾晓红,张景光,等.干旱区土地退化与荒漠化对土壤碳循环的影响[J].中国沙漠.2002,22(6):525-533.
    [308]李堃宝,童耕雷,郑雪松,等.全球碳循环的模式研究与生物的调节[J].自然杂志.2000,22(4):214-216.
    [309]方精云,郭兆迪.寻找失去的陆地碳汇[J].自然杂志.2007,29(1):1-6.
    [310]刘强,刘嘉麒,刘东生.北京斋堂黄土剖面主要温室气体组分初步研究[J].地质地球化学.2000,28(2):82-86.
    [311]Kerr R A. Climate change. Humans are driving extreme weather; time to prepare[J]. Science. 2011,334(6059):1040.
    [312]Reis S, Grennfelt P, Klimont Z, et al. Atmospheric science. From acid rain to climate change[J]. Science.2012,338(6111):1153-1154.
    [313]Hegerl G C, Russon T. Climate change. Using the past to predict the future?[J]. Science. 2011,334(6061):1360-1361.
    [314]Moss R H, Edmonds J A, Hibbard K A, et al. The next generation of scenarios for climate change research and assessment[J]. Nature.2010,463(7282):747-756.
    [315]Stocker T F. Climate change. The closing door of climate targets[J]. Science.2013, 339(6117):280-282.
    [316]Hulme M, O'Neill S J, Dessai S. Climate change. Is weather event attribution necessary for adaptation funding?[J]. Science.2011,334(6057):764-765.
    [317]Alley R B, Joughin I. Climate change. Modeling ice-sheet flow[J]. Science.2012, 336(6081):551-552.
    [318]Qiu J. Climate change. Slip sliding away[J]. Science.2012,338(6109):881.
    [319]Punyasena S W, Dalling J W, Jaramillo C, et al. Comment on "The response of vegetation on the Andean flank in western Amazonia to Pleistocene climate change"[J]. Science.2011, 333(6051):1825,1825.
    [320]Qiu J. Climate change. Winds of change[J]. Science.2012,338(6109):879-881.
    [321]Knutti R, Sedlacek J. Robustness and uncertainties in the new CMIP5 climate model projections[J].2012.
    [322]Visser M E. Climate change:Fatter marmots on the rise[J]. Nature.2010,466(7305): 445-447.
    [323]Rodbell D T. Climate change. Marching in near lock-step[J]. Science.2012,335(6068): 548-549.
    [324]Schaub M, Matyssek R, Wieser G. Preface to the special section of the IUFRO conference on air pollution and climate change effects on forest ecosystems[J]. Environ Pollut.2010, 158(6):1985.
    [325]Abdalla M, Saunders M, Hastings A, et al. Simulating the impacts of land use in Northwest Europe on Net Ecosystem Exchange (NEE):The role of arable ecosystems, grasslands and forest plantations in climate change mitigation [J]. Sci Total Environ.2013.
    [326]Sjogersten S, Wookey P A. The impact of climate change on ecosystem carbon dynamics at the Scandinavian mountain birch forest-tundra heath ecotone[J]. Ambio.2009,38(1):2-10.
    [327]Kim J, Choi J, Choi C, et al. Impacts of changes in climate and land use/land cover under IPCC RCP scenarios on streamflow in the Hoeya River Basin, Korea[J]. Sci Total Environ. 2013,452-453:181-195.
    [328]O'Brien D, Shalloo L, Patton J, et al. Evaluation of the effect of accounting method, IPCC v. LCA, on grass-based and confinement dairy systems' greenhouse gas emissions [J]. Animal. 2012,6(9):1512-1527.
    [329]Falkowski P, Scholes RJ, Boyyle E, et al. Global carbon cycle:A test of our knowledge of earth as a system [J]. Science,2000,290:291-296.
    [330]Cooney C M. Managing the risks of extreme weather:IPCC Special Report[J]. Environ Health Perspect.2012,120(2):a58.
    [331]Bastola S, Murphy C, Sweeney J. The sensitivity of fluvial flood risk in Irish catchments to the range of IPCC AR4 climate change scenarios[J]. Sci Total Environ.2011,409(24): 5403-5415.
    [332]Mills E. Climate change. The greening of insurance[J]. Science.2012,338(6113): 1424-1425.
    [333]Kurz W A, Dymond C C, Stinson G, et al. Mountain pine beetle and forest carbon feedback to climate change[J]. Nature.2008,452(7190):987-990.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700