棉花逆境胁迫应答Trihelix转录因子的鉴定及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
1.研究目的
     植物在生长发育过程中面临的各种不利的环境胁迫,包括生物胁迫和非生物胁迫(高盐、干旱、低温等),都对植物的生长发育和生产力造成影响。非生物胁迫是导致农作物减产的主要原因,农作物平均产量损失超过50%。在作物基因工程改良中,增加一个关键的转录因子的调控能力,能同时激活多个抗逆功能基因表达,从而能够提高作物综合抗逆性。Trihelix转录因子是植物特有的转录因子,在植物逆境信号传递过程中发挥着关键作用,能与其顺式作用元件结合,启动抗逆相关基因的表达,增强植物的逆境耐受性。棉花既是主要的纤维作物,也是重要的油料作物,干旱、盐碱、低温等非生物逆境,不仅限制其生长,而且还影响其产量及纤维品质,给棉花生产造成极大损失。因此,研究棉花的耐逆分子机制将为利用转基因手段改良棉花抗逆性奠定基础。本论文基于棉花EST公开数据库,鉴定和克隆非生物胁迫应答trihelix-GT基因并解析其生物学功能。
     2.研究方法与结果
     通过BLAST分析比对的方法,从棉花EST数据库中获得28个GT基因,命名为GhGT1-26、GhGT29和GhGT30。以陆地棉品种新陆早26号为材料,利用RT-PCR和qPCR分析了28个基因在干旱、盐、冷和ABA处理下的表达谱,确定GhGT7、11、18、23、26、29和30基因为候选基因。通过cDNA末端快速扩增技术(Rapid amplification of cDNA Ends,RACE)克隆这7个基因的全长序列。根据推测的蛋白结构域和保守的氨基酸残基,将这7个基因进行分类:GhGT7和GhGT30蛋白属于GT-2类亚家族,GhGT11和GhGT23属于SIP1,GhGT26属于GT-1,GhGT29属于SH4类,GhGT18推测属于MYB类。qPCR分析表明,7个基因在棉花各组织都有表达,但表达模式不一样。GhGT7基因在叶片中的表达量最高;GhGT11基因在胚珠中的表达量最高,在花中表达量最低;GhGT18基因在胚珠中的表达高于其它组织;GhGT23基因在纤维中的表达量明显高于根、茎、叶、花和胚珠;GhGT26、29、30这3个基因在花和纤维中的表达量最高,在根中的几乎检测不到。通过拟南芥原生质体和洋葱表皮细胞的亚细胞定位分析表明,GhGT7、11、18、23、26、29、30基因编码的蛋白都定位在细胞核内。拟南芥原生质体系统分析GhGT7、18、23、29基因的转录活性表明:GhGT29蛋白具有转录激活活性,GhGT18蛋白具有转录抑制活性,GhGT7和23没有检测到转录激活活性。凝胶阻滞(EMSA)分析发现,GhGT7、11、23和26蛋白既能结合GT元件也能和MYB元件结合,GhGT7蛋白可以结合GT元件GT-1box、GT2-Box、GT-3b和MYB元件MBS1、MRE1、MRE3、MRE4;GhGT11蛋白分别结合Site1、GT-1box、GT2-Box、GT3-Box、GT-3b、MRE3;GhGT23蛋白分别结合Box、Site1、GT-1box、GT2-Box、GT3-Box、GT-3b、MBS1和MRE4;GhGT26蛋白结合Site1、MRE3、MRE4。利用农杆菌介导的转基因技术,将GhGT7、11、18、23、26、29基因分别转入拟南芥中,已分别获得了拟南芥转基因纯系植株,并进行了表达量鉴定,对GhGT11、18、23、26基因的转基因拟南芥植株进行了非生物胁迫下表型分析。转基因植株表型分析表明,在正常生长条件下,过量表达GhGT的转基因拟南芥无论是苗期还是成株期植株,转不同基因株系之间及与野生型之间没有明显差异,在盐和干旱胁迫下,过量表达GhGT23和GhGT26基因的转基因拟南芥植株的耐盐性、耐旱性较野生型Col-0均有明显的提高;而GhGT11和GhGT18转基因植株的耐盐性、耐旱性均降低。对转基因植株根长表型分析发现,无论是在盐和甘露醇胁迫下,转GhGT18和GhGT11基因的植株抑制根的生长,而转GhGT23和GhGT26基因的植株促进根的生长。对ABA处理后的转基因根长分析发现,过表达GhGT18和GhGT26基因植株对ABA没有反应,GhGT23的转基因植株能促进根的生长,而GhGT11基因的转基因植株则抑制根的生长。对正常生长的转基因植株的下游基因分析表明,GhGT23基因通过调控与耐逆性相关的基因DREB1B、COR6.6、COR47、RD22、SAP18、COR15A、DREB2A、DREB2B、STZ、AP2和DREB2C基因的表达,提高转基因植物的耐受性。
     3.研究结论
     本论文筛选和克隆了棉花应答非生物胁迫的7个GhGT基因,研究了它们编码蛋白的生化特性;通过转基因植物表明,GhGT11,GhGT18,GhGT23,GhGT26参与了植物的耐逆性调控,并对其调控途径进行了探讨。
1. Objective
     Plant growth and productivity are under constant threat from environmental changes in theform of biotic and abiotic stress factors. The most common abiotic stresses are high salinity, lowtemperature and drought, which limit the crop productivity, reducing average yields for mostmajor crop plants by more than50%. In molecular breeding, a key transcription factor cansimultaneously regulate the expression of many functional genes to improve tolerance of crops tovarious stresses. Trihelix transcription factors are a small family only identified in plants. Theycan interact with cis-elements present in the promoter regions of several stress-related genes andregulate their expression to enhance plant stress tolerance. Therefore, trihelix transcription factorsplay a critical role in stress signaling transduction pathways. Cotton is an important crop plant forboth textile and oil, but its growth, yield and fiber quality were affected by various abiotic stresses,such as drought, salinity and low-temperature, doing great harm to cotton production.Understanding the molecular mechanisms of stress tolerance in cotton will lay the foundation forimproving the stress tolerance of cotton by gene manipulation. Based on the EST sequences, wecloned several GT genes responsive to abiotic stresses from cotton and their functions were furtheranalyzed.
     2. Methods and results
     By doing BLAST(the Basic Local Alignment Search Tool) search the cotton ESTs database,28GT unigenes, named GhGT1to GhGT26, GhGT29and GhGT30, were obtained. Theexpression profiles of these unigenes under the treatments of drought, salinity, cold and exogenoushormone ABA in Xin-lu-mian26were investigated by both RT-PCR and qPCR method. SevenGhGT unigenes including GhGT7,11,18,23,26,29and30were chosen for further analysis. Thefull-length cDNA of these GhGTs genes were cloned using the method of Rapid amplification ofcDNA Ends (RACE). Based on the deduced protein domains and conserved amino acid residues,these GhGT proteins were classified into different subfamilies: GhGT7and GhGT30belong toGT-2; GhGT11and GhGT23belong to SIP1; GhGT26belongs to GT-1; GhGT29belongs to SH4subfamily and GhGT18belongs to MYB transcription factor family. Although7GhGT genes were ubiquitously expressed in root, stem, leaf, flower, ovule (0DPA) and fiber (12DPA), theirexpression patterns were different. The highest expression level was observed in leaves forGhGT7, in ovules for GhGT18, in fibers for GhGT23and in flowers and fibers for GhGT26,GhGT29and GhGT30. The sub-cellular localization assay in the Arabidopsis protoplasts andonion epidermal cell system revealed that GhGT7,11,18,23,26,29and30proteins werelocalized in the nucleus, indicating that they are nuclear proteins. Using the Arabidopsisprotoplasts assay system, we found that GhGT29protein had trans-activation activity, GhGT18showed trans-repression activity, while no trans-activation activity was detected for GhGT7andGhGT23. Electrophoretic Mobility Shift Assay(EMSA)showed that GhGT7,11,23and26proteins could bind to both GT and MYB elements. Specifically, GhGT7protein could bind toGT-1box, GT2-Box, GT-3b, MBS1, MRE1, MRE3and MRE4; GhGT11protein could bind toSite1, GT-1box, GT2-Box, GT3-Box, GT-3b and MRE3; GhGT23protein could bind to Box,Site1, GT-1box, GT2-Box, GT3-Box, GT-3b, MBS1and MRE4, and GhGT26protein could bindto Site1, MRE3, MRE4, respectively. Employing agrobacterium-mediated transformationtechnique, GhGT7,11,18,23,26and29genes were successfully introduced into Arabidopsisthanliana to generate transgenic plants, respectively. The expression level of transgene wasanalyzed for each homozygous transgenic line. Performance of transgenic plants overexpressingGhGT11,18,23and26genes under abiotic stresses were studied, respectively. Under normalgrowth condition, no visible phenotype difference between wild-type plants and transgenic plantsoverexpressing each GhGT gene was observed. Overexpression of GhGT23and GhGT26significantly enhanced the tolerance of transgenic Arabidopsis plants to high-salinity and droughtstresses compared with wild-type plants, respectively. However transgenic plants overexpressingGhGT11and GhGT18showed sensitivity to high salinity and drought stresses, respectively. Underdrought and high salinity treatments, the performance of root growth of wild-type plants wasbetter than that of transgenic plants overexpressing GhGT18and GhGT11, while the performanceof root growth of transgenic plants overexpressing GhGT23and GhGT26was better than that ofwild-type plants. Compared to wild-type plants, ABA treatment promoted the root growth oftransgenic plants overexpressing GhGT23, but inhibited the root growth of transgenic plantsoverexpressing GhGT11. Transgenic plants overexpressing GhGT18and GhGT26were notsensitive to ABA treatment. Overexpression of GhGT23improved the tolerance of transgenicplants to abiotic stresses probably through up-regulating the expression of downstream genesincluding DREB1B, COR6.6, COR47, RD22, SAP18, COR15A, DREB2A, DREB2B, STZ, AP2andDREB2C.
     3. Conclusion
     In short, seven GhGTs genes responsive to abiotic stresses were identified and cloned, andbiochemical function of their proteins were characterized. Overexpression of each of the four GhGTs genes including GhGT11, GhGT18, GhGT23and GhGT26affected the tolerance oftransgenic plants to abiotic stresses. The possible mechanism of GhGT23-mediated improvementof transgenic plants to abiotic stresses was further discussed.
引文
[1] Boyer J S. Plant productivity and environment. Science,1998,218(4571):443-448.
    [2] Bray E A, Bailey-Serres J, Weretilnyk E. Responses to abiotic stresses. in: Buchanan B B, Gruissem W,Jones R L, Rockville, eds. Biochemistry and Molecular Biology of Plants. American Society of PlantBiologists,2000,1158-1203.
    [3] Valliyodan B, Nguyen H T. Understanding regulatory networks and engineering for enhanced droughttolerance in plants. Current Opinion in Plant Biology,2006,9(2):189-195.
    [4] Farooq M, Wahid A, Kobayashi N, Fujita D, Basra SMA. Plant drought stress: effects, mechanisms andmanagement. Agronomy of Sustainable Development,2009,29(1):185-212.
    [5] Fujii H, Zhu J K. An autophosphorylation site of the protein kinase SOS2is important for salt tolerance inArabidopsis. Molecular Plant,2009,2(1):183-190.
    [6] L pez-Pérez L, Martínez-Ballestaa M C, Maurel C, Carvajal M. Changes in plasma membrane lipids,aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry,2009,70(4):492-50.
    [7] Chinnusamy V, Zhu J, Zhu J-K. Cold stress regulation of gene expression in plants. Trends in Plant Science,2007,12(10):444-451.
    [8] Jiang Q W, Kiyoharu O, Ryozo I. Two novel mitogen-activated protein signaling components, OsMEK1andOsMAP1, are involved in a moderate low-temperature signaling pathway in Rice. Plant Physiology,2002,129(4):1880-1891.
    [9] Steponkus P L, Uemura M, Webb M S, A contrast of the cryostability of the plasma membrane of winter ryeand spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipidcomposition. in: Steponkus P L. eds. Advances in Low-Temperature, Biology,1993,211-312.
    [10] Brune A, Urbach W, Dietz K J. Differential toxicity of heavy metals is partly related to a loss of preferentialextraplasmic compartmentation: a comparison of Cd-stress, Mo-stress, Ni-stress, and Zn-stress. NewPhytologist,1995,129(2):404-409.
    [11] Roxas V P, Smith R K, Allen E R, Allen R D. Overexpression of glutathione S-transferase/glutathioneperoxidase enhances the growth of transgenic tobacco seedlings during stress. Nature Biotechnology,1997,15(10):988-991.
    [12] Chen L H, Zhang B, Xu Z Q. Salt tolerance conferred by overexpression of Arabidopsis vacuolar Na(+)/H(+)antiporter gene AtNHX1in common buckwheat (Fagopyrum esculentum). Transgenic Research,2008,17(1):121-132.
    [13] Xu D, Duan X, Wang B, Hong B, Ho T D D, Wu R. Expression of a late embryogenesis abundant proteingene, HVA1, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiology,1996,110(1):249-257.
    [14] Espinosa-Ruiz A, Belles J M, Serrana R, Culianez-Macla F A. Arabidopsis thaliana AtHAL3: a flavoproteinrelated to salt and osmotic tolerance and plant growth. Plant Journal,1999,20(5):529-539.
    [15] Pardo J M, Reddy M P, Yang S, Maggio A, Huh G H, Matsumoto T, Hasegawa P M. Stress signaling throughCa2+/calmodulin-dependent protein phosphatase calcineurin mediates salt adaptation in plants. Proceeding ofthe National Academy of the United States of America,1998,95(16):9681-9686.
    [16] Bastola D R, Pethe V V, Winicov I. Alfin1, a novel zinc-finger protein in alfalfa roots that binds to promoterelements in the salt-inducible MsPRP2gene. Plant Molecular Biology,1998,38(6):1123-1135.
    [17] Sahi C, Singh A, Blumwald E, Grover A. Beyond osmolytes and transporters: novel plant salt-stresstolerance-related genes from transcriptional profiling data. Physiologia Plantarum,2006,127(1):1-9.
    [18] Chen W, Provart N J, Glazebrook J, Katagiri F, Chang H S, Eulgem T, Mauch F, Luan S, Zou G, Whitham SA, Budworth P R, Tao Y, Xie Z, Chen X, Lam S, Kreps J A, Harper J F, Si-Ammour A, Mauch-Mani B,Heinlein M, Kobayashi K, Hohn T, Dangl J L, Wang X, Zhu T. Expression profile matrix of Arabidopsistranscription factor genes suggests their putative functions in response to environmental stresses. The PlantCell,2002,14(3):559-574.
    [19] Seki M, Narusaka M, Ishida J, Nanjo T, Fujita M, Oono Y, Kamiya A, Nakajima M, Enju A, Sakurai T, SatouM, Akiyama K, Taji T, Yamaguchi-Shinozaki K, Carninci P, Kawai J, Hayashizaki Y, Shinozaki K.Monitoring the expression profiles of7000Arabidopsis genes under drought, cold and high-salinity stressesusing a full-length cDNA microarray. The Plant Journal,2002,31(3):279-292.
    [20] Hasegawa P M, Bressan R A, Pardo J M. The dawn of plant salt tolerance genetics. Trends in Plant Science,2000,5(8):317-319.
    [21] Hasegawa P M, Bressan R A, Zhu J K, Bohnert H J. Plant cellular and molecular responses to high salinity.Annual Review of Plant Physiol and Plant Molecular Biology,2000,51:463-499.
    [22] Halfter U, Ishitani M, Zhu J K. The Arabidopsis SOS2protein kinase physically interacts with and isactivated by the calcium-binding protein SOS3. Proceeding of the National Academy of the United States ofAmerica,2000,97(7):3735-3740.
    [23] Liu J, Zhu J K. A calcium sensor homolog required for plant salt tolerance. Science,1998,280(5371):1943-1945.
    [24] Liu J, Ishitani M, Halfter U, Kim C S, Zhu J K. The Arabidopsis thaliana SOS2gene encodes a proteinkinase that is required for salt tolerance. Proceeding of the National Academy of the United States ofAmerica,2000,79(7):3730-3734.
    [25] Shi H, Ishitani M, Kim C, Zhu J K. The Arabidopsis thaliana salt tolerance gene SOS1encodes a putativeNa1/H1antiporter. Proceeding of the National Academy of the United States of America,2000,97(12):6896-6901.
    [26] Mahajan S, Tuteja N. Cold, salinity and drought stresses: An overview. Archives of Biochemistry andBiophysics,2005,444(2):139-158.
    [27] Jungklang J, Sunohara Y, Matsumoto H. Antioxidative enzymes response to NaCl stress in salt-tolerantSesbania rostrata. Weed Biology and Management,2004,4(2):81-85.
    [28] Attia H, Arnaud N, Karray N, Lachaal M. Long-term effects of mild salt stress on growth, ion accumulationand superoxide dismutase expression on Arabidopsis rosette leaves. Physiologia Plantarum,2008,132(3):293-305.
    [29] Mittler R, Vanderauwera S, Gollery M, Breusegem F V. Reactive oxygen gene network of plants. Trends inPlant Science,2004,9(10):490-498.
    [30] Shanker A K, Venkateswarlu B. Abiotic Stress Response in Plants-Physiological, Biochemical and GeneticPerspectives. in: Plant Genes for Abiotic Stress. Hara M, Furukawa J, Sato A, Mizoguchi T, Miura K, eds.Agriculture and biological sciences,2011,235-252.
    [31] Williams J P, Kahn M U, Mitchell K, Johnson G. The effect of temperature on the level and biosynthesis ofunsaturated fatty acids in diaglycerols of Brassica napus leaves. Plant Physiology,1988,87(4):904-910.
    [32] Cossins A R. Homeoviscous adaptation of biological membranes and its functional significance, in:temperature Adaptation of Biological membranes. Cossins A R, eds. Portland Press,1994,63-76.
    [33] Lynch D V, Thompson G. A Low temperature-induced alterations in the chloroplast and microsomalmembrane of Dunaliella salina. Plant Physiology,1982,69(6):1369-1375.
    [34] Knight H, Trewavas A J, Knight M R. Cold calcium signaling in Arabidopsis involves two cellular pools anda change in calcium signature after acclimation.The Plant Cell,1996,8(3):489-503.
    [35] Nishida I, Murata N, Chilling sensitivity in plants and Cyanobacteria: the crucial contribution of membranelipid. Annual Review of Plant Physiology and Plant Molecular Biology,1996,47:541-568.
    [36] Guy C L, Li Q B. The organization and evolution of the spinach stress70molecular chaperone gene family.The Plant Cell,1998,10(4):539-556.
    [37] Thomashow M F. Plant cold acclimation: freezing tolerance genes and regulatory mechanism. AnnualReview of Plant Physiology and Plant Molecular Biology,1999,50:571-599.
    [38] Fowler S, Thomashow M F. Arabidopsis transcriptome profiling indicates that multiple regulatory pathwaysare activated during cold acclimatation in addition to the CBF cold response pathway. The Plant Cell,2002,14(8):1675-1690.
    [39] Maruyama K, Sakuma Y, Kasuga M, Yto Y, Seki M, Godi H, Shimado Y, Yoshida S, Shinozaki K,Yamaguchi-Shinozaki K. Identification of cold-inducible downstream genes of the ArabidopsisDREB1A/CBF3transcriptional factor using two microarray systems. The Plant Journal,2004,38(6):982-993.
    [40] Lee B H, Henderson D A, Zhu J K. The Arabidopsis cold-responsive transcriptome and its regulation byICE1. The Plant Cell,2005,17(11):3155-3175.
    [41] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Two transcriptionfactors, DREB1and DREB2, with an EREBP/AP2DNA binding domain separate two cellular signaltransduction pathways in drought-and low-temperature-responsive gene expression, respectively, inArabidopsis. The Plant Cell,1998,10(8):1391-1406.
    [42] Medina J, Bargues M, Terol J, Perez-Alonso M, Salinas J. The Arabidopsis CBF gene family is composed ofthree genes encoding AP2domain-containing proteins whose expression is regulated by low temperature butnot by abscisic acid or dehydration. American Society of Plant Physiologists,119(2):463-469.
    [43] Chinnusamy V, Ohta M, Kanrar S, Lee B H, Hong X, Agarwal M, Zhu J K. ICE1: a regulator ofcold-induced transcriptome and freezing tolerance in Arabidopsis. Gene Development,2003,17(8):1043-1054.
    [44] Dong C H, Agarwal M, Zhang Y, Xie Q, Zhu J K. The negative regulator of plant cold responses, HOS1, is aRING E3ligase that mediates the ubiquitination and degradation of ICE1. Proceeding of the NationalAcademy of the United States of America,2006,103(21):8281-8286.
    [45] Ulrich H D. Mutual interactions between the SUMO and ubiquitin systems: a plea of no contest. Trends CellBiology,2005,15(10):525-532.
    [46] Chaves M M, Oliveira M M. Mechanisms underlying plant resilience to water deficts: prospects for water-saving agriculture. Journal of Experiment Botany,2004,55(407):2365~2384.
    [47] MansWeld T J, Atkinson C J, Stomatal behaviour in water stressed plants, in: Adaptation and AcclimationMechanisms. Alscher R G, Cumming J R eds. Stress Responses in Plants: Wiley-Liss,1990,241-264.
    [48] Hoekstra F A, Golovina E A, Buitink J. Mechanisms of plant desiccation tolerance. Trends in Plant Science,2001,6(9):431-438.
    [49] Ramanjulu S, Bartels D. Drought-and desiccation-induced modulation of gene expression in plants. PlantCell Environ,2002,25(2):141-151.
    [50] Chaves M M, Pereira J S, Maroco J, Pereira J S. Understanding plant response to drought from genes to thewhole plant. Functional Plant Biology,2003,30(3):239-264.
    [51] Pinheiro C, Chaves M M. Photosynthesis and drought:can we make metabolic connections from availabledata? Journal of Experiment Botany,2011,62(3):869-882.
    [52] Boyer J S. Evans Review: Cell wall biosynthesis and the molecular mechanism of plant enlargement.Functional Plant Biology,2009,36(5):383-394.
    [53] Parent B, Hachez C, Redondo E, Simonneau T, Chaumont F, Tardieu F. Drought and abscisic acid effects onaquaporin content translate into changes in hydraulic cconductivity and leaf growth rate: a transscaleapproach. Plant Physiology,2009,149(4):2000-2012.
    [54] Galli U, Schuepp H, Brunold C. Heavy metal binding bymycorrhizal fungi.Physiologia Plamanun,1994,92(2):364-368.
    [55]赵中秋,崔玉静,朱永官.菌根和根分泌物在植物抗重金属中的作用[J].生态学杂志,2003,22(6):81-84.
    [56] Romheld V, Awad F. Significance of root exudates in acquisition of heavy metal from a contaminatecalcareous soil by graminaceous species. Journal of plant Nutrition,2000,23(11):1857-1866.
    [57] Tang W, Harris L, Newton R J. Molecular mechanism of salinity stress and biotechnological strategies forengineering salt tolerance in plants. Forestry Studies in China,2003,5(2):52-62.
    [58] Wang W X, Barak T, Vinocur B, Shoseyov O, Altman A. Abiotic resistance and chaperones. in: Vasil IK eds.Possible physiological role of SP1, a stable and stabilizing protein from Populus. Plant Biotechnology,2000,439-43.
    [59] Zhu J K. Regulation of ion homeostasis under salt stress. Current Opinion in Plant Biology,2003,6(5):441-445.
    [60] Munns R. Genes and salt tolerance: bringing them together. New Phytologist,2005,167(3):645-663.
    [61] Agarwal M, Hao Y, Kapoor A, Dong C H, Fuji H, Zheng X, Zhu J K. A R2R3type MYB transcription factoris involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of BiologicalChemistry,2006,281(49):37636-37645.
    [62] Kavar T, Maras M, Kidric M, Sustar-Vozlic J, Meglic V. Identification of genes involved in the response ofleaves of Phaseolus vulgaris to drought stress. Molecular Breeding,2007,21:159-172.
    [63] Bray E A. Classification of genes differentially expressed during water-deficit stress in Arabidopsis thaliana:an analysis using microarray and differential expression data. Annals of Botany,2002,89:803-811.
    [64] Wang W X, Vinocur B, Altman A. Plant responses to drought, salinity and extreme temperatures: towardsgenetic engineering for stress tolerance. Planta,2003,218(1):1-14.
    [65] Blumwald E. Sodium transport and salt tolerance in plants. Current Opinion in Cell Biology,2000,12(4):431-434.
    [66] Shinozaki K, Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differencesand cross-talk between two stress signalling pathways. Current Opinion in Plant Biology,2000,3(3):217-2233.
    [67] Ludwig A, Romeis T, Jones J D. CDPK mediated signalling pathways: specificity and cross-talk. Journal ofExperimental Botany,2004,55(395):181-188.
    [68] Seki M, Kamei A, Satou M, Sakurai T, Fujita M, Oono Y, Yamaguch-Shinozaki K, Shinozaki K.Transcriptome analysis in abiotic stress conditions in higher plants. Topics in Current Genetics,2004,4:271-295.
    [69] Shinozaki K, Yamaguchi-Shinozaki K. Gene networks involved in drought stress tolerance and response.Journal of Experimental Botany,2007,58(2):221-227.
    [70]汤章城.逆境条件下植物脯氨酸的积累及其可能的意义[J].植物生理学通讯,1984(1):15-21.
    [71]陈吉宝,赵丽英,景蕊莲,王述民,卢玉琼.植物脯氨酸合成酶基因工程研究进展[J].生物技术通报,2010,2:8-10.
    [72] Smirnoff N. The role of active oxygen in the response of plants to water deficit and desiccation. NewPhytol,1993,125:27-31.
    [73] Iyer S, Caplan A. Products of Proline Catabolism Can Induce Osmotically Regulated Genes in Rice. PlantPhysiology,1998,116(1):203-211.
    [74] YoshibaY, Kiyosue T, Katagiri T, Ueda H, Mizoguchi T, Yamaguchi-Shinozaki K, Wada K, Harada Y,Shinozaki K. Correlation between the induction of a gene for pyrroline-5-carboxylate synthetase andaccumulation of prolinein Arabidopsis thaliana under osmoticstress. The Plant Journal,1995(7):751-760.
    [75] Zhang C S, Lu Q, Verma D P S. Removal of feedback inhibition of Δ1-pyrroline-5-carboxylate synthetase,abifunctional enzyme Catalyzing the first two steps of proline biosynthesis in plants. The Journal of BiologyChemistry,1995,270(35):20491-20496.
    [76] NanjoT, Kobayashi M, Yoshiba Y, Kakubari Y, Yamaguchi-Shinozaki K, Shinozaki K. Antisense suppressionof proline degradation improves tolerance to freezing and salinity in Arabidopsis thaliana. FEBS Letters,1999,461(3):205-210,
    [77] Choudhary N L, Sairam R K, Tyagi A. Expression of delta1-pyrroline-5-carboxylate synthetase gene duringdrought in rice (Oryza sativa L.). Indian Journal Biochemistry Biophysics,2005,42(6):366-370.
    [78] Aida H S, Radhia G B, Amira B. Overexpression of Δ1-pyrroline-5-carboxylate synthesize increases prolineproduction and confers salt tolerance in transgenic potato plants. Plant Science,2005,169(4):746-752.
    [79]王桂花,米福贵,刘娟,董淑君,霍秀文,杨宏雁. P5CS基因在蒙农杂种冰草植株中的表达及耐盐性研究[J].华北农学报,2007,22(4):33-36.
    [80]支立峰,余涛,朱英国,李阳生.过量表达脯氨酸的转基因烟草细胞对毒性重金属的抗性增强[J].湖北师范学院学报(自然科学版),2006,26(2): l4-19.
    [81]衣艳君,刘家尧,骆爱玲,张其德,马德钦,王学臣,梁峥.转BADH基因烟草的光系统Ⅱ和呼吸酶活性的变化[J].植物学报,1999,9:993-996.
    [82]许雯,孙梅好,朱亚芳,苏维埃.甘氨酸甜菜碱增强青菜抗盐的作用[J].植物学报,2001,43(8):809-814.
    [83]金曦,罗伯祥,陈受宜,肖国樱.转BADH和Bar基因水稻培育及其相关特性评价[J].生命科学研究,2011,15(3):209-217.
    [84]朱玉庆,罗振,张慧军,孔祥强,陈受宜,董合忠,孙学振.转AhCMO基因棉花苗期对干旱胁迫的生理反应[J].棉花学报,2010,15(3):209-217.
    [85]罗晓丽,肖丽娟,王志安,张安红,田颖川,吴家和.菠菜甜菜碱醛脱氢酶基因在棉花中的过量表达和抗冻耐逆性分析[J].生物工程学报,2008,24(8):1464-1469.
    [86]张宁,司怀军,栗亮,杨涛,张春凤,王蒂.转甜菜碱醛脱氢酶基因马铃薯的抗旱耐盐性[J].作物学报,2009,35(6):1146-1150.
    [87] Abebe T, Guenzi A C, Martin B, Cushman J C. Tolerance of mannitol-accumulating transgenic wheat towater stress andsalinity. Plant Physiology,2003,131(4):1748-1755.
    [88] Uratsu S L, Dandekar A M. Sorbitol synthesis in transgenic tobacco with apple cDNA encoding NADPdependent sorbito-6-phosphate dehydrogenase. Plant Cell Physiology,1995,36(3):525-532.
    [89] Garg A K, Kim J K, Owens T G, Ranwala A P, Choi Y D, Kochian L V, Wu R J. Trehalose accumulation inriceplants confers high tolerance levels to different abiotic stresses. Proceedings of the National Academy ofSciences,2002,99(25):15898-15903.
    [90] Rizhsky L, Liang H, Shuman J, Shulaev V, Davletova S, Mittler R. When defense pathways collide. Theresponse of Arabidopsis to a combination of drought and heat stress. Plant Physiology,2004,134(4):1683-1696.
    [91] Ramanjulu S, Bartels D. Drought-and desiccation-induced modulation of gene expression inplant. Plant Celland Environment.2002,25(2):141-151.
    [92] Bray E A. Plant responses to water deficit. Trends in Plant Science.1997,2(1):48-54.
    [93] Koag M C, Wilkens S, Fenton R D, Resnik J, Vo E, Close T J. The K segment of maize DHN1mediatesbinding to anionic phospholipid vesicles and concomitant structural changes. Plant Physiol,2009,150(3):l503-1514.
    [94] Franco O L, Melo F R. Osmoprotectants-A plant strategy in response to osmotic stress. Russian Journal ofPlant Physiology.2000,47(1):137-144.
    [95] Xiong L, Schumaker KS, Zhu J K. Cell signaling during cold, drought, and salt stress. The Plant Cell,2002,14(suppl1): S165-S183.
    [96] Wang L J, Li X F, Chen S Y, Liu G S. Enhanced drought tolerance in t r ansgenie Leymus chinensis plantswith constitutively expressed wheat TaLEA3. Biotechnology Letters,2009,31(2):313-3l9.
    [97] Cheng Z Q, Targolli J, Huang X Q, Wu R. Wheat LEA genes, PMA80and PMA1959, enhance dehydrationtolerance of transgenic rice (Oryza sativa L.). Molecular Breeding,2002,10(1):71-82.
    [98] Zhang H, Zhou R Xa, Zhang L J, Wang R Y, Zhe L. An CbLEA, a Novel LEA Gene from Chorisporabungeana, Confers Cold Tolerance in Transgenic Tobacco. Journal of Plant Biology,2007,50(3):336-343.
    [99]何宝坤,李德全.植物渗调蛋白的研究进展[J].生物技术通报,2002(2):6-10.
    [100] Tyerman S D,Niemietz C M,Bramley H Plant aquaporins: multifunctional water and solute channels withexpanding roles.Plant Cell Environment.2002,25(2):173-194.
    [101] Chaumont F, Barrieu F, Herman E M, Chrispeels M J. Characterization of a maize tonoplast aquaporinexpressed in zones of cell division and elongation. Plant Physiology.1998,117(4):1143-1152.
    [102]杨淑慎,山仑,郭蔼光,高梅,孙达权,邵艳军.水通道蛋白与植物的抗旱性[J].干旱地区农业研究,2005,23(6):214-218.
    [103] Allen R D. Dissection of oxidative stress tolerance using transgenic plants. Plant Physiology,1995,107(4):1049-1054.
    [104] Melchiorre M, Robert G, Trippi V, Racca R, Lascano H R, Superoxide dismutase and glutathione reductaseoverexpression in wheat protoplast: photooxidative stress tolerance and changes in cellular redox state. PlantGrowth Regulation,2009,57(1):57-68.
    [105] Wang Y C, Qu G Z, Li H Y, Wu Y J, Wang C, Liu G F and Yang CP. Enhanced salt tolerance of transgenicpoplar plants expressing a manganese superoxide dismutase from Tamarix androssowii. Molecular biologyreports,2010,37(2):1119-1124.
    [106]裴丽丽,郭玉华,徐兆师,李连城,陈明,马有志.植物逆境胁迫相关蛋白激酶的研究进展[J].西北植物植物学报,2012,32(5):1052-1061.
    [107] Xiong L, Ishitani M, Lee H, Zhu J K The Arabidopsis LOS5/ABA3locus encodes a molybdenum cofactorsulfurase and modulates cold stress-and osmotic stress-responsive gene expression. The Plant Cell,2004,13(9):2063-2083.
    [108] Agarwal P K, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stresssignaling. Biologia Plantarum,2010,54(2):201-212.
    [109] Udvardi M K, Kakar K, Wandrey M, Montanri O, Murray J, Andraiankaja A, Zhang J Y, Benedito V, Hofer JM, Cheng F, Town C D. Legume transcription factors: global regulators of plant development and responseto the environment. Plant Physiology,2007,144(2):538-549.
    [110] Riechmann J L, Ratclife O J. A genomic perspective on plant transcription factors. Current Opinion in PlantBiology,2000,3(5):423-434.
    [111] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C, Keddie J, Adam L, Pineda O, Ratcliffe O J, Samaha RR, Creelman R, Pilgrim M, Broun P, Zhang J Z. Ghandehari D,Sherman BK, Yu G. Arabidopsis transcriptionfactor: genome wide comparative analysis among eukaryotes. Science,2000,290(5499):2105-2110.
    [112] Suzuki M, Kao C Y, McCartu D R. The conserved B3domain of VIVPAROUSI has a cooperative DNAbinding activity. The Plant Cell,1997(9):799-807.
    [113] Xue G P. The DNA-binding activity of an AP2transcriptional activator HvCBF2involved in regulation oflow-temperature responsive genes in barley is modulated by temperature. The Plant Journal,2003,33(2):373-383.
    [114] Choi H I, Hong J H, Ha J, Kang J Y, Kim SY. ABFs, a family of ABA-responsive element binding factors.The Journal of Biological Chemistry,2000,275(3):1723-30.
    [115] Giraudat J, Parcy F, Bertauche N, Gosti F, Leung J, Morris P, Bouvier-Durand M, Vartanian N. Currentadvances in abscisic acid action and signaling. Plant Molecular Biology,1994,26(5):1557-1577.
    [116] Yoshida T, Fujita Y, Sayama H, Kidokoro S, Maruyama K, Mizoi J, Shinozaki K, Yamaguchi-Shinozaki K.AREB1, AREB2, and ABF3are master transcription factors that cooperatively regulate ABRE-dependentABA signaling involved in drought stress tolerance and require ABA for full activation. The Plant Journal,2010,61(4):672-685.
    [117] Shen Q, Zhang P, Ho T. Modular nature of abscisic acid (ABA) response complexes: composite promoterunits that are necessary and sufficient for ABA induction of gene expression in barley. The Plant Cell,1996,8(7):1107-1119.
    [118] Jakoby M, Weisshaar B, Dr ge-Laser W, Vicente-Carbajosa J, Tiedemann J, Kroj T, Parcy F. bZIPtranscription factors in Arabidopsis. Trends in Plant Science,2002,7(3):106-111.
    [119] Kim S, Kang J Y, Cho D I, Park J H, Kim SY. ABF2, an ABRE-binding bZIP factor, is an essentialcomponent of glucose signaling and its overexpression affects multiple stress tolerance. The Plant Journal,2004,40(1):75-87.
    [120] Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Masaru O T, Kazuo S, Kazuko YS. AREB1is a transcription activator of novel ABRE-dependent ABA signaling that enhances drought stresstolerance in Arabidopsis. The Plant Cell,2005,17(12):3470-3488.
    [121] Zou M, Guan Y, Ren H, Zhang F, Chen F. A bZIP transcription factor, OsABI5, is involved in rice fertilityand stress tolerance. Plant Molecular Biology,2008,66(6):675-683.
    [122] Nakashima K, Ito Y, Yamaguchi-Shinozaki K. Transcriptional Regulatory Networks in Response to AbioticStresses in Arabidopsis and Grasses. Plant Physiology,2009,149(1):88-95.
    [123] Klempnauer K H, Gonda T J, Bishop J M. Nucleo-tide sequence of the retroviral leukemia gene v-myb andits cellular progenitor c-myb: The architecture of a transduced oncogene. The Cell,1982,31(2Pt1):453-463.
    [124] Paz-Ares J, Ghosal D, Wienand U, Peterson P A, Saedler H. The regulatory c1locus of Zea mays encodes aprotein with homology to myb proto-oncogene products and with structural similarities to transcriptionalactivators. The EMBO Journal,1987,16(12):3553-3558.
    [125] Chen Y H, Yang X Y, He K, Liu M H, Li J G, Gao Z F, Lin Z Q, Zhang Y F, Wang X X, Qiu X M, Shen Y P,Zhang L, Deng X H, Luo J C, Deng X W, Chen Z L, Gu H Y, Qu L J. The MYB transcription factorsuperfamily of Arabidopsis: expression analysis and phylogenetic comparison with the rice MYB family.Plant Molecular Biology,2006,60(1):107-124.
    [126] Rosinski J A, Atchley W R. Molecular evolution of the Myb family of transcription factors: evidence forpolyphyletic origin. Journal of Molecular Evolution,1998,46(1):74-83.
    [127] Stracke R, Werber M, Weisshaar B. The R2R3-MYB gene family in Arabidopsis thaliana. Current Opinion inPlant Biology,2001,4(5):447-456.
    [128] Higginson T, Li S F, Parish R W. AtMYB103regulates tapetum and trichome development in Arabidopsisthaliana. The Plant Journal,2003,35(2):177-192.
    [129] Araki S, Ito M, Soyano T, Nishihama R, Machida Y. Mitotic cyclins stimulate the activity of c-Myb-likefactors for transactivation of G2/M phase-specific genes in tobacco. Journal of Biological Chemistry,2004,279(31):32979-88.
    [130] Kirik V, K lle K, Miséra S, B umlein H. Two novel MYB homologues with changed expression in lateembryogenesis-defective Arabidopsis mutants. Plant Molecular Biology,1998,37(5):819-827.
    [131] Newman L J, Perazza D E, Juda L, Campbell M M. Involvement of the R2R3-MYB, AtMYB61, in theectopic lignification and dark-photomorphogenic components of the det3mutant phenotype. The PlantJournal,2004,37(2):239-250.
    [132] Agarwal M, Hao Y, Kapoor A, Dong C H, Fuji H, Zheng X, Zhu J K. A R2R3type MYB transcription factoris involved in the cold regulation of CBF genes and in acquired freezing tolerance. Journal of BiologicalChemistry,2006,281(49):37636-37645.
    [133] Liao Y, Zou H F, Wang H W, Zhang W K, Ma B, Zhang J S. Soybean GmMYB76, GmMYB92, andGmMYB177genes confer stress tolerance in transgenic Arabidopsis plants. Cell Research,2008c,18(10):1047-1060.
    [134] Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBF1encodes an AP2domain-containing transcriptional activator that binds to the C-repeat/DRE, a cis-acting DNA regulatoryelement that stimulates transcription in response to low temperature and water deficit. Proceedings of theNational Academy of Sciences USA,1997(94):1035-1040.
    [135] Liu Q, Kasuga M, Sakuma Y, Abe H, Miura S, Goda H, Shimada Y, Yoshida S, Shinozaki K,Yamaguchi-Shinozaki K. Two transcription factors, DREB1and DREB2, with an EREBP/AP2DNA bindingdomain separate two cellular signal transduction pathways in drought-and low-temperature-responsive geneexpression, respectively, in Arabidopsis. The Plant Cell,1998,10(8):391-406.
    [136] Lata C, Bhutty S, Bahadur R P, Majee M, Prasad M. Association of a SNP in a novel DREB2-like geneSiDREB2with stress tolerance in foxtail millet [Setaria italica (L.)]. Journal of Experimental Botany,2011,62(10):3387-3401.
    [137] Magnani E, Sj lander K, Hake S. Magnani E, Sj lander K, Hake S. From endonucleases to transcriptionfactors: evolution of the AP2DNA binding domain in plants. The Plant Cell,2004,16(9):2265-2277.
    [138] Agarwal P K, Agarwal P, Reddy M K, Sopory S K. Role of DREB transcription factors in abiotic and bioticstress tolerance in plants. Plant Cell Reports,2006,25(12):1263-1274.
    [139] Lee S J, Kang J Y, Park H J, Kim M D, Bae M S, Choi H I, Kim S Y. DREB2C interacts with ABF2, a bZIPprotein regulating abscisic acid-responsive gene expression, and its overexpression affects abscisic acidsensitivity. Plant Physiology,2010,153(2):716-727.
    [140] Liu L, Zhu K, Yang Y, Wu J, Chen F, Yu D. Molecular cloning, expression profiling and trans-activationproperty studies of a DREB2-like gene from chrysanthemum (Dendranthema vestitum). Journal of PlantResearch,2008,121(2):215-226.
    [141] Hu H, You J, Fang Y, Zhu X, Qi Z, Xiong L. Characterization of transcription factor gene SNAC2conferringcold and salt tolerance in rice. Plant Molecular Biology,2008,67(1-2):169-181.
    [142] Souer E, Van Houwelingen A, Kloos D, Mol J, Koes R The no apical meristem gene of Petunia is requiredfor pattern formation in embryos and flowers and is expressed at meristem and primordial boundaries. TheCell,1996,85(2):159-170.
    [143] Aida M, Ishida T, Fukaki H, Fujisawa H, Tasaka M. Genes involved in organ separation in Arabidopsis: ananalysis of the cup-shaped cotyledon mutant. The Plant Cell,1997,9(6):841-857.
    [144] Weir I, Lu J, Cook H, Causier B, Schwarz-Sommer Z, Davies B. CUPULIFORMIS establishes lateral organboundaries in Antirrhinum. Development,2004,131(4):915-922.
    [145] Nakashima K, Tran L S, Nguyen D V, Fujita M, Maruyama K, Todaka D, Ito Y, Hayashi N, Shinozaki K,Yamaguchi-Shinozaki K. Functional analysis of a NAC-type transcription factor OsNAC6involved inabiotic and biotic stress-responsive gene expression in rice. The Plant Journal,2007,51(4):617-630.
    [146] Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K,Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcriptionfactors that bind to a drought-responsive cis-element in the early responsive to dehydration stress1promoter. The Plant Cell,2004,16(9):2481-2498.
    [147] Hussain S S, Kayani M A, Amjad M. Transcription factors as tools to engineer enhanced drought tolerance inplants. Biotechnology Progress,2011,27(2):297-306.
    [148] Zhang G, Chen M, Li L, Xu Z, Chen X, Guo J, Ma Y. Overexpression of the soybean GmERF3gene, anAP2/ERF type transcription factor for increased tolerances to salt, drought and diseases in transgenic tobacco.Journal of Experiment Botany,2009,60(3):3781-3796.
    [149] Singh A K, Sopory S K, Wu R, Singla-Pareek S L. Transgenic Approaches. In: AbioticStress Adaptation. in:Pareek A, Sopory S K, Bohnert H J, Govind J, eds. Plants: Physiological, Molecular and GenomicFoundation,2010,417-450.
    [150] Qiu Y, Yu D. Over-expression of the stress-induced OsWRKY45enhances disease resistance and droughttolerance in Arabidopsis. Environmental and Experimental Botany,2009,65(1):35-47.
    [151] Jin X F, Jiong A S, Peng R H, Liu J G, Gao F, Chen J M, Yao Q H. OsAREB1, an ABRE-binding proteinresponding to ABA and glucose, has multiple functions in Arabidopsis. BMB Reports,2010,43(1):34-39.
    [152] Vannini M, Campa M, Iriti M, Genga A, Faoro F, Carravieri S, Rotino GL, Rossoni M, Spinardi A, BracaleM Evaluation of transgenic tomato plants ectopically expressing the rice Osmyb4gene. Plant Science,2007,173(2):231-239.
    [153] Pasquali G, Biricolti S, Locatelli F, Baldoni E, Mattana M. Osmyb4expression improves adaptive responsesto drought and cold stress in transgenic apples. Plant Cell Reports,2008,27(10):1677-1686.
    [154] Agarwal P K, Jha B. Transcription factors in plants and ABA dependent and independent abiotic stresssignaling. Biologia Plantarum,2010,54(2):201-212.
    [155] Puranik S, Bahadur R P, Srivastava P S, Prasad M. Molecular cloning and characterization of a membraneassociated NAC family gene, SiNAC from foxtail millet [Setaria italica (L.) P. Beauv.]. MolecularBiotechnology,2011,49(2):138-150.
    [156] Zhou Q Y, Tian A G, Zou H F, Xie Z M, Lei G, Huang J, Wang C M, Wang H W, Zhang J S, Chen S Y.Soybean WRKY-type transcription factor genes, GmWRKY13, GmWRKY21, and GmWRKY54, conferdifferential tolerance to abiotic stresses in transgenic Arabidopsis plants. Plant Biotechnology Journal,2008,6(5):486-503.
    [157] Vannini C, Locatelli F, Bracale M, Magnani E, Marsoni M, Osnato M, Mattana M, Baldoni E, Coraggio I.Overexpression of the rice Osmyb4gene increases chilling and freezing tolerance of Arabidopsis thalianaplants. The Plant Journal,2004,37(1):115-127.
    [158] Shin D, Moon S J, Han S, Kim B G, Park S R, Lee S K, Yoon H J, Lee H E, Kwon H B, Baek D, Yi B Y,Byun M O. Expression of StMYB1R-1, a novel potato single MYB-like domain transcription factor,increases drought tolerance. Plant Physiology,2011,155(1):421-432.
    [159] Liao Y, Zou H, Wei W, Hao Y J, Tian A G, Huang J, Liu Y F, Zhang J S, Chen S Y Soybean GmbZIP44,GmbZIP62and GmbZIP78genes function as negative regulator of ABA signaling and confer salt andfreezing tolerance in transgenic Arabidopsis. Planta,2008a,228(2):225-240.
    [160] Liao Y, Zhang J S, Chen S Y, Zhang, W K. Role of soybean GmbZip132under abscisic acid and salt stresses.Journal of Integrative Plant Biology,2008b,50(2):221-230.
    [161] Fujita M, Mizukado S, Fujita Y, Ichikawa T, Nakazawa M, Seki M, Matsui M, Yamaguch-Shinozaki K,Shinozaki K. Identification of stress-tolerance-related transcription-factor genes via mini-scale full lengthcDNA Over-expressor (FOX) gene hunting system. Biochemical and Biophysical Research Communications,2007,364(2):250-257.
    [162] Abe H, Urao T, Ito T, Seki M, Shinozaki K, Yamaguchi-Shinozaki K.Arabidopsis AtMYC2(bHLH) andAtMYB2(MYB) function as transcriptional activators in abscisic acid signaling. The Plant Cell,2003,15(1):63-78.
    [163] Ding Z, Li S, An X, Liu X, Qin H, Wang D. Transgenic expression of MYB15confers enhanced sensitivityto abscisic acid and improved drought tolerance in Arabidopsis thaliana. Journal of Genetics&Genomics,2009,36(1):17-29.
    [164] Kasuga M, Miura S, Shinozaki K, Yamaguchi-Shinozaki K. A combination of the Arabidopsis DREB1A geneand stress-inducible rd29A promoter improved drought-and low-temperature stress tolerance in tobacco bygene transfer. Plant Cell Physiology,2004,45(3):346-350.
    [165] Behnam B, Kikuchi A, Celebi-Toprak F, Yamanaka S, Kasuga M, Yamaguchi-Shinozaki K, Watanabe K N.The Arabidopsis DREB1A gene driven by the stress-inducible rd29A promoter increases salt-stress tolerancein proportion to its copy number in tetrasomic tetraploid potato (Solanum tuberosum). Plant Biotechnology,2006,23(2):169-177.
    [166] Bhatnagar-Mathur P, Devi M J, Reddy D S, Vadez V, Yamaguchi-Shinozaki K, Sharma K K. Overexpressionof Arabidopsis thaliana DREB1A in transgenic peanut (Arachis hypogaea L.) for improving tolerance todrought stress (poster presentation). in: Arthur M. Sackler C eds. From Functional Genomics of ModelOrganisms to Crop Plants for Global Health,2006.
    [167] Matsukura S, Mizoi J, Yoshida T, Todaka D, Ito Y, Maruyama K, Shinozaki K, Yamaguch-Shinozaki K.Comprehensive analysis of rice DREB2-type genes that encode transcription factors involved in theexpression of abiotic stress-responsive genes. Molecular Genetics and Genomics,2010,283(2):185-196.
    [168] Wang Q, Guan Y, Wu Y, Chen H, Chen F, Chu C. Overexpression of a rice OsDREB1F gene increases salt,drought, and low temperature tolerance in both Arabidopsis and rice. Plant Molecular Biology,2008,67(6):589-602.
    [169] Agarwal P, Agarwal P K, Joshi A J, Sopory S K, Reddy M K. Overexpression of PgDREB2A transcriptionfactor enhances abiotic stress tolerance and activates downstream stress-responsive genes. MolecularBiology Reports,2010,37(2):1125-1135.
    [170] Shan D P, Huang J G, Yang Y T, Guo Y H, Wu C A, Yang G D, Gao Z, Zheng C C. Cotton GhDREB1increases plant tolerance to low temperature and is negatively regulated by gibberellic acid. New Phytologist,2007,176(1):70-81.
    [171] Tran L S, Nakashima K, Sakuma Y, Simpson S D, Fujita Y, Maruyama K, Fujita M, Seki M, Shinozaki K,Yamaguchi-Shinozaki K. Isolation and functional analysis of Arabidopsis stress-inducible NAC transcriptionfactors that bind to a drought-responsive cis-element in the early responsive to dehydration stress1promoter.The Plant Cell,2004,16(9):2481-2498.
    [172] Zheng X, Chen B, Lu G, Han B. Overexpression of a NAC transcription factor enhances rice drought and salttolerance. Biochemical and Biophysical Research Communications,2009,379(4):985-989.
    [173] Trujillo L E, Sotolongo M, Menendez C, Ochogava M E, Coll Y, Hernandez I, Borras-Hidalgo O, Thomma BP, Vera P, Hernandez L. SodERF3, a novel sugarcane ethylene responsive factor (ERF), enhances salt anddrought tolerance when over-expressed in tobacco plants. Plant Cell Physiology,2008,49(4):512-515.
    [174] Wang H, Hao J, Chen X. Overexpression of rice WRKY89enhances ultraviolet B tolerance and diseaseresistance in rice plants. Plant Molecular Biology,2007,65(6):799-815.
    [175] Xu Q J, Cui C R. Genetic transformation of OSISAP1gene to onion (Allium cepa L.) mediated byamicroprojectile bombardment. Journal of Plant Physiology and Molecular Biology (Article in Chinese),2007,33(3):188-96.
    [176] Jain D, Roy N, Chattopadhyay D. CaZF, a plant transcription factor functions through and parallel to HOGand calcineurin pathways in Saccharomyces cerevisiae to provide osmotolerance. PLoS One,2009,44:e5154.
    [177] Karaba A, Dixit S, Greco R, Aharoni A, Trijatmiko K R, Marsch-Martinez N, Krishnan A, Nataraja K A,Udayakumar M, Pereira A. Improvement of water use efficiency in rice by expression of HARDY, anArabidopsis drought and salt tolerance gene. Proceedings of the National Academy of Sciences USA,2007,104(39):15270-15275.
    [178] Cutler S R, Rodriguez P L, Finkelstein R R, Abrams S R. Abscisic acid: Emergence of a core signalingnetwork. Annual Reviews in Plant Biology,2010,61:651-679.
    [179] Kim T H, B hmer M, Hu H, Nishimura N, Schroeder J I. Guard cell signal transduction network: Advancesin understanding abscisic acid, CO2, and Ca2+signaling. Annual Reviews in Plant Biology,2010,61:561-591.
    [180] Yamaguchi-Shinozaki K, Shinozaki K. Transcriptional regulatory networks in cellular responses andtolerance to dehydration and cold stresses. Annual Reviews in Plant Biology,2006,57:781-803
    [181] Fowler S, Thomashow M. Arabidopsis transcriptome profiling indicates that multiple regulatory pathwaysare activated during cold acclimation in addition to the CBF cold response pathway. The Plant Cell,200214(8):1675-1690.
    [182] Umezawa T, Fujita M, Fujita Y, Yamaguchi-Shinozaki K, and Shinozaki K. Engineering drought tolerance inplants: discovering and tailoring genes to unlock the future. Current Opinion in Biotechnology,2006,17(2):113-122.
    [183] Abe H, Yamaguchi-Shinozaki K, Urao T, Iwasaki T, Hosokawa D, Shinozaki K. Role of Arabidopsis MYCand MYB homologs in drought-and abscisic acid-regulated gene expression. The Plant Cell,1997,9(10):1859-1868.
    [184] Busk P K, Pagès M. Regulation of abscisic acid-induced transcription. Plant Molecular Biology,1998,37(3):425-435.
    [185] Saibo N J, Lourenco T, Oliveira M M. Transcription factors and regulation of photosynthetic and relatedmetabolism under environmental stresses. Annals of Botany,2009,103(4):609-623.
    [186] Kizis D, Pagès M. Maize DRE-binding proteins DBF1and DBF2are involved in rab17regulation throughthe drought-responsive element in an ABA-dependent pathway. The Plant Journal,2002,30(6):679-689.
    [187] Chen W J, Zhu T. Networks of transcription factors with roles in environmental stress response. Trends inPlant Science,2004,9(12):591-596.
    [188] Riechmann J L, Heard J, Martin G, Reuber L, Jiang C Z, Keddie J, Adam L, Pineda O, Ratcliffe O J, SamahaR R, Creelman R, Pilgrim M, Broun P, Zhang J Z, Ghandehari D, Sherman B K, Yu G L. Arabidopsistranscription factors: Genome-wide comparative analysis among eukaryotes. Science,2000,290(5499):2105-2110.
    [189] Kaplan-Levy R N, Brewer P B, Quon T, Smyth D R. The trihelix family of transcription factors-light, stressand development. Trends in Plant Science,2012,17(3):163-171.
    [190] Ria o-Pachón D M, Corrêa L G, Trejos-Espinosa R, Mueller-Roeber B. Green transcription factors: achlamydomonas overview. Genetics.2008,179(1):31-39.
    [191]陆婷婷.水稻全长cDNA序列的比较分析、相关数据库的构建植物与动物Trihelix转录因子基因家族的比较研究[学位论文].上海交通大学,2009.
    [192] Dehesh K, Hung H, Tepperman J M, Quail P H. GT-2: A transcription factor with twin autonomousDNA-binding domains of closely related but different target sequence specificity. The EMBO Journal,1992,11(11):4131-4144.
    [193] Kuhn R M, Caspar T, Dehesh K, Quail P H. DNA-binding factor GT-2from Arabidopsis. Plant MolecularBiology,1993,23(2):337-348.
    [194] Ni M, Dehesh K, Tepperman J M, Quail P H. GT-2: in vivo transcriptional activation activity and definitionof novel twin DNA binding domains with reciprocal target sequence selectivity. The Plant Cell,1996,8(6):1041-1059.
    [195] Nagano Y. Several features of the GT-factor trihelix domain resemble those of the Myb DNA-bindingdomain. Plant Physiology,2000,124(2):491-494.
    [196]关秋玲,陈焕新,张毅,李秋莉.植物GT元件和GT因子的研究进展[J].遗传,2009,3(2):123-130.
    [197] Green P J, Kay S A, Chua N H. Sequence-specific interactions of a pea nuclear factor with light-responsiveelements upstream of the rbcS-3A gene. The EMBO Journal,1987,6(9):25432549.
    [198] Dehesh K, Bruce W B, Quail P H. A trans-acting factor that binds to a GT-motif in a phytochrome genepromoter. Science,1990,250(4986):13971399.
    [199] Dehesh K, Smith LG, Tepperman JM, Quail PH. Tepperman J M, Quail P H. Twin autonomous bipartitenuclear localization signals direct nuclear import of GT-2. The Plant Journal,1995,8(1):25-36.
    [200] Lawton M A, Dean S M, Dron M, Kooter J M, Kragh K M, Harrison M J, Yu L, Tanguay L, Dixon R A,Lamb C J. Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor,SBF-1, closely related to GT-1. Plant Molecular Biology,1991,16(2):235249.
    [201] Villain P, Clabault G, Macke R, Zhou D X. S1F binding site is related to but different from thelight-responsive GT-1binding site and differentially represses the spinach rpsl promoter in transgenictobacco. Journal of Biological Chemistry,1994,269(24):1662616630.
    [202] Villain P, Mache R, Zhou D X. The mechanism of GT element-mediated cell type-specific transcriptionalcontrol. Journal of Biological Chemistry,1996,271(51):3259332598.
    [203] Park H C, Kim M L, Kang Y H, Jeon J M, Yoo J H, Kim M C, Park C Y, Jeong J C, Moon B C, Lee J H,Yoon H W, Lee S H, Chung W S, Lim C O, Lee S Y, Hong J C, Cho M J. Patho-gen-and NaCl-inducedexpression of the SCaM-4promoter is mediated in part by a GT-1box that interacts with a GT-1-liketranscription factor. Plant Physiology,2004,135(4):21502161.
    [204] Suprunova T, Krugman T, Distelfeld A, Fahima T, Nevo E, Korol A. Identification of a novel gene (Hsdr4)involved in water-stress tolerance in wild barley. Plant Molecular Biology,2007,64(1-2):1734.
    [205] Mehrotra R, Kiran K, Chaturvedi C P, Ansari SA, Lodhi N, Sawant S, Tuli R. Effect of copy number andspacing of the ACGT and GT cis elements on transient expression of minimal promoter in plants. Journal ofGenetics,2005,84(2):183187
    [206] Fluhr R, Kuhlemeier C, Nagy F, Chua N H. Organ-specific and light-induced expression of plant genes.Science,1986,232(4754):11061112.
    [207] Green P J, Yong M H, Cuozzo M, Kano-Murakami Y, Silverstein P, Chua N H. Binding site requirements forpea nuclear protein factor GT-1correlate with sequences required for lightdependent transcriptionalactivation of the rbcS-3A gene. The EMBO Journal,1988,7(13):40354044.
    [208] Gilmartin P M, Memelink J, Hiratsuka K, Kay S A, Chua N H. Characterization of a gene encoding a DNAbinding protein with specificity for a light-responsive element. The Plant Cell,1992,4(7):839849.
    [209] Perisic O, Lam E. A tobacco DNA binding protein that interacts with a light-responsive box II element. ThePlant Cell,1992,4(7):831838.
    [210] Murata J, Takase H, Hiratsuka K. Characterization of a novel GT-box binding protein from Arabidopsis.Plant Biotechnology,2002,19(2):103112.
    [211] Lawton M A, Dean S M, Dron M, Kooter J M, Kragh K M, Harrison M J, Yu L, Tanguay L, Dixon R A,Lamb C J. Silencer region of a chalcone synthase promoter contains multiple binding sites for a factor,SBF-1, closely related to GT-1. Plant Molecular Biology,1991,16(2):235249.
    [212] Anderson S L, Teakle G R, Martino-Catt S J, Kay S A. Cir-cadian clock-and phytochrome-regulatedtranscription is conferred by a78bp cis-acting domain of the Arabidopsis CAB2promoter. The Plant Journal,1994,6(4):457470.
    [213] Eyal Y, Curie C, McCormick S. Pollen specificity ele-ments reside in30bp of the proximal promoters of twopollen-expressed genes. The Plant Cell,1995,7(3):373384.
    [214] Ayadi M, Delaporte V, Li Y F, Zhou D X. Analysis of GT-3a identifies a distinct subgroup of trihelixDNA-binding transcription factors in Arabidopsis. FEBS Letters,2004,562(13):147154.
    [215] Xie Z M, Zou H F, Lei G, Wei W, Zhou Q Y, Niu C F, Liao Y, Tian A G, Ma B, Zhang W K, Zhang J S, ChenS Y. Soybean Trihelix transcription factors GmGT-2A and GmGT-2B improve plant tolerance to abioticstresses in transgenic Arabidopsis, PLoS One,2009,4: e6898. doi:10.1371/journal.pone.0006898
    [216]罗军玲,赵娜.卢长明植物Trihelix转录因子家族研究进展[J].遗传,2012,34(2):1551-1560.
    [217] Mehrotra R, Kiran K, Chaturvedi C P, Ansari S A, Lodhi N, Sawant S, Tuli R. Identification and in silicocharacterization of soybean trihelix-GT and bHLH transcription factors involved in stress responses.Genetics and Molecular Biology,2012,35(suppl):233-246.
    [218] Wang R, Hong G F, Han B. Transcript abundance of rmll, encoding a putative GTI-like factor in rice, isup-regulated by Magnaporthe grisea and down-regulated by light. Gene,2004,324:105-115
    [219] Xi J, Qiu Y, Du L, Poovaiah B W. Plant-specific trihelix transcription factor AtGT2L interacts withcalcium/calmodulin and responds to cold and salt stresses. Plant Science,2012,185:274-280.
    [220] Weng H, Yoo C Y, Gosney M J, Hasegawa P M, Mickelbart M V. Poplar GTL1is a Ca2+/calmodulin-bindingfactor that functions in plant water use transcription efficiency and drought tolerance. PLoS One,2012,7(3):e32925.
    [221] Yoo C Y, Pence H E, Jin J B, Miura K, Gosney M J, Hasegawa P M, Mickelbart M V. The Arabidopsis GTL1transcription factor regulates water use efficiency and drought tolerance by modulating stomatal densityviatransrepression of SDD1. The Plant Cell,2010,22(12):4128-4141.
    [222] Fang Y, Xie K, Hou X, Hu H, Xiong L. Systematic analysis of GT factor family of rice reveals a novelsubfamily involved in stress responses. Molecular Genetics and Genomics,2010,283(2):157-169.
    [223]李秋莉,张毅,尹辉,李丹.辽宁碱蓬甜菜碱醛脱氢酶基因(BADH)启动子分离及序列分析[J].生物工程学报,2006,22(1):77-81.
    [224]尹辉.宁碱蓬CMO基因启动子功能分析[学位论文].辽宁师范大学,2007.
    [225] Zhang Y, Yin H, Li D, Zhu W W, Li Q L. Functional analysis of BADH gene promoter from Suaedaliaotungensis K. Plant Cell Report,2008,27(3):585-592.
    [226] Breuer C, Kawamura A, Ichikawa T, Tominaga-Wada R, Wada T, Kondou Y, Muto S, Matsui M, Suqimoto K.The trihelix transcription factor GTL1regulates ploidy-dependent cell growth in the Arabid opsis trichome.The Plant Cell,2009,21(8):2307-2322.
    [227] Smalle J, Kurepa J, Haegman M, Gielen J, Van Montagu M, Van Der Straeten D. The trihelix DNA-bindingmotif in higher plants is not restricted to the transcription factors GT-1and GT-2. Proceedings of the NationalAcademy of Science of the United States of America,1998,95(6):3318-3322.
    [228] Pagnussat G C, Yu H J, Ngo Q A, Rajani S, Mayalagu S, Johnson C S, Capron A, Xie L, Ye D, Sundaresan V.Genetic and molecular identification of genes required for female gametophyte development and function inArabidopsis. Development,2005,132(3):603-614.
    [229] Tzafrir I, Pena-Muralla R, Dickerman A, Berg M, Rogers R, Hutchens S, Sweeney T C, Mcelver J, Aux G,Patton D, Meinke D. Identification of genes required for embryo development in Arabidopsis. PlantPhysiology,2004,135(3):1206-1220.
    [230] Li C B, Zhou A L, Sang T. Rice domestication by reducing shattering. Science,2006,311(5769):1936-1939.
    [231] Zhou Y, Lu D, Li C, Luo J, Zhu B, Zhu J, Shangguan Y, Wang Z, Sang T, Zhou B, Han B. Genetic control ofseed shattering in rice by the APETALA2transcription factor SHATTERING ABORTION. The Plant Cell,2012,24(3):1034-1048.
    [232] Konishi, S, Izawa T, Lin S Y, Ebana K, Fukuta Y, Sasaki T, Yano M. An SNP caused loss of seed shatteringduring rice domestication. Science,2006,312(5778):1392-1396.
    [233] Weselake R J, Taylor D C, Rahman M H, Shah S, Laroche A, McVetty P B, Harwood J. Increasing the flowof carboninto seed oil. Biotechnology Advances,2009,27(6):866-878.
    [234] Gao M J, Lydiate D J, Li X, Lui H, Gjetvaj B, Hegedus D D, Rozwadowski K. Repression of seedmaturation genes by a trihelix transcriptional repressor in Arabidopsis seedlings. The Plant Cell,2009,21(1):54-71.
    [235] Wei S, Hegedus D D. ASIL1is required for proper timing of seed filling in Arabidopsis. Plant SignalBehavior,2011,6(12):1886-1888.
    [236] Barr M S, Willmann M R, Jenik P D. Is there a role for trihelix transcription factors in embryo maturation?Plant Signal Behavior,2012,7(2):205-209.
    [237] Brewer P B, Howles P A, Dorian K, Griffith M E, Ishida T, Kaplan-levy R N, Kilinc A, Smyth D R. PETALLOSS, a trihelix transcription factor gene, regulates perianth architecture in the Arabidopsis flower.Development,2004,131(16):4035-4045.
    [238] Li X, Qin G J, Chen Z L, Gu H Y, Qu L J. A gain-of-function mutation of transcriptional factor PTL results incurly leaves, dwarfism and male sterility by affecting auxin homeostasis. Plant Molecular Biology,2008,66(3):315-327.
    [239] Griffith M E, Silva Conceic o A, Smyth D R. PETAL LOSS gene regulates initiation and orientation ofsecond whorl organs in the Arabidopsis flower. Development,1999,126(24):5635-5644.
    [240] Xu B, Li Z, Zhu Y, Wang H, Ma H, Dong A, Huang H. Arabidopsis genes AS1, AS2and JAG negativelyregulateboundary-specifying genes to promote sepal and petal development. Plant Physiology,2008,146(2):566-575.
    [241] Lampugnani E R, Kilinc A, Smyth D R. PETAL LOSS is a boundary gene that inhibits growth betweendeveloping sepals in Arabidopsis thaliana. The Plant Journal,2012,71(5):724-735.
    [242] Geraldo N, Baurle I, Kidou S, Hu X, Dean C. FRIGIDA delays flowering in Arabidopsis via acotranscriptional mechanism involving direct interaction with the nuclear cap-bindingcomplex. PlantPhysiology,2009,150(3):1611-1618.
    [243] Kuromori T, Wada T, Kamiya A, Yuguchi M, Yokouchi T, Imura Y, Takabe H, Sakurai T, Akiyama K,Hirayama T, Okada K, Shinozaki K. A trial phenome analysis using4000Ds-insertional mutants in genecoding regions of Arabidopsis. The Plant Journal,2006,47(4):640-651.
    [244] Callebaut I, Moshous D, Mornon J P, Villartay J P. Met-allo-beta-lactamase fold within nucleic acidsprocessing enzymes: the beta-CASP family. Nucleic Acid Research,2002,30(16):3592-360.
    [245] Mare′chal E, Hiratsuka K, Delgado J, Nairn A, Qin J, Chait B T, Chua N H. Modulation of GT-1DNA-binding activity by calcium-dependent phosphorylation. Plant Molecular Biology,1990,40(3):373-386.
    [246] Nagata T, Niyada E, Fujimoto N, Nagasaki Y, Noto K, Miyanoiri Y, Murata J, Hiratsuka K, Katahira M.Solution structure of the trihelix DNA-binding domains of the wild type and a phosphomimetic mutant ofArabidopsis GT-1: mechanism for an increase in DNA-binding affinity through phosphorylation. Proteins,2010,78(14):3033-3047.
    [247] Zhang H, Jin J P, Tang L, Zhao Y, Gu X C, Gao G, Luo J C. PlantTFDB2.0: update and improvement of thecomprehensive plant transcription factor database Nucleic Acids Research,2011,39(Database issue):D1114-D1117.
    [248]胡根海,喻树迅.利用改良的CTAB法提取棉花叶片总RNA[J].棉花学报,2007,19(1):69-70.
    [249] Zuo K J, Qin J, Zhao J Y, Ling H, Zhang L D, Cao Y F, Tang K X. Over-expression GbER transcriptionfactor in tobacco enhances brown spots disease resistance by activating expression of downstream genes.Gene,2007,391(1-2):80-90.
    [250] Guo R, Yu F, Gao Z, An H, Cao X, Guo X. GhWRKY3, a novel cotton (Gossypium hirsutum L.) WRKYgene, is involved in diverse stress responses. Molecular Biology Reports,2011,38(1):49-58.
    [251] Huang B, Jin L G, Liu J Y. Molecular cloning and functional characterization of a DREB1/CBF-like gene(GhDREB1L) from cotton. Science in China series C. Life Science,2007,50(1):7-14.
    [252] Nagano Y, Inaba T, Furuhashi H, Sasaki Y. Trihelix DNA binding protein with specificities for two distinctcis-elements: both important for light down-regulated and dark-inducible gene expression in higher plants.Journal of Biology Chemistry,2001,276(25):22238-22243.
    [253] Boulikas T. Putative nuclear localization signals (NLS) in protein transcription factors. Journal of CellBiochemistry,1994,55(1):32-58.
    [254] Lyck R, Harmening U, Hohfeld L, Treuter E, Scharf K D, Nover L. Intracellular distribution andidentification of the nuclear localization signals of two plant heat-stress transcription factors. Planta,1997,202(1):117-125.
    [255] Imagawa M, Sakaue R, Tanabe A, Osada S, Nishihara T. Two nuclear localization signals are required fornucluer transcription factors1-A. FEBS Letters,2000,484(2):118-124.
    [256] Kasuga M, Liu Q, Miura S, Yamaguchi-Shinozaki K, Shinozaki K. Improving plant drought, salt, andfreezing tolerance by gene transfer of a single stress-inducible transcription factor. Nature. Biotechnology,1999,17(3):287-291.
    [257] Oh S J, Song S I, Kim YS, Jang H J, Kim S Y, Kim M, Kim Y K, Nahm B H, Kim J K. ArabidopsisCBF3/DREB1A and ABF3in transgenic rice increased tolerance to abiotic stress without stunting growth.Plant Physiology,2005,138(1):341-351.
    [258] Song C P, Galbraith D W. AtSAP18, an orthologue of human SAP18, is involved in the regulation of saltstress and mediates transcriptional repression in Arabidopsis. Plant Molecular Biology,2006,60(2):241-257.
    [259] Sakamoto H, Araki T, Meshi T, Iwabuchi M. Expression of a subset of the Arabidopsis Cys(2)/His(2)-typezinc-finger protein gene family under water stress. Gene,2000,248(1-2):23-32.
    [260] Sakamoto H, Maruyama K, Sakuma Y, Meshi T, Iwabuchi M, Shinozaki K, and Yamaguchi-Shinozaki K.Arabidopsis Cys2/His2-type zinc-finger proteins function as transcription repressors under drought, cold, andhigh-salinity stress conditions. Plant Physiology,2004,136(1):2734-2746.
    [261] Martin, C. and Paz-ares, J. MYB transcription factors in plants. Trends in Genetics.,1997,13(2):67-73.
    [262] Urao T, Yamaguchi-Shinozaki K, Urao S, Shinozaki K. An Arabidopsis myb homologue is induced bydehydration stress and its gene product binds to the conserved MYB recognition sequence. The Plant Cell,1993,5(11):1529-1539.
    [263] Villalobos M A, Bartels D, Iturriaga G. Stress tolerance and Glucose insensitive phenotypes in Arabidopsisoverexpressing the CpMYB10transcription factor gene. Plant Physiology,2004,135(1):309-324.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700