耐旱候选基因与玉米相关性状的关联分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米是重要的粮食、饲料和工业原料作物,在国民经济发展中占有重要地位。干旱是限制玉米生产的主要因素之一,对玉米造成的危害超过其他逆境胁迫。培育耐旱品种是提高玉米耐旱能力的有效途径,而发掘耐旱基因资源是培育耐旱品种的前提和基础。玉米种质资源中蕴藏有丰富的基因等位变异,鉴定出与玉米耐旱性相关且对玉米产量有较大贡献的优异等位变异有助于了解玉米耐旱的遗传机制,在此基础上开发耐旱相关分子标记,将极大地促进玉米遗传改良和种质创新。与连锁分析相比,应用关联分析方法可鉴定出与玉米表型性状密切相关的优异等位基因变异,因而成为研究玉米耐旱性的有效途径。
     本文以我国玉米生产上常用的196份自交系为材料,通过两年两个地点的田间试验鉴定和评估相关性状的耐旱性,结合196份自交系的群体结构分析和水分胁迫密切相关的三个基因(dbf1、nced、rab28)开展基于候选基因策略的关联分析,旨在发掘与耐旱性状相关的优异等位变异及耐旱单体型。获得的主要研究结果如下:
     1. 2007年冬季和2008年春季分别在海南三亚和新疆乌鲁木齐对196份玉米自交系进行田间耐旱鉴定,调查分析了株高、穗位高、雄穗长度、结实株数百分率、穗行数、行粒数、秃尖度、单穗粒重、百粒重、持绿度、叶片卷曲度和雌雄开花间隔天数(Anthesis-silking interval, ASI)等12个性状。通过典型相关分析,发现株高、ASI、单穗粒重和结实株数百分率四个性状可以作为玉米自交系耐旱性评价指标。采用因子分析方法,计算株高、ASI、单穗粒重和结实株数百分率四个性状的综合耐旱系数,对196份玉米自交系进行耐旱性评价,将试验材料分为耐旱、中度耐旱、中度干旱敏感和干旱敏感4种类型。两点试验耐旱级别完全一致的材料有58份,其中耐旱自交系7份,即H201,Mo113,英64,H21,早49,丹598,吉842;中度耐旱自交系有丹黄02,8902,中106,郑22,中黄68,K22等14份。这些材料为耐旱育种提供了基础。
     2.通过三个耐旱候选基因的序列多态性分析,发现(1)dbf1基因在175份玉米自交系中共检测到9个SNP变异(平均每60 bp一个),没有检测到Indel变异,在3个多态性位点间存在较高程度的连锁不平衡(r2>0.5);(2)nced基因在162份玉米自交系中共检测到20个SNP(平均每88 bp一个)和4个Indel(平均每441 bp一个),在8个位点间存在较高程度的连锁不平衡(r2>0.5);(3)rab28基因在131份玉米自交系中,共检测到52个SNP(平均每22 bp一个)和16个Indel(平均每72 bp一个),在8个位点间存在较高程度的连锁不平衡(r2>0.5)。
     3.通过关联分析,发现(1)在干旱胁迫下,dbf1基因中的多态性位点366与ASI和单穗粒重显著关联(P<0.05),位点452与单穗粒重和结实株数百分率存在显著关联(P<0.05)。位点366对ASI和单穗粒重的贡献率分别为6.94%和10.03%;位点452对单穗粒重和结实株数百分率的贡献率分别是1.01%和3.66%。根据2个位点将175份自交系分成4种单体型,其中单体型4含有能使ASI减小、结实株数百分率增加的等位基因位点,包含于早49、丹598、丹黄02等耐旱和中度耐旱自交系,推测单体型4可能是dbf1基因的耐旱单体型。(2)nced基因的6个多态性位点与ASI、单穗粒重、结实株数百分率和株高存在显著关联(P<0.05),其中位点739对单穗粒重的贡献率最大6.18%。选取与性状显著关联(P<0.05)且具有较大贡献的4个位点将162份自交系分为12种单体型,其中单体型3含有对单穗粒重较大贡献的位点739和位点386,包含于早49、丹黄02、中综4C1-3等耐旱和中度耐旱自交系,推断单体型3可能为nced基因的耐旱单体型。(3)在干旱胁迫下,rab28基因中多个序列多态性位点与株高、单穗粒重和结实株数百分率呈显著关联(P<0.05),其中与单穗粒重呈显著关联的位点为10个;与株高和结实株数百分率呈显著相关的位点均为6个。位点1113对单穗粒重的贡献率最大5.48%。选取具有较大贡献的4个位点将131份自交系分为10种单体型,其中单体型2含有对结实株数百分率较大贡献的位点1108和位点1092,包含于英64、M0113、K22、中黄68等耐旱和中度耐旱自交系,推断该单体型可能为rab28基因的耐旱单体型。
     4.对三个基因的耐旱单体型进行联合分析,发现玉米自交系早49和丹黄02含有dbf1和nced两个基因的耐旱候选单体型4和3。在上述自交系中可能蕴含丰富的耐旱优异等位基因变异,这些变异对干旱胁迫的多条调控途径可能有共同响应。本文研究结果为进一步开发耐旱功能标记及分子育种提供了基础。
Maize is one of the important crops as food, feed and industry use. Yield loss resulted from drought stress annually exceeds the sum of other abiotic stress. Development of drought-tolerant varieties using maize diverse germplasm is an available way to resolve the yield loss caused by water stress. Maize genome is full of abundant allelic variations, and discovering these alleles from genes related to drought tolerance is the basis of maize breeding, as well as understanding the complex genetic and molecular mechanism underlying drought tolerance. Studies on maize drought tolerance through linkage mapping have resulted in major progress. To generate new information for maize breeding programs, association analysis is an effective method to identify functional allelic variations related to drought-tolerant traits. The objectives of this study are to use the natural variation inherent in maize inbred line population and drought tolerant candidate genes for identification of functional alleles and haplotypes.
     Candidate genes related to drought tolerance dbf1, nced and rab28 were chosen from the publications, which were validated to have effects on the drought-tolerant traits. One hundred and ninety six maize inbred lines used in breeding programs of China were chosen for SNP (Single nucleotide polymorphism) genotyping and drought-tolerant phenotyping. Furthmore, based on the population structure analysis, association analysis were conducted to identify the functional SNP variations and functional haplotypes related to drought tolerance within each gene by logistic model.
     The major results obtained were as follows:
     1. A total of 196 maize inbred lines were evaluated for drought tolerance with alpha-lattice field design in 2007, Hainan province and 2008, Xinjiang province, respectively. The 12 phenotypic traits including plant stay green, tassel length, plant height, ear height, leaf rolling, kenel weight per ear, hundred kernels weight, ear row numbers, bared tip, percentage of plant with seeds and kernel number per row were investigated in these trials. The descriptive statistics from 12 traits investigated showed that four traits of plant height, ASI (Anthesis-silking interval), kernel weight per ear and percentage of plant with seed, were identified to evaluate inbred lines for drought tolerance. Based on factor analysis, integrated DTI (Drought Tolerance Index) of each inbred line was calculated to classify the maize inbreds tested into 4 different drought-tolerant types: drought tolerance, medium drought tolerance, medium drought susceptible and drought susceptible. 58 maize inbred lines had the same responses for drought tolerance, including 7 drought tolerant inbreds, 14 medium tolerant, 24 medium susceptible and 13 susceptible.
     2. Sequence alignment using software ClustalX showed the sequence polymorphism of three candidate genes. 1) Nine SNPs in dbf1 (DRE binding factor) gene were identified among 175 maize inbred lines, and no Indel (insertion and deletion) was found. Averagely, there was a variation every 60 bp. Higher LD (Linkage disequilibrium, r2>0.5) was identified between three polymorphic site pairs. 2) Twenty SNPs and four Indels in nced (9-cis-epoxycarotenoid dioxygenases) gene were identified among 162 maize inbred lines. Averagely, there was a SNP variation every 88 bp and an Indel every 441 bp, respectively. Relative higher LD (r2>0.5) was identifed between eight polymorphisic site pairs. 3) Fifty two SNPs and sixteen Indels in rab28 (the 28th response gene to ABA) gene were identified among 131 maize inbred lines. Averagely, there was a SNP variation every 22 bp and an Indel every 72 bp, respectively. Relative higher LD (r2>0.5) was identifed between eight polymorphisic site pairs.
     3. Candidate-gene association analysis between genotypes and phenotypes of drought tolerance were: 1) Two SNP sites in dbf1 gene were identified significantly to be associated with three traits (P<0.05), ASI, kernel weight per ear and percentage of plant with seeds. Of them, nucleotide variation T/C on site 366 was significantly associated with traits ASI and kernel weight per ear with contribution of 6.94% and 10.03%, respectively. Nucleotide variation A/G on site 452 was significantly associated with traits percentage of plant with seeds and kernel weight per ear with contribution of 1.01% and 3.66%, respectively. Based on these two sites, four haplotypes were identified among 175 maize inbred lines. Haplotype 4 decreasing ASI and increasing percentage of plant with seeds was thought to be candidate drought tolerant haplotype, which was included in some drought tolerant and medium tolerant inbred lines such as Zao49, Dan598, Danhuang02, etc. 2) Six SNP sites of nced gene were identified significantly to be associated with four traits (P<0.05), ASI, kernel weight per ear, percentage of plant with seeds and plant height. Of them, nucleotide variation T/G on site 739 was most significantly associated with kernel weight per ear with contribution of 6.18%. Based on four sites significantly associated with ASI, kernel weight per ear, percentage of plant with seeds, 12 haplotypes were identified among 162 maize inbred lines. Haplotype 3 increasing keneral weight per plant was thought to be candidate drought tolerance haplotype, which was included in drought tolerant inbreds, such as Zao49, Danhuang02, Zhongzong4C1-3, etc. 3) Under drought stress condition, some polymorphic sites were identified in gene rab28 significantly associated with plant height, kernel weight per ear and percentage of plant with seeds (P<0.05). Of them, 10 sites were found associated with kernel weight per ear, and 6 sites were found associated with plant height and percentage of plants with seeds, respectively. The site 1113 was signigicantly associated with kernel weight per ear with contribution of 5.48%. Furthermore, 4 critical polymorphic sites with large contribution to the phenotype were chosen to classify 131 inbred lines into 10 haplotypes. Haplotype 2 with two sites 1108 and 1092 both increasing percentage of plant with seeds was deduced to be drought tolerant haplotypes in rab28, and was included in drought tolerant and medium tolerant inbreds, such as Ying64, M0113, K22, Zhonghuang68, etc.
     4. Combined haplotype analysis of three candidate genes showed that maize inbred lines Zao49 and Danhuang02 both contained candidate drought tolerant haplotypes 4 and 3 in dbf1and nced genes, respectively. The results obtained in this paper could be used in development of functional markers and molecular breeding for dought tolerance breeding program in maize.
引文
1.白莉萍,隋方功,孙朝晖,葛体达,吕银燕,周广胜.土壤水分胁迫对玉米形态发育及产量的影响.生态学报, 2004, 24(7): 1556~1560
    2.陈军,戴俊英,沈秀英,徐世昌.不同玉米杂交种孕穗、开花和灌浆期抗旱性研究.沈阳农业大学学报, 1993, 24(1): 1~5
    3.陈军,戴俊英.干旱对不同耐性玉米品种光合作用及产量影响.作物学报, 1996, 22(6): 757~762
    4.付凤玲,周树峰,潘光堂,杨婉身,荣廷昭.玉米耐旱系数的多元回归分析.作物学报, 2003, 29(3): 468~472
    5.顾惠连,沈秀瑛,戴俊英.玉米不同品种各生育期对十旱的生理反应.沈阳农业大学学报, 1990, 21(3): 186~190.
    6.关义新,戴俊英.土壤干旱下玉米叶片游离脯胺酸积累及其与抗旱性的关系.玉米科学, 1996, 4(l): 43~45
    7.郭江,石中泉,张凤路,孙国伟.玉米的雌雄穗开花间隔对产量的影响及其潜在原因研究.玉米科学, 2004, 12: 20~22
    8.侯建华,吕凤山.玉米苗期抗旱性鉴定研究.华北农学报, 1995, 10(3): 89~93
    9.霍仕平,晏安九,宋光英,许明陆.玉米抗旱鉴定的形态和生理生化指标研究进展.干旱地区农业研究, 1995, 13 (3): 67~73
    10.荆家海,肖庆德.玉米叶片生长部位渗透调节和生长的生物物理参数变化.植物生理学报, 1988, 14(4): 385~390
    11.兰巨生,胡福顺,张景瑞.作物耐旱指数的概念和统计方法.华北农学报, 1990,5(2): 20~25
    12.黎裕,王天宇,刘成,石云素,宋燕春.玉米抗旱品种的筛选指标研究.植物遗传资源学报, 2004, 5(3): 210~215
    13.黎裕,王天宇,石云素,宋艳春.应用生理学方法和分子手段进行玉米耐旱育种.玉米科学, 2004, 12(2):16~20,25
    14.李江风.中国干旱半干旱地区气候环境与区域开发研究.北京:气象出版社, 1990
    15.李新海,高根来,梁晓玲,袁力行,李明顺,张世煌.我国主要玉米自交系开花期耐旱性差异及改良.作物学报, 2002, 28(5): 595~600
    16.刘贤德,李新海,张世煌.玉米开花期耐旱相关性状的遗传及育种策略.玉米科学, 2002, 10(3):13~18.
    17.路贵和,戴景瑞,张书奎,李文明,陈绍江,鄂立柱,张义荣.不同干旱胁迫条件下我国玉米骨干自交系的抗旱性比较研究.作物学报, 2005, 31(10): 1284~1288
    18.罗淑平,员海燕,山军建,袁照年.玉米耐旱性的生理生化和遗传育种理论与方法.作物杂志, 1998, (增刊): 86~94
    19.莫惠栋,顾世梁.基因组长度的估算方法.中国科学通报, 2000, 45 (13): 122~125
    20.裴英杰,郑家玲,王金胜.用于玉米品种抗旱性鉴定的生理生化指标.华北农学报, 1992, 7(1):31~35
    21.秦鸿儒,付明胜.连续干旱对土壤水分与植物存活影响调查研究.水土保持通报, 2005, 25(l): 41~43
    22.宋凤斌,戴俊英.玉米对干旱胁迫的反应和适应性-Ⅱ玉米雌穗和雄穗生长发育对干旱胁迫的反应.吉林农业大学学报, 2005, 27(1): 1~5,10
    23.宋凤斌,戴俊英.干旱胁迫对玉米雌穗生长发育和产量的影响.吉林农业大学学报, 2000, 22(1): 18~22
    24.宋凤斌,徐世章.玉米抗旱性鉴定指标的研究.中国生态农业学报, 2004, 12: 127~129
    25.孙彩霞,武志杰,张振平,陈利军.玉米抗旱性评价指标的系统分析.农业系统科学与综合研究, 2004, 20: 43~47
    26.陶均,李玲.高等植物脱落酸生物合成的酶调控.植物学通报, 2002, 19(6) : 675~683
    27.万建民.作物分子设计育种.作物学报, 2006, 32( 3): 455~462
    28.王畅,林秋萍,贡冬花,李普安.夏玉米的干旱适应性及其生理机制的研究.华北农学报, 1990, 5(4): 54~60
    29.王金胜,郭栋生,丁起盛,郭春绒.水分胁迫对玉米幼苗几种生理生化指标的影响及其与抗旱性的关系.山西农业大学学报, 1992, 12 C2): 137~140
    30.王荣焕,王天宇,黎裕.植物基因组中的连锁不平衡.遗传, 2007, 29(11): 1317~1323
    31.王荣焕,王天宇,黎裕.关联分析在作物种质资源分子评价中的应用.植物遗传资源学, 2007, 8(3): 366~372
    32.魏秀俭,杨婉身,潘光堂,付凤玲. 22个玉米自交系的耐旱性综合分析.干旱地区农业研究, 2005, 23(1): 134~137
    33.吴景社.世界水土资源的潜力与粮食人口问题.世界农业, 1994, 2: 6~8
    34.吴子恺.玉米抗旱育种.玉米科学, 1994, 2 (1): 6~9
    35.武斌,李新海,肖木辑,谢传晓,郝转芳,李明顺,张世煌. 53份玉米自交系的苗期耐旱性分析.中国农业科学, 2007, 40(4) : 665~676
    36.武维华.植物生理学.科学出版社, 2003: 426~448
    37.向旭.脱落酸应答基因的表达调控及其与逆境胁迫的关系.植物学通报, 1998, 15(3): 11~16
    38.徐兆师.小麦抗逆相关DREB-ERF转录因子基因的克隆与鉴定. [博士学位论文].北京:中国农业科学院研究生院, 2005
    39.杨洪强,接玉玲.高等植物脱落酸生物合成及其信号转导研究进展.华中农业大学学报, 2001, 20(1): 92~98
    40.杨小红,严建兵,郑艳萍,于建明,李建生.植物数量性状关联分析研究进展.作物学报,2007, 33(4): 523~530
    41.于永涛,刘成,吕玲,赵久然,石云素,杨国航,宋燕春,黎裕,王天宇.玉米品种耐旱性评价及相关鉴定指标的研究.作物杂志, 2008, 84: 55~58
    42.于永涛.玉米核心自交系群体结构及耐旱相关候选基因rab17的等位基因多样性分析. [博士学位论文.北京:中国农业科学院研究生院学位论文, 2006
    43.张宝石,徐世昌,宋凤斌,张威,戴俊英.玉米抗旱基因型鉴定方法和指标的研究.玉米科学,1996, 4:19~22
    44.张凤路,杨志良, Kirubi D.耐旱性主米筛选的形态指标研究.河北农业大学学报, 2003, 26(3): 22~29
    45.张海明,王茅雁.干旱对玉米过氧化氢酶、MDA含量及SOD、CAT活性的影响.内蒙古农牧学院学报, 1993, 14(4): 92~95
    46.张世煌.田间评价玉米杂交种的基本方法.北京农业, 2007: 26
    47.张正斌.作物抗旱节水的生理遗传育种基础.北京:科学出版社,2003, 35~38
    48.赵曦,王荣焕,于永涛,王天宇,黎裕.关联分析在玉米遗传学研究中的应用.玉米科学, 2008, 16(1): 52~55
    49.赵曦.玉米耐旱候选基因dhn2与表型性状的关联分析. [硕士学位论文].北京:中国农业科学院研究生院学位论文. 2008
    50.郑常祥,杨文鹏,舒世德,傅良中.干旱条件下玉米产量的主要相关性状研究.玉米科学, 2002, 10(增刊): 59~61
    51. Abdallah J M, Goffinet B, Cierco-AyrollesC. Linkage disequilibrium fine mapping of quantitative trait loci: a simulation study. Genet Sel Evol, 2003, 35: 513~532
    52. Agarwal P K, Agarwal P, Reddy M K, Sopory S K. Role of DREB transcription factors in abiotic and biotic stress tolerance in plants. Plant Cell Rep, 2006, 25: 1263~1274
    53. Agrama H A S, Moussa M E. Mapping QTL in breeding for drought tolerance in maize (Zea mays L.). Euphytica, 1996, 91: 89~97
    54. Andersen J R, Schrag T, Melchinger A E, Zein I, Lubberstedt T. Validation of Dwarf8 polymorphisms associated with flowering time in elite European inbred lines of maize (Zea mays L). Theor Appl Genet, 2005, 111: 206~217
    55. Arumuganathan K, Earle E D. Nuclear DNA content of some important plant species. Plant Mol Biol Rep, 1991, 9: 208~218
    56. Baker J C, Steel C, Dure L III. Sequence and characterization of 6 Lea proteins and their genes from cotton. Plant Mol Biol, 1988, 11: 277~291
    57. Balding D J. A tutorial on statistical methods for population association studies. Nature, 2006, 7: 781~791
    58. Beavis W D. The power and deceit of QTL experiments: lessons from comparative QTL studies. Proceedings of the 49th Annual Corn and Sorghum Research Conference American Seed Trade Association, Washington, D.C. 1994: 250~266
    59. BelóA, Zheng P Z, Luck S, Shen B, Meyer D J, Li B L, Tingey S, Rafalski A. Whole genome scan detects an allelic variant of fad2 associated with increased oleic acid levels in maize. Mol Genet Genomics, 2008, 279: 1~10
    60. Betran F J, Beck D, Banziger M, Edmeades G O. Secondary traits in parental inbreeds and hybrids under stress and non-stress environments in tropical maize. Field Crop Res, 2003, 83: 51~65
    61. Blum A. Towards standard assays of drought resistance in crop plants. In: Ribaut J M, Poland D (eds). Molecular approaches for the genetic improvement of cereals for stable production inwater-limited environments. A Strategic Planning Workshop held at CIMMYT, El Batán, Mexico, 1999: 29~35
    62. Bola?os J, Edmeades G O. Eight cycles of selection for drought tolerance in low land tropical maize. I. Responses in Yield, biomass and radiation utilization. Field Crop Res, 1993a, 31: 233~252
    63. Bola?os J, Edmeades G O, Martinez L. Eight cycles of selection for drought tolerance in lowland tropical maize.Ⅲ. Responses in drought-adaptive physiological and morphological traits. Field Crop Res, 1993, 31: 269~286
    64. Bola?os J, Edmeades G O. The importance of the anthesis-silking interval in breeding for drought tolerance in tropical maize. Field Crop Res, 1996, 48: 65~80
    65. Bray E A. Plant responses to water deficit. Trends Plant Sci, 1997, 2: 48~54
    66. Breseghello F, SorrellsM E. Association mapping of kernel size and milling quality in wheat ( Triticum aestivum L. ) cultivars. Genetics, 2006, 172: 1165~1177
    67. Bruce W B, Edmeades G O, Barker T C. Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot, 2002, 53(336): 13~25
    68. Buckler ES IV, Thornsberry J M, Kresovich S. Molecular diversity, structure and domestication of grasses. Genet Res Camb, 2001, 77: 213~218
    69. Burbidge A, Grieve T M, Jackson A, Thompson A, McCarty D R, Taylor I B. Characterization of the ABA-deficient tomato mutant notabilis and its relationship with maize VP14. Plant J, 1999, 17: 427~431
    70. Busk P K, Pujal J, Jessop A, Lumbreras V, Pag`es M. Constitutive protein-DNA interactions on the abscisic acid-responsive element before and after developmental activation of the rab28 gene. Plant Mol Biol, 1999, 41: 529~536
    71. Camus-Kulandaivelu L, Veyrieras J B, Madur D. Maize adaptation to temperate climate: relationship with population structure and polymorphism in the Dwarf8 gene. Genetics, 2006, 10: 1534~1572
    72. Cardon L R, Palmer L J. Population stratification and spurious allelic association. Lancet, 2003, 361: 598~604
    73. Cattivelli L, Rizza F, Badeck F, Mazzucotelli E, Mastrangelo A M, Francia E, MarèC, Tondelli A, Stanca A M. Drought tolerance improvement in crop plants: An integrated view from breeding to genomics. Field Crop Res, 2008, 105: 1~14
    74. Chernys J T, Zeevaart J A D. Characterization of the 9-cis-epoxycarotenoid dioxygenase gene family and the regulation of abscisic biosynthesis in avocado. Plant Physiol, 2000, 124 : 345~354
    75. Clark R M, Linton E, Messing J, Doebley J F. Pattern of diversity in the genomic region near the maize domestication gene tb1. Proc Natl Acad Sci. USA, 2004, 101: 700~707
    76. Corder E H, Saunders A N M, Risch N J. A protective effect of apolipoprotein E type 2 allele for late onset Alzheimer disease. Nat Genet, 1994, 7: 180~184
    77. Davies W J. Zhang J. Root signals and the regulation of growth and development of plants indrying soil. Ann Reu Plant Physiol Plant Mol Biol, 1991, 42: 55~76
    78. Devlin B, Risch N A. Comparison of linkage disequilibrium measures for fine2scale mapping. Genomics, 1995, 29: 311~322
    79. Doebley J F, Gaut B S, Smith B D. The molecular genetics of crop domestication. Cell, 2006,127: 1309~1321
    80. Ducrocq S, Madur D, Veyrieras J-B, Camus-Kulandaivelu L, Kloiber-Maitz M, Presterl T, Ouzunova M, Manicacci D, Charcosset A. Key Impact of Vgt1 on Flowering Time Adaptation in Maize: Evidence From Association Mapping and Ecogeographical Information. Genetics, 2008 ,178: 2433~2437
    81. Edmeades G O, Bolanos J, Chapman S C, Banziger M. Selection improves drought tolerance in tropical maize populations: I. Gains in biomass, grain yield, and harvest index. Crop Sci, 1999, 39: 1306~1315
    82. Edmeades GO, Bola?os J and Lafitte GR. Progress in breeding for drought tolerance in maize. In Wilkinson D eds. Proc. Annu. Corn and Sorghum Ind. Res. Conf. 47th. Chicago. ASTA, Washington, DC. 9-10 Dec. 1992: 93~111
    83. Eyre-Walker A, Gaut R L, Hilton H, Feldman D L, Gaut B S: Investigation of the bottleneck leading to the domestication of maize. Proc Natl Acad Sci USA, 1998, 95: 4441~4446
    84. Flint-Garcia S A, Thornsberry J M, Buckler E S. Structure of linkage disequilibrium in plants. Annu Rev Plant Biol, 2003, 54: 357~374
    85. Flint-Garcia S A, Thuillet A C, Yu J M, Pressoir G, Romero S M, Mitchell S E, Doebley J, Kresovich S, Goodman M M, Buckler E S. Maize association population: a high-resolution platform for quantitative trait locus dissection. Plant J, 2005, 44: 1054~1064
    86. Frova C , Krajewski P , Di Fonzo N , Villa M. Genetic analysis of drought tolerance in maize by molecular markers. Theor Appl Genet, 1999, 99: 289~295
    87. Fujita Y, Fujita M, Satoh R, Maruyama K, Parvez M M, Seki M, Hiratsu K, Ohme-Takagi M, Shinozaki K, Yamaguchi-Shinozakia K. AREB1 is a Transcription Activator of Novel ABRE-Dependent ABA Signaling That Enhances Drought Stress Tolerance in Arabidopsis. Plant Cell, 2005, 17: 3470~3488
    88. Gaut B S, Le Thierry d'Ennequin M, Peek A S , Sawkins M C. Maize as a model for the evolution of plant nuclear genomes. Proc Natl Acad Sci USA, 2000, 97: 7008~7015
    89. Goday A, Jensen A B, Culiáííez-Macia F A, Alba M M, Figueras M, Serratosa J, Torrent M , Pagès M. The Maize Abscisic Acid-Responsive Protein Rabl7 is located in the Nucleus and lnteracts with Nuclear Localization Signals. Plant Cell, 1994,3(6): 351~360
    90. Gupta P K, Rustgi S, Kulwal P L. Linkage disequilibrium and association studies in higher plants: Present status and future prospects. Plant Mol Biol, 2005, 57: 461~485
    91. Hall A J, Vilella F, Trapani N, Chimenti C. The effects of water stress and genotype on the namics of pollen-shedding and Bilking in maize. Field Crop Res, 1982, 5: 349~363
    92. Hansen M, Kraft T, Ganestam S. Linkage disequilibrium mapping of the bolting gene in sea beetusing AFLP markers. Genet Res, 2001, 77: 61~66.
    93. Hao Z F, Li X H, Xie C X, Li M S, Zhang D G, Bai L, Zhang S H. Two consensus quantitative trait loci clusters controlling anthesis–silking interval, ear setting and grain yield might be related with drought tolerance in maize. Ann Appl Biol, 2008, 153: 73~83.
    94. Harjes C E, Rocheford T R, Bai L, Brutnell T P, Kandianis C B, Sowinsk S G, Stapleton A E, Vallabhaneni R, Williams M, Wurtzel E T, Yan J, Buckler E S. Natural genetic variation in lycopene epsilon cyclase tapped for maize biofortifi cation. Science, 2008, 319: 330~333
    95. Isabel S, Jose A, Roberto S. The superoxide dismutase of maize influence of UV-B radiation on the potato, sorghum, and wheat leaves. Can J Bot, 1999,77: 70~76.
    96. Kerem B S, Rommens J M, Buchanan J A. Identification of the cystic fibrosis gene: genetic analysis. Science, 1989, 245: 1073~1080
    97. Khush G S. Green revolution: the way forward. Nat Genetics, 2001, 2: 815~822
    98. Kizis, D, Pages, M. Maize DRE-binding proteins DBF1 and DBF2 are involved in rab17 regulation through the droughtresponsive element in an ABA-dependent pathway. Plant J, 2002, 30: 679~689
    99. Knowler W C, Williams R C, Pettitt D J. Gm3; 5, 13, 14 and type 2 diabetesmellitus: an association in American Indians with genetic admixture. Am J Hum Genet, 1988, 43: 520~526
    100. Kraakman A T, Niks R E, Berg P M. Linkage disequilibrium mapp ing of yield and yield stability in modern sp ring barley cultivars. Genetics, 2004, 168: 435~446
    101. Landi P, Sanguineti M, Salvi S, Tuberosa R, Casarini E, Conti S. Mapping QTLs for leaf abscisic acid concentration in a maize population. Maize Genet Coop News 1997, 71: 15
    102. Lin C Y. Index selection for genetic improvement of quantitative characters. Theor Appl Genet, 1978, 52: 49~56
    103. Lindblad-Toh K, Winchester E, Daly M, Wang D, Hirschhorn J N, Laviolette J P, Ardlie K, Reich D E, Robinson E, Sklar P, Shah N, Thomas D, Fan J B, Gingeras T, Warrington J, Patil N, Hudson T J, Lander E S. Large-scale discovery and genotyping of single-nucleotide polymorphisms in the mouse. Nat Genet , 2000, 24: 381~386
    104. Magnanie, Sjolander K, Hake S. From endonucleases to transcription factors: evolution of the AP2 DNA binding domain in plants. Plant Cell, 2004,16: 2265~2277
    105. Manicacci D, Camus-Kulandaivelu L, Fourmann M, Arar C, Barrault S, Rousselet A, Feminias N, Consoli L, France` s L, Me′chin V, Murigneux A, Prioul J-L, Charcosset A, Damerval C. Epistatic Interactions between Opaque2 Transcriptional Activator and Its Target Gene CyPPDK1 Control Kernel Trait Variation in Maize. Plant Physiology, 2009, 150: 506~520
    106. Martiniello P, Lorenzon C. Response of maize genotypes to drought tolerance tests. Maydica, 1985, 30(4): 361~370
    107. Meuwissen T H E, Goddard, M E. Fine mapping of quantitative trait loci using linkage disequilibria with closely linked marker loci. Genetics, 2000, 155: 421~430
    108. Nakashima K, Kiyosue T, Yamaguchi-Shinozaki K, Shinozaki, K. A nuclear gene, erdl encoding achloroplast-targeted Clp protease regulatory subunit homolog is not only induced by water stress but also developmentally up-regulated during senescence in Arabidopsis thaliana. Plant J. 1997, 12(4): 851~861
    109. Nickolai N, Alexandrov, Brover V V, Freidin S, Troukhan M E, Tatarinova T V, Zhang H Y, Swaller T J, Lu Y P, Bouck J, Flave R B, Feldmann K A. Insights into corn genes derived from large-scale cDNA sequencing. Plant Mol Biol, 2009, 69: 179~194
    110. Nieva C, Busk P K, Dom?′nguez-Puigjaner E, Lumbreras V, Testillano P S, Risuen? M C, Page`s M. Isolation and functional characterisation of two new bZIP maize regulators of the ABA responsive gene rab28. Plant Mol Biol, 2005, 58: 899~914
    111. Niogret F M, Francisco A, Culianes-Macia, Goday A, Alba A A, Pages M. Expression and cellular localization of rab28 mRNA and Rab28 protein during maize embryogenesis. Plant J, 1996, 9(4): 549~557
    112. Parrisseaux B, Bernardo R. In silico mapping of quantitative trait loci in maize. Theor Appl Genet, 2004, 109: 508~514
    113. Pla M, Villardell J, Guiltinan M J, Marcotte W R, Niogret M F, Quatrano R, Pages M. The cis-regulatory element CCACGTGG is involved in ABA and water-stress responses of the maize gene rab28. Plant Mol Breeding, 1993, 21: 259~266
    114. Pla M, Gomez J, Goday A, Pages M. Regulation of the abscisic acid-responsible gene rab28 in maize viviparous mutants. Mol Gen Genet, 1991, 230: 394~400
    115. Price A, Courtois B. Mapping QTLs associated with drought resistance in rice: Progress, Problems and prospects. Plant Growth Regul, 1999, 29: 23~133
    116. Quarrie S A, Stojanovic J, Pekic S. Improving drought resistance in small-grained cereals: A case study, progress and prospects. Plant Growth Regul. 1999, 29: 1~21
    117. Quarrie S, Lebreton C, Gulli M, Calestani C, Marmiroli N. QTL analysis of ABA production in wheat and maize and associated physiological traits. Fiziol Rast, 1994, 41: 565~571
    118. Reid J B. Phytohormone mutants in plant research. Plant Growth Regulation, 1990, 9: 97~108
    119. Remington D L, Thornsberry J M, Matsuoka Y. Structure of linkage disequilibrium and phenotypic associations in the maize genome. Proc Natl Acad Sci USA, 2001, 98 (20 ): 11479~11484
    120. Ribaut J M, Hoisington D A, Deutsch J A, Jiang C, Gonzalez-de-Leon D. Identification of quantitative trait loci under drought conditions in tropical maize. I Flowering parameters and anthesis-silking interval. Theor Appl Genet, 1996, 92: 905~914
    121. Ribaut J M, Jiang C, Gonzalez-de-Leon D, Edmeades G O, Hoisington D. Identification of quantitative trait loci under drought conditions in tropical maize. 2. Yield components and markerassisted selection strategies. Theor Appl Genet, 1997, 94: 887~896
    122. Saghai-Maroof M A, Soliman K., Jorgensen R A, Allard R W. Ribosomal DNA spacer length polymorphism in barley: Mendelian inheritance, chromosomal location and population dynamics. Proc Natl Acad Sci USA, 1984, 81: 8014~8018
    123. Saleh A, Lumbreras V, Lopez C, Dominguez-Puigjaner E, Kizis D, Page` s M. MaizeDBF1-interactor protein 1 containing an R3H domain is a potential regulator of DBF1 activity in stress responses. Plant J, 2006, 46: 747~757
    124. Salvi S G, Sponza M, Morgante D, Tomes X, Niu et al. Conserved noncoding genomic sequences associated with a flowering-time quantitative trait locus in maize. Proc Natl Acad Sci USA. 2007,104:11376~11381
    125. Seo M, Akaba S ,Oritani T ,Delarue M, Bellini C ,Caboche M, Koshiba T. Higher activity of an aldehyde oxidase in auxin-over producing superroot/ mutant of Arabidopsis thaliana. Plant Physiol, 1998,116: 687~693
    126. Sharbel T F, Haubold B, Mitchell-Olds T. Genetic isolation by distance in Arabidopsis thaliana: biogeography and postglacial colonization of Europe. Mol Ecol, 2000, 9: 2109~2118
    127. Singh K,Foley R C, Onate-Sanchez L. Transcription factors in plant defense and stress response. Curt Opin Plant Biol, 2002, 5(5): 430~436
    128. Sreenivasulu N, Sopory S K, Kavi Kishor P B. Deciphering the regulatory mechanisms of abiotic stress tolerance in plants by genomic approaches. Gene, 2007, 388: 1~13
    129. Stich B, Melchinger A E, Frisch M,Hans P, Heckenberger M M, Reif J C. Linkage disequilibrium in European elite maize germplasm investigated with SSRs. Theor Appl Genet, 2005, 111: 723~730
    130. Stockinger E J, Gilmour S J, Thomashow M F. Arabidopsis thaliana CBFl encodes AP2 domain-containing transcription activator that binds to the c-repeat/DRE, a cis-acting DNA regulatory element that stimulates transcription in response to low temperature and water deficit. Proc Natl Acad Sci USA, 1997, 94 (3): 1035~1040
    131. Syv?nen A C. Accessing genetic variation: genotyping single nucleotide polymorphisms. Nat Rev Genet ,2001, 2: 930~942
    132. Szalma S J, Buckler IV E S, Snook M E, McMullen M D. Association analysis of candidate genes for maysin and chlorogenic acid accumulation in maize silks. Theor Appl Genet, 2005, 110(7): 1324~1333
    133. Tan B C, Schwartz S H, Zeevaart J A D, McCarty D R. Genetic control of abscisic acid biosynthesis in maize. Proc Natl Acad Sci USA , 1997, 94: 12235~12240
    134. Thomashow M F. Arabidopsis thaliana as a model for studying mechanisms of plant cold tolerance. New York: Cold Spring Harbor Laboratory Press, 1994, 807~834
    135. Thornsberry J M, Goodman M M, Doebley J, Kresovich S, Nielsen D, Edward S, Buckler E S. Dwarf8 polymorphisms associate with variation in flowering time. Nat Genet, 2001, 28:286~289
    136. Tuberosa R, Sanguineti M, Landi P, Salvi S, Casarini E, Conti S. RFLP mapping of quantitative trait loci controlling abscisic acid concentration in leaves of drought-stressed maize (Zea mays L.). Theor Appl Genet, 1998, 97: 744~755
    137. Veldboom L, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstress environments .1. Grain yield and yield components. Crop Sci, 1996, 36: 310~319
    138. Veldboom L, Lee M. Genetic mapping of quantitative trait loci in maize in stress and nonstressenvironments. 2. Plant height and flowering. Crop Sci, 1996, 36: 320~327
    139. Vilardell J, Mundy J, Stilling B, Leroux B, Pla M, Freyssinet G, Pageás M. Regulation of the maize rab17 promoter in transgenic heterologous systems. Plant Mol Biol, 1991, 17: 985~993
    140. Wang D G, Fan J B, Siao C J. Large-scale identification, mapping, and genotyping of single-nucleotide polymorphisms in the human genome. Science, 1998, 280: 1077~1082
    141. Wilson L M, Whitt S R, Ibanez A M, Rocheford T R, Goodman M M, Buckler E S. Dissection of maize kernel composition and starch production by candidate gene 39 association. Plant Cell, 2004, 16: 2719~2733
    142. Wright S I, Bi I V, Schroeder S C E, Yamasaki M, Doebley J F, McMullen M D, Gaut B S. The Effects of Artificial Selection on the Maize Genome. Science, 2005, 308: 1310~1314
    143. Xie C X, Warburton M L, Li M S, Li X H, Xiao M J, Hao Z F, Zhao Q, Zhang S H. An analysis of population structure and linkage disequilibrium using multilocus data in 187 maize inbred lines. Mol Breeding, 2008, 21: 407~418
    144. Xiong L M, Schumaker K S, Zhu J K. Cell Signaling during Cold, Drought, and Salt Stress. Plant Cell, 2002, Supplement: 165~183
    145. Yamasaki M, Tenaillon M I, B I Vi, Schroeder S G, Sanchez-Villeda H, Doebley J F, Gaut B S, McMullen M D. A large-scale screen for artificial selection in maize identifies candidate agronomic loci for domestication and crop improvement. Plant Cell, 2005, 17: 2859~2872
    146. Yoshiba Y, Kiyosue T. Correlation between theδ’-pyrrodine-5-carboxy latesynthetase and proline in A.thaliana under osmotic induction of a gene for the accumulation of stress. Plant J, 1995, 7 (5): 751~760
    147. Yu J, Pressoir G, BriggsW H. A unified mixed model method for association mapping accounting for multip le levels of relatedness. Nat Genet, 2005, 38: 203~208
    148. Zeevaart J A D, Creelman R A. Metabolism and physiology of abscisic aid. Annu Rev Plant Physiol Mol Boil, 1988, 39: 439~413
    149. Zhu Y L, Song Q J, Hyten D L. Single-Nucleotide Polymorphisms in Soybean. Genetics, 2003, 163: 1123~1134
    150. Zondervan K T, Cardon L R. The complex interplay among factors that influence allelic association. Nat Rev Genet, 2004, 5: 89~100

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700