窄线宽低噪声掺铒光纤激光器以及新型光纤气体传感器的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
光纤传感技术是以光波为载体,光纤为媒质,感知和传输外界被测量信号的新型传感技术。光纤具有传输损耗低、不带电、抗电磁场干扰等优点,适用于高温、高压、易燃、易爆、强腐蚀等恶劣环境,光纤传感器的研究一直都是一个热门课题。近年来,光纤传感器不仅在高、精、尖领域得到了应用,在传统工业领域也被迅速推广,已开始应用在矿山、桥梁、建筑、石化、电力、钢铁、核工业、飞机、船舶、医疗等领域之中。光纤传感器被国内外公认为是传感技术发展的一个主导方向,最具有发展前途的高新技术产业之一
     本论文研究内容主要包括两部分:一部分是窄线宽低噪声光纤光栅激光器,主要研究了相移光纤光栅的光谱特性和光纤激光器输出特性,设计了基于注入锁模结构的环形腔掺铒光纤光栅激光器和复合腔结构的线型腔掺铒光纤光栅激光器;另一部分是光纤气体检测技术,研究了基于吸收光谱的光纤气体检测技术,设计了基于可调谐激光吸收光谱的光纤气体检测系统和基于双波长差分吸收光谱的有源光纤ring-down气体检测系统。本文具体研究内容为:
     1.采用耦合模理论和传输矩阵法对光纤光栅以及相移光纤光栅的光谱特性进行了数值模拟,获得了光栅设计参数,为优化分布反馈式光纤激光器的设计提供了理论指导;研究了基于氩离子倍频激光器以及相位抖动法的光纤光栅制作系统,制作了π相移光纤光栅。
     2.设计了一种自注入锁模结构的光纤光栅激光器。通过将分布反馈式光纤激光器产生的部分输出光经过一个偏振控制器形成单偏振激光,然后重新注入其谐振腔进行再放大,利用光纤的交叉相位调制效应实现模式的锁定,形成稳定的单偏振激光输出,与锁模之前相比,偏振度从0.165提高到0.989,线宽被压缩了一半,输出功率的自脉动从4dBm降低到0.1dBm。
     3.通过上述自注入锁模技术可以有效降低光纤激光器的相对强度噪声。当泵浦光为25mW时,在弛豫振荡频率附近相对强度噪声被压缩16dB/Hz,并且观察到弛豫振荡峰向低频移动,从74.5kHz移动到41kHz;不仅在弛豫振荡峰附近的噪声得到抑制,在中频波段的相对强度噪声也得到有效抑制;研究了不同泵浦功率下弛豫振荡频移的规律。该研究可有效提高激光器的输出特性,有利于具体应用中选择有效频率区间,提高应用的信噪比。
     4.设计了一种新型复合腔结构的光纤光栅激光器。通过将一个π相移光纤光栅引入传统的DBR谐振腔作为选波器件,可以增加作为增益介质的掺杂光纤长度,提高泵浦吸收率,同时获得单模窄线宽激光输出;使用低掺杂浓度的铒纤,降低了相对强度噪声。该结构实现了线宽为900Hz,强度噪声为-95dB/Hz的激光输出,泵浦阈值为几个mW,边模抑制比大于67dB。
     5.设计了基于可调谐激光吸收光谱技术的光纤气体检测系统,采用内部参考气室实现了对甲烷吸收光谱的实时定位和自适应调整;通过对吸收谱基线归一化,实时修正了光源功率起伏及光路损耗变化的影响;开展了光纤气体检测系统在一些工业生产中的工程应用。
     6.采用在甲烷传感器气室内置入光纤光栅的方法设计了甲烷气体浓度与温度双参数检测系统,不仅可以同时检测气体浓度和温度,还可以对两参数进行修正。通过光纤光栅波长的变化获取温度信息,实时校正不同温度下气体吸收系数变化导致的浓度测量误差,同时气体吸收峰的位置可以准确定位光栅波长,从而修正了温度的测量误差。
     7.设计了一种基于双波长差分吸收方法的新型有源光纤环形Ring-down气体检测系统。选择两个不同波长的激光器作为光源,其中一个波长覆盖被测气体的吸收峰,作为传感信号;另一个波长不覆盖被测气体的吸收峰,作为参考信号。两激光器通过脉冲信号进行强度调制,由驱动控制交替产生光脉冲信号注入到同一个光纤环Ring-down腔中。通过比较传感信号和参考信号,可有效消除腔净损耗变化以及系统中光电器件引起的信号起伏影响。选用带有自动增益控制的EDFA补偿光信号在ring-down腔中的损耗,可以增加光脉冲在环形腔中的绕行次数,提高气体检测的灵敏度。该方法为光纤ring-down腔气体检测技术在工业中应用,尤其长距离传感提供了有效手段。本文主要创新点如下:
     1.设计了一种自注入锁模结构的光纤激光器,通过将分布反馈式光纤激光器产生的部分输出光经过一个偏振控制器形成单偏振激光,然后将其作为种子源重新注入谐振腔进行再放大,利用光纤的交叉相位调制效应实现模式的锁定,形成稳定的单偏振激光输出。与锁模之前相比,偏振度从0.165提高到0.989,线宽被压缩了一半,相对强度噪声被压缩16dB/Hz。
     2.通过将一个π相移光纤光栅引入传统的DBR谐振腔作为选波器件,可以增加作为增益介质的掺杂光纤长度,提高泵浦吸收率,同时还保证单模窄线宽激光输出;使用低掺杂浓度的掺铒光纤实现功率为mW量级、线宽为900Hz、强度噪声为-95dB/Hz的激光输出。
     3.采用在甲烷传感器气室内置入光纤光栅的方法设计了甲烷气体浓度与温度双参数检测系统。该系统不仅可以同时检测气体浓度和温度,还可以对两参数进行修正。通过光纤光栅波长的变化获取温度信息,实时校正不同温度下气体吸收系数变化导致的浓度测量误差,同时气体吸收峰的位置可以准确定位光栅波长,从而修正了温度的测量误差。
     4.首次将光纤气体检测系统用于煤矿采空区、瓦斯抽采发电、垃圾发电等工业生产中,传感探头不带电,本质安全,可远距离传输,工作人员不必去现场即可轻松实现对多点气体浓度的远程实时在线监测。
     5.首次设计了双波长差分吸收的有源光纤环形Ring-down气体检测系统。通过选择两个不同波长的光源进行检测,其中一个波长覆盖被测气体的吸收峰,作为传感信号;另一个波长不覆盖被测气体的吸收峰,作为系统腔固有损耗的参考信号。通过两信号对比,能够有效消除腔净损耗变化及系统中光电器件引起的信号起伏影响,保证了气体检测的精确度。该方法为光纤ring-down腔气体检测技术在工业中应用,尤其长距离传感提供了有效手段。
Optical fiber sensing technology is a new sensor technology by fiber as a media to measure and transfer signal. Optical fiber sensors have attracted considerable attention in recent years because of their high precision, remote detection capability, electric insulation and anti-electromagnetic interference, safety in high temperature, highly pressure, flammable, explosive and highly corrosive circumstance. Recently, optical fiber sensor are not only used in high-grade, precision and advanced area, but also in coal mine, bridge, building, petrifaction, electric, steel, nuke industry, plane, ship, medical science etc.. Optical fiber sensor is universally accepted as a leading developing direction of sensor technology, and it has an excellent development future.
     There are two parts in this dissertation:one is narrow linewidth low noise optical fiber laser. Spectral characteristics of phase-shifted fiber grating, and output characteristics of fiber laser are described in first part. Then a self-injection locking Er3+doped fiber laser and a novel composite structure Er3+doped DBR fiber laser with a π-phase shifted FBG are proposed with emphasis. Another is fiber gas sensor. Optical fiber gas detection method based on absorption spectrum is studied. And tunable laser absorption spectrum gas detection method and active fiber loop ring-down gas sensor based on dual wavelengths differential absorption method are described in detail. The main contents of this dissertation are as follows:
     1. Optical fiber grating and phase shift grating are simulated by using coupling-mode theory and transfer matrix method. Design parameters of fiber gratings are obtained which can optimize its design and manufacture. Optical fiber grating manufacture system based Argon ion laser and phase dither method are studied.
     2. A self-injection locking fiber laser is designed in this paper. By injecting a part of output laser back into its cavity to amplify again, it can realize a stable output. The degree of polarization (DOP) is improved from0.165to0.989, and its linewidth is compressed in half. The self-pulsation of output light is reduced from4dBm to0.1dBm.
     3. By self-injection locking, the relative intensity noise (RIN) of fiber laser can be reduced efficiently. When pump power is25mW, the RIN of the DFB fiber laser is suppressed about16dB/Hz by the self-injection method around the relaxation oscillation frequency. And the resonance peak of the DFB fiber laser shifts to lower frequencies obviously from74.5kHz to41kHz. By this method, the RIN are suppressed not only around relaxation frequency, but also at medium frequency. It can improve the quality of output laser, which is useful to select effective frequency range and improve the signal noise ratio in application.
     4. A novel composite structure fiber laser is proposed in this paper. By introducing a π-phase shifted FBG into the DBR cavity as a selective wavelength component, it can increase the length of active fiber and lasing in a single mode and narrow linewidth. Efficiency of pump is increased. The proposed composite structure fiber laser obtaines narrow linewidth of900Hz and low RIN of-95dB/Hz. The pump threshold is about several mW. The SMRS is more than67dB.
     5. Optical fiber gas detection system based tunable laser absorption spectrum is designed. A inside reference gas cell is introduced to wavelength positioning and adaptive adjustment for the methane gas detection. Normalizing for absorption spectrum by base line can correct the influence of light power and optical loss. Engineering applications of gas detection system are described.
     6. A dual-parameters optical fiber sensor is proposed by introducing a FBG into the gas cell, which can measure methane concentration and temperature simultaneously and revise them. Temperature can be obtained by the shift of FBG wavelength, which can regulate the deviation of methane detection caused by temperature changing, meanwhile, methane's absorbing line can locate FBG's wavelength in order to make temperature monitoring more accurate.
     7. A novel active fiber loop CRD system based on dual wavelengths differential absorption method is designed. Two DFB Laser Diodes (LDs) with different wavelengths are employed, which are modulated by taking pulse signals. And they are controlled by a driver alternately to insure only one laser signal run in the loop. By comparing the sensing signal with reference signal, it can eliminate the influence the cavity loss variety and photoelectric device drift in the system efficiently. An EDFA with Automatic Gain Control is used to compensate the power loss of the laser in the ring-down cavity, in order to increase the cavity round trips and improve the precision of gas detection.. The method provides an effective way for fiber loop ring-down system application in industry, especially in long distance sensing. The main innovations of this dissertation are as follows:
     1. We investigated a simple self-injection locking (SIL) fiber laser. By injecting a part of output laser back into its cavity to amplify again, it can realize a stable single-polarization lasing. And its linewidth is compressed in half; RIN is suppressed about16dB/Hz and relaxation oscillation frequency of laser shifts to lower frequencies obviously from74.5kHz to41kHz.
     2. By introducing a π-phase shifted FBG into the DBR cavity as a selective wavelength component, it can increase the length of active fiber and lasing in a single mode and narrow linewidth. Efficiency of pump is increased. Several mW output power is realized using low Er3+doped fiber, and a narrow linewidth of900Hz and low RIN of-95dB/Hz is obtained, respectively.
     3. A dual-parameters optical fiber sensor is proposed by introducing a FBG into the gas cell, which can measure methane concentration and temperature simultaneously and revise them. Temperature can be obtained by the shift of FBG wavelength, which can regulate the deviation of methane detection caused by temperature changing, meanwhile, methane's absorbing line can locate FBG's wavelength in order to make temperature monitoring more accurate.
     4. Optical fiber methane detection system is developed and used in coal mine gob, methane drainage, garbage plant and other industrial processes. It is insulation and intrinsic safety. Capacity of remote sensing makes duty officer can get enough information easily needn't going to spot.
     5. A novel active fiber loop CRD system based on dual wavelengths differential absorption method is designed for the first time. It can calibrate the inherent loss of the system in real time by employing two DFB LDs with different wavelengths, which can improve the precision of gas detection. The method provides an effective way for fiber loop ring-down system application in industry, especially in long distance sensing.
引文
[1]H. Imam, "Metrology:Broad as a lamp, bright as a laser," Nat Photon, vol.2, pp.26-28,2008.
    [2]S. Foster, A. Tikhomirov, M. Milnes et al., "A fibre laser hydrophone," SPIE-Int. Society Optical Engineering, Bellingham pp.627-630,2005.
    [3]D. J. Hill, B. Hodder, J. De Freitas et al., "DFB fibre-laser sensor developments," Proc. SPIE 5855, pp.904-907,2005.
    [4]李芳,何俊,徐团伟,张文涛,王永杰,刘育梁,“光纤激光传感技术及其应用,”红外与激光工程,vol.38, pp.1025-1032,2009.
    [5]E. Snitzer, "Optical Maser Action of Nd+3 in a Barium Crown Glass," Phys. Rev. Lett. vol.7, pp.444,1961.
    [6]C.J.Koester, and E.Snitzer, "Amplification in a Fiber Laser," Appl. Opt. vol.3, pp.1182-1186,1964.
    [7]刘德明,向清,黄德修,《光纤光学》,国防工业出版社,1995.
    [8]G. A. Ball, W.W. Morey, W. H. Glenn, "Standing-wave monomode erbium fiber laser," IEEE Photon. Technol. Lett., vol.3, pp.613-615,1991.
    [9]H.Sabert, R. Ulrich, "Gain stabilization in a narrow-band optical filter," Opt.Lett, vol.17, pp.1161-1163,1992.
    [10]M. Horowitz, R. Daisy, B. Fischer, et al., "Narrow-linewidth, singlemode erbium-doped fibre laser with intracavity wave mixing in saturable absorber," Electron. Lett., vol.30, pp.648-649,1994.
    [11]N. T. Kishi, "Frequency control of a single-frequency fiber laser by cooperatively induced spatial-hole burning," IEEE Photon. Technol. Lett., vol.11, pp.182-184, 1999.
    [12]K. Hsu, S. Yamashita, "Single-polarization generation in fiber Fabry-Perot laser by self-injection locking in short feedback cavity," IEEE J. Light wave Technol., vol.19, pp.520-526,2001.
    [13]S. U. AIam, R. Wixey, L. Hickey, et al., "High power, single-mode, single-frequency DFB fibre laser at 1550nm in MOPA configuration," Conference on Lasers and Electro-Optics, Optical Society of America, pp.618,2004.
    [14]S. Huang, G Qin, Y. Feng, et al., "Single-frequency fiber laser from linear cavity with loop mirror filter and dual-cascaded FBGs," IEEE Photon. Technol. Lett., vol.17, pp.1169-1171,2005.
    [15]Z. Meng, G. Stewart, G Whitenett, "Stable single-mode operation of a narrow-linewidth, linearly Polarized, erbium-fiber ring laser using a saturable absorber," IEEE J. Lightwave Technol., vol.24, pp.2179-2183,2006.
    [16]伍波,刘永智,刘爽,等,“光纤饱和吸收体稳频窄线宽光纤激光器,”光电工程,vol.34,pp.30-33,2007.
    [17]X. X Yang, L. Zhan, Q. S, "High-power single-longitudinal-mode fiber laser with a ring Fabry-Prot Resonator and a saturable absorber," IEEE Photon. Technol. Lett., vol.20, pp.879-881,2008.
    [18]X. Chen, Y. Painchaud, K. Ogusu, et al., "Phase shifts induced by the piezoelectric transducers attached to a linearly chirped fiber Bragg grating," IEEE J. Lightwave Technol., vol.28, pp.2017-2021,2010.
    [19]M. A. Quintela, R. A. Perez-herrera, I. Canales, et al., "Stabilization of dual-wavelength erbium-doped fiber ring lasers single-mode operation," IEEE Photon. Technol. Lett., vol.22, pp.368-370,2010.
    [20]俞本立,钱景仁,罗家童,等,线宽小于0.5kHz稳态的单频光纤环形腔激光 器,量子电子学报,vol.8, pp.345-347,2001.
    [21]W. Fan, B. Chen, X. Li et al., "Stress-induced single polarization DFB fiber lasers," Optics Communications, vol.204, pp.157-161,2002.
    [22]范薇,陈柏,李学春,等,“应力所致单偏振相移分布反馈光纤激光器,”光学学报,vol.22,pp.568-571,2002.
    [23]Y. Qian, P. Varming, J. H. Povlsen et al., "Dynamic noise responses of DFB fibre lasers in presence of pump power fluctuations," Electronics Letters, vol.35, pp.299-300,1999.
    [24]G. A. Cranch, "Frequency noise reduction in erbium-doped fiber distributed-feedback lasers by electronic feedback," Optics Letters, vol.27, pp.1114-1116,2002.
    [25]G. A. Cranch, M. A. Englund, and C. K. Kirkendall, "Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers," IEEE J. Quantum Electron., vol.39, pp.1579-1587,2003.
    [26]S. Foster, "Dynamical noise in single-mode distributed feedback fiber lasers," IEEE J. Quantum Electron., vol.40, pp.1283-1293,2004.
    [27]A. Tikhomirov, and S. Foster, "DFB FL sensor cross-coupling reduction," IEEE J. Lightwave Technol., vol.25, pp.533-538,2007.
    [28]K. O. Hill, Y. Fujii, D. C. Johnson, and B. S. Kawasaki, "Photosensitivity in optical fiber waveguides:Application to reflection filter fabrication," Appl. Phys. Lett., vol.32, pp.647-649,1978.
    [29]G. Meltz, W. W. Morey, and W. H. Glenn, "Formation of Bragg gratings in optical fibers by a transverse holographic method," Opt. Lett., vol.14, pp.823-825,1989.
    [30]K.O. Hill B. Malo, F. Bilodeau, D.C. Johnson and J. Albert, "Bragg gratings fabricated in monomode photosensitive optical fibre by UV exposure through a phase mask. "Appl. Phys. Lett. vol.62, pp.1035-1037,1993.
    [31]陈洛洋,黄爱琴,郑继红,王成.“基于非对称全息干涉的倾斜光纤光栅研究,”光学仪器,vol.33, pp.43-46,2011.
    [32]高霞,基于长周期光纤光栅的理论及应用研究,山东大学硕士论文,2009.
    [33]黎敏,廖延彪,赖淑蓉,陈荣声,“一种新型的光纤光栅制作方法,”激光杂志,Vol.22,pp.24-25,2001.
    [34]A. Melloni, M. Chinello, M. Martinelli, "Optical switching experiment in phase-shifted fiber bragg gratings." IEEE Photon. Technol. Lett., vol.12,42-44, 2000.
    [35]C. R.Giles, "Lightwave applications of fiber Bragg gratings," IEEE J. Lightwave Technol., vol.15, pp.1391-1404,1997.
    [36]朱清,陈小宝,陈建平,等,“相位掩模板移动法制作DFB光纤激光器,”光纤与电缆及其应用技术,vol.1,pp.17-21,2006.
    [37]M. J. Cole, W. H. Loh, R. I. Laming, et al., "Moving fiber phase mask-scanning beam technique for enhanced flexibility in producing fiber grating with uniform phase mask," Electronics Letters, vol.31, pp.1488-1490,1995.
    [38]刘海涛,陈建平,陈向飞,等.“低掺杂铒纤上分布反馈布拉格光纤激光器的制作,”中国激光,vol.22,pp.873-876,2006.
    [39]H. Kogelnik, and C. V. Shank, "Coupled-wave theory of distributed feedback lasers," J. Appl. Phys., vol.43, pp.2327-2335,1972.
    [40]J. Ni, J. Chang, T. Liu, Y. Li, Y. Zhao, Q. Wang, "Fiber methane gas sensor and its application in methane outburst prediction in coal mine," Journal of Electronic Science and Technology of China, vol.6, pp.373-376,2008.
    [41]高山虎,刘文清,刘建国,等.“可调谐半导体激光吸收光谱学测量甲烷的研究,”量子电子学报,vol.23,pp.355-392,2006.
    [42]Y. J. Zhao, C. Wang, T. Y. Liu, et al., "Application in coal mine of fiber methane monitoring system based on spectrum absorption," Procedia Engineering, vol.26, pp.2152-2156,2011.
    [43]王岩,“淮南矿区瓦斯抽采利用现状与前景,”中国煤层气,vol.2, pp.36,2005.
    [44]张志刚,贾光胜,杨利平,高振勇,“瓦斯抽采效果预测方法在王坡矿的应用,”煤矿开采,vol.14, pp.87,2009.
    [45]刘志存,“催化元件变流检测矿井瓦斯,”传感器技术,vol.22, pp.24,2003.
    [46]R. Rella, P. Siciliano, L. Vasanelli, "Physical properties of osmium doped tin oxide thin films," J. Appl. Phys., vol.83, pp.2369,1998.
    [47]赵燕杰,王昌,刘统玉,等,“基于光谱吸收的光纤甲烷监测系统在瓦斯抽采中的应用,”光谱学与光谱分析, vol.30, pp.2857-2860,2010.
    [48]D. Chen, W. Liu, Y. Zhang, J. Liu, R. Kan, M. Wang, X. Fang, and Y. Cui, "Fiber-distributed multi-channel open-path H2S sensor based on tunable diode laser absorption spectroscopy," Chin. Opt. Lett., vol.5, pp.121-124,2007.
    [49]R. Kan, W. Liu, Y. Zhang, J. Liu, M. Wang, D. Chen, J. Chen and Y. Cui, "A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring," Chin. Opt. Lett., vol.5, pp.54-57,2007.
    [50]Y. J. Zhao, Y.B. Wei, Y. F. Li, et al., "Multi-channel optical fiber methane monitoring system based on laser absorption spectroscopy," The 4th IEEE Asia-Pacific Power and Energy Engineering Conference, pp.1-4,2012.
    [51]Y. Y. Zhao, C. Wang, T. Y. Liu, et al., "Optical fiber remote multiplexed sensing system of methane and its application in clean development mechanism, Advanced Materials Research, vol.3826, pp.347-353,2011.
    [52]M. Campbell, et al., Sensor systems for environmental monitoring[M], London: Blackie Academic & Professional,1997.
    [53]K. Chan, H. Ito, H. Inaba. "Optical remote monitoring of CH4 gas using low-loss optical fiberlink and InGaAsp lighting-emitting diode in 1.33μm region," Applied Physics letters, vol.43, pp.634-637,1983.
    [54]H. Tai, K. Yamamoto, S. Osawa. "Remote detection of methane using a 1.66μm diode laser in combination with optical fibers," Proceedings 7th OFS, vol.8, pp.51-54,1990.
    [55]K. Uehara, H. Tai. "Remote detection of methane with a 1.66μm diode laser," Applied Optics, vol.31, pp.809-814,1992.
    [56]G. Stewart, C. Tandy, D. Moodie, et al., "Design of a fibre optic multi-point sensor for gas detection," Sensors and Actuators, vol.51, pp.227-232,1998.
    [57]K. Duffin, A. J. McGettrick, W. Johnstone, et al., "Tunable diode-laser spectroscopy with wavelength modulation:A calibration-free approach to the recovery of absolute gas absorption line shapes," IEEE J. Lightwave Technol., vol. 25,pp.3114-3125,2007.
    [58]A. J. McGettrick, K. Duffin, W. Johnstone, et al., "Tunable diode laser spectroscopy with wavelength modulation:A phasor decomposition method for calibration-free measurements of gas concentration and pressure," IEEE J. Lightwave Technol., vol.26, pp.432-440,2008.
    [59]L. Lathdavong, J. Shao, P. Kluczynski, et al., "Methodology for detection of carbon monoxide in hot, humid media by telecommunication distributed feedback laser-based tunable diode laser absorption spectrometry," Applied Optics, vol.50, pp.2531-2550,2011.
    [60]董凤忠,刘文清,刘建国,涂兴华,张玉钧,齐峰,谢品华,陆亦怀,汪世美,王亚萍,魏庆农,“机动车尾气的道边实时在线检测(上),”测试技术学报,Vol.19,pp.119-127,2005.
    [61]董凤忠刘文清,刘建国,涂兴华,张玉钧,齐峰,谢品华,陆亦怀,汪世美,王亚萍,魏庆农,“机动车尾气的道边实时在线检测(下),”测试技术学报,Vol.19,pp.237-244,2005.
    [62]H. X. Cui, Z. H. Du, W. L. Chen, R. B. Qi, K. X. Xu, "Applying diode laser wavelength modulation spectroscopy to detect oxygen concentration," Lasers in Engineering, vol.18, pp.263-270,2008.
    [63]王琢,曹家年,张可可,等.“基于谐波峰平比法的实用化光纤气体传感器研究,”中国激光,Vol.37,pp.1505-1509,2010.
    [64]王艳菊,王玉田,王忠东.“光纤甲烷气体检测系统的研究,”压电与声光.Vol.29,pp.148-1s2,2007.
    [65]F. Wang, K.F. Cen, N. Li, Q. X. Huang, X. Chao, J. H. Yan, Y. Chi. "Simultaneous measurement on gas concentration and particle mass concentration by tunable diode laser," Flow Measurement and Instrumentation, vol.21, pp.382-387,2010.
    [66]J. Zhang, P. Wang, X. Li, Z. Wang, E. Tian, "The optical fiber detection network for methane concentration," International Conference of Optical Instrument and Technology, Proc. SPIE Vol.71601H1-4,2008.
    [67]靳伟,廖延彪,张志鹏等,《导波光学传感器:原理与技术》,科学出版社,1998.
    [68]D. T. Cassidy, J. Reid, "Atmospheric pressure monitoring of trace gases using tunable diode lasers," Applied Optics, vol.21, pp.1185-1190,1982.
    [69]D. E. Burch and R. L. Alt, "Continuum absorption by H2O in the 700-1200 cm and 2400-2800 cm windows," AFGL-TR-94-0128, AFGL, Hanseom AFB, MA, 1984.
    [70]J. P. Dakin et al., "A novel optical fiber methane sensor," Proc. SPIE, vol.734, pp.187-190,1997.
    [71]H. L. Ho, W. Jin, M. S. Deacon, "Multipoint gas detection using TDM and wavelength modulation spectroscopy," Electronics Letters, vol.36, pp.1191-1193, 2000.
    [72]Y. Zhang, M. Zhang, W. Jin, "Multipoint, fiber optic gas detection with intra-cavity spectroscopy," Opt. Commun., vol.220, pp.361-364,2003.
    [73]贾大功,刘琨,井文才等,“基于环腔光纤激光器的气体检测方法,”中国激光,vol.36, pp.2384-2387,2009.
    [74]V. M. Baev, T. Latz, P. E. Toschek, "Laser intr-acavity absorptions pectroscopy," Appl. Phys. B:Laser Optics, vol.69, pp.171-202,1999.
    [75]A. O'Keefe, D. A. G. Deacon, "Cavity ring-down optical spectrometer for absorption measurements using pulsed laser sources," Rev. Sci. Instrum, vol.59, pp.2544-2551,1988.
    [76]J. J. Scherer et al., "Infrared cavity ring down laser absorption spectroscopy (IR-CRLAS)," Chamical Physics Letters, vol.245, pp.273-280,1995.
    [77]K.Liu, W. Jing, G.Peng., et al., "Wavelength Sweep of Intracavity Fiber Laser for Low Concentration Gas Detection," IEEE Photon. Technol. Lett., (S1041-1135), vol.20, pp.1515-1517,2008.
    [78]Y. Zhang, M. Zhang, W. Jin. "Sensitivity enhancement in erbium-doped fiber laser intra-cavity absorption sensor," Sensor & Actuator A-PHYS, vol.104, pp.183-187, 2003.
    [79]J. B. Dudek, P. B. Tarsa, A. Velasquez, M. Wladyslawski, P. Rabinowitz, and K. K. Lehmann, "Trace moisture detection using continuous-wave cavity ring-down spectroscopy," Anal. Chem., vol.75, pp.4599-4605,2003.
    [80]D. B. Atkinson, "Cavity ring-down spectroscopy:techniques and applications," J. Am. Chem. Soc., vol.132, pp.4972-4972,2010.
    [81]Y. J. Zhao, Y. B. Wei, Y.F. Li, et al., "Application of optical fiber oxygen sensor in coal mines," The 2nd International Symposium on Mine Safety Science and Engineering,2013.
    [82]H. Waechter, J. Litman, A. H. Cheung, J. A. Barnes, and H.-P. Loock, "Chemical sensing using fiber cavity ring-down spectroscopy," Sensors, vol.10, pp.1716-1742,2010.
    [83]P. Zalicki, and R. N. Zare, "Cavity ring-down spectroscopy for quantitative absorption measurements," J. Chem. Phys., vol.102, pp.2708-2717,1995.
    [84]G Berden, R. Peeters, and G Meijer, "Cavity ring-down spectroscopy: Experimental schemes and applications," Int. Rev. Phys. Chem., vol.19, pp.565-607,2000.
    [85]T. Von Lerber, and M. W. Sigrist. "Cavity-ring-down principle for fiber-optic resonators:experimental realization of bending loss evanescent-field sensing," Appl. Opt., vol.41, pp.3567-3575,2002.
    [86]S. Pu and X. J. Gu. "Fiber loop ring-down spectroscopy with a long-period grating cavity," Opt. Lett., vol.34, pp.1774-1776,2009.
    [87]K. Atherton, G Stewart, et al., Fiber optical intra-cavity spectroscopy:combined ring-down and iclas architectures using fiber laser," In Proc.SPIE, vol.4204, pp.124-130,2001.
    [88]K. Atherton, G. Stewart, et al., "Gas detection by cavity ring down absorption with a fiber optic amplifier loop," In Proc. SPIE, pp.4577, pp.25-31,2002.
    [89]J. Y. Lee, J. W. Kim, Y. S. Yoo, J. W. Hahn, and H. W. Lee, "Spatial-domain cavity ring down from a high-finesse plane Fabry-Perot cavity," J. Appl. Phys., vol.91, pp.582-594,2002.
    [90]H. F. Huang and K. K. Lehmann. "Noise in cavity ring-down spectroscopy caused by transverse mode coupling," Opt. Express, vol.15, pp.8745-8759,2007.
    [91]G. Totschnig, D. S. Baer, J. Wang, F. Winter, H. Hofbauer, and R. K. Hanson "Multiplexed continuous-wave diode-laser cavity ring down measurements of multiple species," Appl. Opt., vol.39, pp.2009-2016,2000.
    [92]Z. Q. Tan and X. W. Long, "A developed optical-feedback cavity ring-down spectrometer and its application," Appl. Spectrosc., vol.66, pp.492-495,2012.
    [93]K. M. Zhou, D. J. Webb, C. B. Mou, M. Farries, N. Hayes, and I. Bennion, "Optical fiber cavity ring down measurement of refractive index with a microchannel drilled by femtosecond laser," IEEE Photon. Technol. Lett., vol.21, pp.1653-1655,2009.
    [94]H. Waechter, K. Bescherer, C. J. Durr, R. D. Oleschuk, H.-P. Loock, "405 nm absorption detection in nanoliter volumes," Anal. Chem., vol.81, pp.9048-9054, 2009.
    [95]K. L. Yu, C. Q. Wu, and Z. Wang, "Optical methane sensor based on a fiber loop at 1665 nm," IEEE Sens. J., vol.10, pp.728-731,2010.
    [96]G. Stewart, K. Atherton, H. B. Yu and B. Culshaw, "An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements," Meas. Sci. Technol., vol.12, pp.843-849,2001.
    [97]G. Stewart, K. Atherton, B. Culshaw, "Cavity-enhanced spectroscopy in fiber cavities," Opt. Lett, vol.29, pp.442-444,2004.
    [98]N. Ni, C. C. Chan, T. K. Chuah, L. Xia and P. Shum. "Enhancing the measurement accuracy of a cavity-enhanced fiber chemical sensor by an adaptive filter," Meas. Sci. Technol., vol.19, pp.115203,2008.
    [99]G. Stewart, H. Yu, G Whitenett, B. Culshaw, "A mode-locked fibre laser system for multi-point intra-cavity gas spectroscopy," Optical Fiber Sensors Conference, pp.257-260,2002.
    [100]N. Arsad and G Stewarta, Intra-cavity spectroscopy using amplified spontaneous emission in erbium fibre lasers, Proc. of SPIE, vol.7503, pp.750312-4,2009.
    [101]Y. Zhang, W. Jin, H. B. Yu et al., "Novel intra-cavity sensing network based on mode-locked fiber laser," IEEE Photon. Technol. Lett., vol.14, pp.1336-1338, 2002.
    [102]张红霞,刘琨,贾大功,刘铁根,彭纲定,汪瞧,张以谟,基于内腔光纤激光器的痕量气体光谱检测,光谱学与光谱分析,vol.31,pp.2040-2043,2011.
    [103]张敏,匡武,廖延彪,张岩,王东宁,靳伟,基于光纤激光器的有源腔气体吸收测量网络,中国激光,vol.32,pp.982-087,2005.
    [104]G Durry and G Megie, "With near-infrared InGaAS laser diodes by the SDLA, a balloonborne spectrometer for tropospheric and stratospheric in situ measurements," Applied Optics, vol.38, pp.7342-7354,1999.
    [105]R. K. Hanson, "High-resolution spectroscopy of shock-heated gases using a tunable infrared diode laser," In B. Ahlborn, A. Hertzberg, and D. Russell (Eds.), 11th International Symposium on Shock Tubes and Waves, Seattle:University of Washington Press, pp.432-438.1977.
    [106]D. J. Brassington, "Tunable diode laser absorption spectroscopy for the measurement of atmospheric species." Advances in Spectroscopy-Chichester-John Wiley and Sons, vol.24, pp.85,1995.
    [107]H. Inaba, T. Kobayasi, M. Hirama, et al., "Optical-fiber network system for air-pollution monitoring over a wide area by optical absorption method," Electronics Letters, vol.23, pp.746-751,1979.
    [108]C. D. Singh, Y. Shibata, M. Ogita. "A theoretical study of tapered, porous clad optical fibers for detection of gases," Sensors and Actuators B. vol.92, pp.44-48, 2003.
    [109]N. C. Peterson, M. J. Kurylo, W. Braun, et al., "Enhancement of absorption spectra by dye-laser quenching," J. Opt. Soc. Am., vol.61, pp.746-750,1971.
    [110]V. M. Baev, J. Eschner, E. Paeth, et al., "Intra-cavity spectroscopy with diode lasers," Applied Physics B:Lasers and Optics, vol.55, pp.463-477,1992.
    [111]V. M. Baev, T. Latz, P. E. Toschek, "Laser intracavity absorption spectroscopy, "Applied Physics B, vol.69, pp.171-202,1999.
    [1]李川,张以谟,赵永贵,李立京,《光纤光栅:原理、技术与传感应用》,科学 出版社,2005.
    [2]V. Mizrahi, J. E. Sipe. "Optical properties of photosensitive fiber phase gratings," IEEE J. Lightwave Technol., vol.11, pp.1513-1517,1993.
    [3]S. S. Orlov, A. Yariv, S. Van Essen. "Coupled-mode analysis of fiber-optic add drop filters for dense wavelength-division multiplexing," Optics letters, vol.22, pp. 688-690,1997.
    [4]M. Yamada, K. Sakuda. "Analysis of almost periodic distributed feedback waveguide via a fundamental matrix approach," Appl Opts, vol.26, pp.3474-3478, 1987.
    [5]T. Erdogan "Fiber grating spectra," IEEE J. Lightwave Technol., vol.15, pp.1706-1716,1997.
    [6]张兴娇,肖永江,文如泉,“边带耦合光子晶体滤波器反射谱特性分析,”应用光学, vol.32, pp.1130-1133,2011.
    [7]G Meltz, W W Morey, W H Glenn. "Formation of Bragg gratings in optical fibers by a transverse holographic method," Optics letters, vol.14, pp.823-825,1989.
    [8]C G Askins, T E Tsai, G M Williams, et al., "Fiber Bragg reflectors prepared by a single excimer pulse," Optics letters, vol.17, pp.833-835,1992.
    [9]J L Archambault, L Reekie, P J Russell, "High reflectivity and narrow bandwidth fibre gratings written by single excimer pulse," Electronics Letters, vol.29, pp.28-29,1993.
    [10]高霞,基于长周期光纤光栅的理论及应用研究,山东大学硕士论文,2009.
    [11]K O Hill, B Malo, F Bilodeau, et al., "Bragg gratings fabricated in monomode photosensitive optical fiber by UV exposure through a phase mask," Applied Physics Letters, vol.62, pp.1035-1037,1993.
    [12]D. Z. Anderson, V. Mizrahi, T. Erdogan, and A.E. White, "Production of in-fiber grating using a diffractive element," Electronics Letters, Vol.29, pp.566-568,1993.
    [13]黎敏,廖延彪,赖淑蓉,陈荣声,“一种新型的光纤光栅制作方法,”Vol.22,pp.24-25,2001.
    [1]孙倩,宁提纲,胡旭东,“单频光纤激光器的研究进展,”光纤与电缆及其应用技术,vol.4,pp.1-3,2010.
    [2]詹黎,宋跃江,夏宇兴,“128波长输出的自注入布里渊光纤激光器,”激光与光电子学进展,vol.42, pp.21-22,2005.
    [3]张萍萍,杨远红,陈淑英,“布里渊光纤环形激光器技术发展,”红外与激光工程,vol.37, pp.58-63,2008.
    [4]詹黎,顾照昶,邢亮,等,“光纤布里渊激光器和放大器的研究进展及其应用,”中国激光,vol.37, pp.901-908,2010.
    [5]J R Armitage. "Three-level fiber laser amplifier:a theoretical model," Applied Optics, vol.27, pp.4831-4836,1988.
    [6]K M Abramski, W Rodzen, P R Kaczmarek, L Czurak and A Budnicki. "Laser diode linewidth measurements,'" ICTON, Conf. Proc. (Warsaw) pp.87-90,2003.
    [7]D. E. Mc Cumber. "Intensity fluctuations in the output of Cw laser oscillators," Physical Review, vol.141, pp.306-322,1966.
    [8]G. A. Cranch, M. A. Englund, and C. K. Kirkendall, "Intensity noise characteristics of erbium-doped distributed-feedback fiber lasers," IEEE J. Quantum Electron., vol.39, pp.1579-1586,2003.
    [9]I. Dajani, C. Zeringue, and T. M. Shay, "Investigation of nonlinear effects in multitone-driven narrow-linewidth high-power amplifiers," IEEE J. Sel. Top. Quantum Electron., vol.15, pp.406-414,2009.
    [10]L. J. Henry, T. M. Shay, D. W. Hult, K. B. Rowland, "Enhancement of output power from narrow linewidth amplifiers via two-tone effect--high power experimental results," Opt. Express 18, pp.23939-23947,2010.
    [11]A.J. Barlow, D.N. Payne, "The stress-optic effect in optical fibres," IEEE J. Quantum Electron. vol.19, pp.834-839,1983.
    [12]H. Stor(?)y, B. Sahlgren, and R. Stubbe, "Single polarisation fibre DFB laser," Electron. Lett, vol.33, pp.56-58,1997.
    [13]N. Liz'arraga, N. P. Puente, E. I. Chaikina, T. A. Leskova, and E. R. M'endez, "Single-mode Er-doped fiber randomlaser with distributed Bragg grating feedback," Opt. Express, vol.17, pp.395-404,2009.
    [14]W. Fan, B. Chen, and X. Li, et al., "Stress-induced single polarization DFB fiber lasers," Opt. Commun. Vol.204, pp.157-161,2002.
    [15]W. Guan and J. R. Marciante, "Single-polarisation, Single-Frequency,2 cm Ytterbium-Doped Fibre Laser," Electron. Lett. vol.43, pp.558,2007.
    [16]S.A. Babin, D.V. Churkin, A.E. Ismagulov, S.I. Kablukov, and M.A. Nikulin, "Single frequency single polarization DFB fiber laser,"Laser Phys. Lett. Vol.4, pp.428-432,2007.
    [17]D. Thingbo, E. Ronnekleiv, and J. T. Kringlebotn, "Intrinsic distributed feedback fiber laser high frequency hydrophone," in Bragg Gratings, Photosensitivity, and Poling in Waveguides. Washington, OSA Trends in Optics and Photonics Series, vol.33, pp.61-63,2000.
    [18]G. H. Ames, J. M. Maguire, "Erbium fiber laser accelerometer," IEEE Sens. J., vol.7, pp.557-561,2007.
    [19]S. W. Lovseth, J. T. Kringlebotn, E. Ronnekleiv, et al., "Fiber distributed-feedback lasers used as acoustic sensors in air," Appl. Opt., vol.38, pp.4821-4830,1999.
    [20]G A. Cranch, G M. H. Flockhart, and C. K. Kirkendall, "Optically powered DFB fiber laser magnetometer,"Proc. SPIE:7004, OFS-19,2008.
    [21]Foster, S.B. and A.E. Tikhomirov, "Pump-noise contribution to frequency noise and linewidth of distributed-feedback fiber lasers," IEEE J. Quantum Electron., vol.46, pp.734-741,2010.
    [22]G A. Cranch, "Frequency noise reduction in a distributed feedback fiber laser by electronic feedback," Opt. Lett., vol.27, pp.1114-1117,2002.
    [23]L. N. Ma, Y. M. Hu, S. D. Xiong, et al., "Intensity noise and relaxation oscillation of a fiber-laser sensor array integrated in a single fiber," Optics Letters, vol.35, pp.1795-1797,2010.
    [24]E. R(?)nnekleiv, "Frequency and intensity noise of single frequency fiber Bragg grating lasers," Opt. Fiber Technol., vol.7, pp.206-235,2001.
    [25]H. L. An, E. Y. B. Pun, X. Z. Lin, and H. D. Liu, "Effects of ion-clusters on the intensity noise of heavily erbium-doped fiber lasers," IEEE Photon. Technol. Lett., vol.11, pp.803-805,1999.
    [26]S. Taccheo, P. Laporta, O. Svelto, and G D. Geronimo, "Theoretical and experimental analysis of intensity noise in a codoped erbium-ytterbium glass laser," Appl. Phys. B, vol.66, pp.16-26,1998.
    [27]S. W. L(?)vseth and D. Y. Stepanov, "Dynamic analysis of multiple wavelength DFB fiber lasers," IEEE J. Quantum Electron., vol.37, pp.1237-1245,2001.
    [28]刘奎,杨荣国,张海龙,白云飞,张俊香,郜江瑞,“单频光纤激光器的噪声抑制”,中国激光,Vol.36,pp.1852-1856,2009.
    [29]Christine Spiegelberg, Jihong Geng, Yongdan Hu. "Low-noise narrow-linewidth fiber laser at 1550nm," J. Lightwave Technol., vol.22, pp.57-62,2004.
    [30]Romeira, Bruno; Figueiredo, Jose. "Optoelectronic Oscillators for Communication Systems," Emerging Trends in Technological Innovation, IFIP Advances in Information and Communication Technology, vol.314, pp.273-280,2010.
    [31]Rogers III, C E; Wright, M J; Carini, et al., "Generation of arbitrary frequency chirps with a fiber-based phase modulator and self-injection-locked diode lase," J. Opt. Soc. Am. B, vol.24, pp.1249-1253,2007.
    [32]M. Castro and V.V. Spirin. "Self-injection locking of DFB laser diode with Brillouin amplification in optical fibre feedback," Electronics Letters, vol.43, pp.802-803,2007.
    [33]Lee Dong-Hoon, Klein Marvin, Meyn Jan-Peter, et al., "Self-injection-locking of a CW-OPO by intra cavity frequency-doubling the idler wave," Optics Express, vol.5, pp.114-119,1999.
    [34]S. Yamashita, K. Hsu, and T. Murakami, "High-performance single frequency fiber Fabry-Perot laser (FFPL) with self-injection locking," Electron. Lett., vol.35, pp.1952-1954,1999.
    [35]S. Yamashita and K. Hsu, "Single-frequency, single-polarization operation of tunable miniature erbium:ytterbium fiber Fabry-Perot lasers by use of self-injection locking," Opt. Lett., vol.23, pp.1200-1202,1998.
    [36]G. Bonfrate, F. Vaninetti, and F. Negrisolo, "Single-frequency MOPA Er DBR fiber laser for WDM digital telecommuication systems," IEEE Photon. Technol. Lett., vol.10, pp.1109-1111,1998.
    [37]Hsu, Kevin, Yamashita, Shinji. "Single-Polarization Generation in Fiber Fabry-Perot Laser by Self-Injection Locking in Short Feedback Cavity." IEEE J. Lightwave Technol., Vol.19, pp.520 (2001).
    [38]A. T.Wang, H. Ming, F. Li, et al., "Single-frequency, single-polarization ytterbium-doped fiber laser by self-injection locking," Chinese Optics Letters, Vol. 2, pp.223-225,2004.
    [39]Y. J. Zhao, Q. P. Wang, J. Chang, et al., "Linewidth narrowing and polarization control of erbium-doped fiber laser by self-injection locking," Laser Phys., vol.21, pp.2108-2111,2011.
    [40]T. Amthorl, M. Sinther2, T. Walther. "An injection-locked single-mode continuous wave Ti Sapphire laser," Laser Phys. Lett., vol.3, pp.75-78,2006.
    [41]S.Yamashita, G. J. Cowle, "Single-polarization operation of fiber distributed feedback (DFB) lasers by injection locking," IEEE J. Lightwave Technol., vol.17, pp.509-513,1999.
    [42]C. Gu, L. X. Xu, H. Ming, et al., "A single mode fibre laser by applying self-injection locking with a DFB structure," Chinese Physics Letters, vol.25, pp.2045-2047,2008.
    [43]Y. J. Zhao, Q. P. Wang, J. Chang, J. S. Ni, et al., "Suppression of the Intensity Noise in DFB Fiber Lasers by Self-Injection Locking," Laser Phys. Lett, vol.9, pp.739-743,2012.
    [44]M. Zhou, S. George, W. Gillian, "Stable single-mode operation of a narrow-linewidth, linearly Polarized, erbium-fiber ring laser using a saturable absorber," IEEE J. Lightwave Technol., vol.24, pp.2179-2183,2006.
    [45]X. H. Li, X. M. Liu, Y. K. Gong, et al., "A novel erbium/ytterbium co-doped distributed feedback fiber laser with single-polarization and unidirectional output," Laser Phys. Lett., vol.7, pp.55-59,2010.
    [46]S. P. Smith, F. Zarinetchi, S. Ezekiel. "Narrow-linewidth stimulated Brillouin fiber laser and applications," Optics letters, vol.16, pp.393-395,1991.
    [47]X. He, X. Fang, C. Liao, et al., "A tunable and switchable single-longitudinalmode dual-wavelength fiber laser with a simple linear cavity," Optics express, vol.17, pp.21773-21781,2009.
    [48]K P Koo, A D Kersey. "Bragg grating-based laser sensors systems with interferometric interrogation and wavelength division multiplexing," IEEE J. Lightwave Technol., vol.13, pp.1243-1249,1995.
    [49]J Zhang, X Li, Q Chai, et al., "Hydrophone based on intensity modulated DFB fiber laser," In:Proceedings of the IEEE sensors conference, pp.315-317,2010.
    [50]A I Azmi, I Leung, X Chen, et al., "Fiber laser based hydrophone systems," Photonic Sensors, vol.1, pp.210-221,2011.
    [51]J L Zyskind, V Mizrahi, D J DiGiovanni, et al., "Short single frequency erbium-doped fibre laser," Electronics Letters, vol.28, pp.1385-1387,1992.
    [52]K Yelen, L M B Hickey, M N Zervas. "A new design approach for fiber DFB lasers with improved efficiency," IEEE J. Quantum Electron., vol.40, pp.711-720, 2004.
    [53]C Alegria, Y Jeong, C Codemard, et al., "83-W single-frequency narrow-linewidth MOPA using large-core erbium-ytterbium co-doped fibe," Photonics Technology Letters, IEEE, vol.16, pp.1825-1827,2004.
    [1]D. Chen, W. Liu, Y. Zhang, J. Liu, R. Kan, M. Wang, X. Fang, and Y. Cui, "Fiber-distributed multi-channel open-path H2S sensor based on tunable diode laser absorption spectroscopy," Chin. Opt. Lett., vol.5, pp.121-124,2007.
    [2]J. Ni, J. Chang, T. Liu, Q. Wang, et al., "A Low Cost Multiplexed 1.331 μm Spectroscopic Remote Methane Sensor System," Proc. SPIE, Vol.6595, pp. 65952Z-1-4,2007.
    [3]R. Kan, W. Liu, Y. Zhang, J. Liu, M. Wang, D. Chen, J. Chen and Y. Cui, "A high sensitivity spectrometer with tunable diode laser for ambient methane monitoring," Chin. Opt. Lett., vol.5,54-57,2007.
    [4]J. Ni, J. Chang, T. Liu, Y. Li, Y. Zhao, Q. Wang, "Fiber methane gas sensor and its application in methane outburst prediction in coal mine," Journal of Electronic Science and Technology of China, vol.6, pp.373-376,2008.
    [5]Y. Zhao, Y. Wei, Y. Li, et al., "Multi-channel optical fiber methane monitoring system based on laser absorption spectroscopy," The 4th IEEE Asia-Pacific Power and Energy Engineering Conference, pp.1-4,2012.
    [6]G. Stewart, K. T. V. Grattan, B. T. Meggitt, in Optical Fiber Sensor Technology, Kluwer (Academic, London,1998,4).
    [7]伊宏编著,《大气辐射学基础》,气象出版社,1993.
    [8]李宁,基于可调谐激光吸收光谱技术的气体在线检测及二维分布重建研究,浙江大学博士论文,2008.
    [9]L S Rothman, D Jacquemart, A Barbe, et al., "The HITRAN 2004 molecular spectroscopic database," Journal of Quantitative Spectroscopy & Radiative Transfer, vol.96, pp.139-204,2005.
    [10]王汝琳,王咏涛编著,《红外检测技术》,化学工业出版社,2006.
    [11]林洁丽,高分辨(饱和)分子光谱谱线线型、线宽及其应用的研究,中国科学院博士学位论文,2001.
    [12]H. A.Lorentz, "The absorption and emission of lines of gaseous bodies," In "H.A. Lorentz Collected Papers" (The Hague,1934-1939), vol.3, pp.215-238,1906.
    [13]B.H.Armstrong, "Spectrum line profiles:the Voight function," Journal of Quantitative Spectroscopy & Radiative Transfer, vol.7, pp.61-88,1967.
    [14]E.E. Whiting, "An empirical approximation to the Voigt profiles," Journal of Quantitative Spectroscopy & Radiative Transfer, vol.8, pp.1379-1384,1968.
    [15]Y. J. Zhao, C. Wang, T.Y. Liu, et al., "Application in coal mine of fiber methane monitoring system based on spectrum absorption," Procedia Engineering, vol.26, pp.2152-2156,2011.
    [16]赵燕杰,王昌,刘统玉,等,“基于光谱吸收的光纤甲烷监测系统在瓦斯抽采中的应用,”光谱学与光谱分析,vol.30, pp.2857-2860,2010.
    [17]李川,张以谟,赵永贵,李立京,《光纤光栅:原理、技术与传感应用》,科学出版社,2005.
    [18]赵燕杰,王昌,刘统玉,等,“光纤甲烷温度双参数检测系统的研究,”中国激光,vol.37,pp.3070-3074,2010.
    [19]G Borjesson, J Chanton, B H Svensson, "Methane oxidation in two Swedish landfill covers measured with carbon-13 to carbon-12 isotope rations," Journal of Environmental Quality, vol.30, pp.369,2001.
    [20]UNFCCC.CDM Modalities and Procedures (Extract of Decision 17/CP.7) [R]. FCCC/CP/2001/13/ADD.2.2001,18-36.7) (http://cdm. unfccc. int/Reference/ Documents).
    [21]张相锋,肖学智,何毅等,“我国垃圾填埋气发电项目利用清洁发展机制的可行性研究,”太阳能学报,vol.28, pp.1045-1048,2007.
    [22]李雁,张淑娟,熊永达.“垃圾填埋场内部CH4浓度随时间的变化特征及其模拟,”环境科学学报[J], vol.20, pp.584-587,2000.
    [23]王岩,“淮南矿区瓦斯抽采利用现状与前景,”中国煤层气,vol.2, pp.36,2005.
    [24]张志刚,贾光胜,杨利平,高振勇,“瓦斯抽采效果预测方法在王坡矿的应用,”煤矿开采,vol.14,pp.87,2009.
    [1]G. Stewart, K. Atherton, H. B. Yu and B. Culshaw, "An investigation of an optical fibre amplifier loop for intra-cavity and ring-down cavity loss measurements," Meas. Sci. Technol., vol.12, pp.843-849,2001.
    [2]G. Stewart, K. Atherton, B. Culshaw, "Cavity-enhanced spectroscopy in fiber cavities," Opt. Lett, vol.29, pp.442-444,2004.
    [3]K. L. Yu, C. Q. Wu, and Z. Wang, "Optical methane sensor based on a fiber loop at 1665 nm," IEEE Sens. J., vol.10, pp.728-731,2010.
    [4]T. Brauers, M. Hausmann, U. Brandenburger, and H. P. Dorn. "Improvement of differential optical absorption spectroscopy with a multichannel scanning technique," Appl. Opt., vol.34, pp.4472-4479,1995.
    [5]A. Merten, J. Tschritter, and U. Platt. "Design of differential optical absorption spectroscopy long-path telescopes based on fiber optics," Appl. Opt., vol.50, pp.738-754,2011.
    [6]S. Kameyama, M. Imaki, Y. Hirano, S. Ueno, S. Kawakami, D. Sakaizawa, and M. Nakajima. "Development of 1.6μm continuous-wave modulation hard-target differential absorption lidar system for CO2 sensing," Opt. Lett., vol.34, pp.1513-1515,2009.
    [7]J. R. Chen, K. Numata, and S. T. Wu, "Error reduction methods for integrated-path differential-absorption lidar measurements," Opt. Express, vol.20, pp.15589-15609,2012.
    [8]R. E. Warren and R. G. Vanderbeek, "Online estimation of vapor path-integrated concentration and absorptivity using multiwavelength differential absorption lidar," Appl. Opt., vol.46, pp.7579-7586,2007.
    [9]B. Kaldvee, C. Brackmann, M. Alden, and J. Bood. "Highly range-resolved ammonia detection using near-field picosecond differential absorption lidar," Opt. Express, vol.20, pp.20688-20697,2012.
    [10]Y. Chen, Kevin. K. Lehmann, J. Kessler, B. Sherwood Lollar, G. Lacrampe Couloume, and T. C. Onstott, "Measurement of the 13C/12C of atmospheric ch4 using near-infrared (nir) cavity ring-down spectroscopy," Anal. Chem., vol.85, pp.11250-11257,2013.
    [11]靳伟,阮双琛,《光纤传感技术新进展》,科学出版社,2011.
    [12]Stewart G., Grattan K. T. V., Meggitt B. T., in Optical Fiber Sensor Technology, Kluwer (Academic, London,1998).

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700