混合动力汽车驱动的电功率管理研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
随着能源、环保等问题的日益突出,混合动力电动汽车已成为近年来发展迅速的一种新型汽车,是21世纪最具发展潜力的绿色清洁汽车。电力驱动系统作为混合动力汽车的核心部分,主要涉及到储能元件的功率变换、电机驱动等技术。本文针对混合动力车载电力驱动装置中的关键技术,从以下几个方面展开研究:车载储能单元技术经济性分析以及充电管理技术、双向大功率DC-DC变换电路及其软开关方案、电流型控制策略及其电路损耗分析、无刷直流电机驱动拓扑及其控制策略。
     1、本文首先列举了各种蓄电池以及超级电容器的工作特点。根据性能互补引入了混合储能的工作方式,并针对功率脉动型负载,分析了各种储能元件的容量配置方案。另外,结合具体应用实例,对蓄电池单独储能和混合储能方式进行了定量分析。同时,结合实际的充电电路,本文研究了正常充电情况下最小充电电势的确定方法。并根据混合动力系统充电管理技术的要求,提出了断续电流的数字控制策略和基于电量控制的快速充电方式。
     2、本文对三种具有双向升降压功能的电路进行了比较研究,主要从有源器件的电气应力以及无源元件的体积、电气应力等方面进行。另外,在常规ZCT软开关电路的基础上研究了两种改进型ZCT方案,减少了主管的电流应力。同时,针对数字控制下的电流采样问题,本文研究了一种改进型电流采样策略,并提出数控系统最高采样频率的概念。在研究了IGBT开关损耗与续流二极管的互相关系后,本文指出IGBT开关损耗与续流二极管开关特性存在互相制约,无法通过加快换流速度来降低开关损耗。并且针对恒频、变频控制,分别研究了两种控制策略下的电路损耗情况,进而提出恒电流脉动的变频控制策略。
     3、本文研究了无刷直流电机的两种驱动方式,主要从控制策略、电感损耗、转矩脉动以及系统效率等方面进行了比较研究。并且对七管驱动方式下的换相转矩脉动提出了一种双级调制策略,同时采用电流预测控制技术有效抑制了电路的LC谐振现象。另外,本文在整个调速范围内计算了无刷电机的换流角,并提出了最佳换相点的概念。通过最佳换相点控制可以在整个速度范围内减少因换相过程造成的转矩下降。针对无刷直流电机的两种恒功率调速策略,本文分析了相电感对其的影响,进而可以根据相电感来选择恒功率调速策略。从降低电路成本考虑,本文提出了一种七管电流型变流器拓扑,该电路结合了全控器件IGBT以及半控器件SCR的工作特点,能同时满足电机恒转矩、恒功率的应用要求。
     4、本文研究了驱动系统的两种故障,即电机反接制动过程中的过电流故障和相序故障。指出在反接制动中电动势短接回路的存在是造成再生电流失控的根本原因,并提出了相应的双管调制策略。针对相序故障,本文分析了故障检测原理并提出自恢复策略。
     5、本文完成了50kW混合动力驱动装置的工程样机,并进行了大量的实验研究,取得了满意的成果。
     研究混合动力中的电力驱动技术,在学术上有助于完善和发展电力电子技术,解决大功率变换装置中存在的系统效率、拓扑选择、控制策略等问题。在工程上可以为混合动力车辆提供相关的设计指导,并能针对具体的功率变换问题提出相应的解决方案。本文以驱动装置性价比最优为目的展开相关研究,力求使混合动力汽车具有最好的经济性能和社会效益。
Hybrid electric vehicle (HEV) becomes a kind of new, fast-developing vehicle in the latest years, which has the best future as a green vehicle, along with the problems of energy and environment becoming more and more serious in the 21st century. To being the core part of HEV system, the power drive equipment mainly involves power conversion of the storage energy cell, motor drive and so on. This dissertation aims at the key technologies of power drive equipment, and researches into the following several aspects: economic performance of the storage energy system and special charging technology, bidirectional high power DC-DC converter and soft-switching scheme, current control strategy and circuit loss analysis, brushless DC motor drive topology and control strategy.
     First, this dissertation enumerates characteristics of each kind of battery cell and ultra-capacitor. According to the supplementarity performance of battery and ultra-capacitor, it introduces a hybrid storage mode, and it analyzes capacity design principia of each kind of storage energy part which aiming at the power pulsant load. In view of the actual application example, this dissertation also analyzes independent storage energy system and hybrid storage energy system quantitatively. At the same time, it investigates the smallest charging electromotive force during the normal charge process with the actual charging circuit. Then, as request of HEV system, it gives the digital control scheme of intermittent current and the fast charging method on electricity quantity control.
     Second, this dissertation compares three circuit topologies which have the bidirectional functions of buck and boost, mainly through electrical stress of active device, volume and electrical stress of passive element, and so on. Moreover, basing on the conventional ZCT circuit, it analyzes two kinds of improved ZCT topologies to reduce the current stress of primary switching device effectively. Also, aiming at the current sampling problem, the dissertation proposes an improved current sampling strategy and a concept about the highest sampling frequency of the digital control system. After studying the relationship between IGBT switching loss and the freewheeling diode switching characteristics, it points out that both devices have restriction mutually, and can not reduce switching loss by quickening up switching speed. Then, in allusion to the constant frequency and variable frequency control strategy, it researches circuit loss respectively, and proposes the method of constant current ripple control.
     Third, the dissertation studies two kinds of drive topologies of brushless DC motor, and mainly compares the control strategy, inductor loss, torque ripple and system efficiency. Then, it proposes a two-stage modulation strategy to eliminate torque ripple during motor commutation process of seven switching drive topology. Simultaneously, it uses the current predictive control to suppress LC resonance phenomenon. Moreover, this dissertation calculates the commutation angle on the whole speed range of brushless DC motor, and puts forward a concept of the best commutation phase point. The commutation torque decrease phenomenon can be restrained by the best commutation phase point control on the whole speed range. In view of the two control methods of constant power for the brushless DC motor, it analyzes the phase inductor influence to different control strategies, and proposes the concept about constant power speed strategy choose based on phase inductor. Considering on the circuit cost, this dissertation proposes a novel converter named seven switching current converter. This circuit combines with characteristics of all-controlled device IGBT and half-controlled device SCR, and it can simultaneously satisfy the request of the constant torque and constant power.
     Fourth, this dissertation proposes two kinds of motor faults, namely over-current fault during motor reverse braking and motor phase-sequence fault. The primary causation for the problem that phase current during reverse braking out of control is a short loop by the back electromotive force, and it proposes a double switching modulation scheme that can control braking current effectively. Moreover, aiming at phase-sequence fault, this dissertation analyzes the average torque of motor start-up, and proposes a self-recovering strategy.
     Fifth, this dissertation develops a 50kW power converter of HEV system, does lots of experiments, and obtains approving results.
     Researching on the power drive technology of HEV system can promote power electronics, and can resolve the problems on system efficiency, topology choice, control strategy of the high power transformation equipment. Also, it can provide relative design instruction for HEV system in the practical application, and solve the actual problem during power transformation process.
引文
[1]Chan C C. The State of the Art of Electric and Hybrid Vehicles[J]. Proceedings of the IEEE, 2002, 90(2):247-275.
    [2]陈清泉,孙立清.电动汽车的现状和发展趋势[J].交通,2005,23(4):24-29.
    [3]柯世源.美日电动汽车和混合电动汽车开发现状[J].全球科技经济嘹望,1998,(9):113-116.
    [4]白木,周艳琼.世界电动汽车发展现状[J].中国道路运输,2002,(3):46-47.
    [5]杨为琛,孙逢春.混合电动汽车现状[J].车辆与动力技术,200l,(4):41-46.
    [6]罗永革,冯樱,何晓春.混合电动汽车的开发前景[J].湖北汽车工业学院学报,2000,14(1):9-13.
    [7]陈晓东,高世杰.混合动力汽车的发展所面临的挑战[J].汽车工业研究,2001,(6):16-20.
    [8]张翔,赵韩,钱立军等.国内电动汽车研发项目进展及主要产品介绍[J].汽车技术,2004,(5):42-44.
    [9]林渭勋.电力电子技术[M].浙江大学出版社,2003.
    [10]马宪民.电动汽车的电气驱动系统[J].西安公路交通大学学报,200l,21(3):83-86.
    [11]张立伟,胡广艳,游小杰等.混合动力电动汽车中电力电子技术应用综述[J].电力电子,2006,(2):19-23.
    [12]Spotnitz Robert. Advanced EV and HEV Batteries[C]. IEEE Proceedings on Vehicle Power and Propulsion, 2005:334-337.
    [13]Williamson Sheldon S, Khaligh Alireza, Sung Chul Oh, et al. Impact of Energy Storage Device Selection on the Overall Drive Train Efficiency and Performance of Heavy-Duty Hybrid Vehicles[C]. IEEE Proceedings on Vehicle Power and Propulsion, 2005:318-327.
    [14]梁春辉,莫群心.混合动力汽车及其蓄电池[J].蓄电池,2006:33-36.
    [15]李宝华,周鹏伟,康飞宇等.超级电容器的性能研究[J].深圳特区科技,2003:7-10.
    [16]崔淑梅,段甫毅,超级电容电动汽车的研究进展与趋势[J].汽车研究和开发,2005,(6):31-36.
    [17]Baisden Andrew C, Emadi Ali. Advisor-Based Model of a Battery and an Ultra-Capacitor Energy Source for Hybrid Electric Vehicles[J]. IEEE Transactions on Vehicular Technology, 2004, 53(1):199-205.
    [18]Timmermans J M, Zadora P, Cheng Y. Modelling and Design of Super Capacitors as Peak Power Unit for Hybrid Electric Vehicles[C]. IEEE Proceedings on Vehicle Power and Propulsion, 2005:701-708.
    [19]Zhang Li, Song Jinyan, Zou jiya. Performance Investigations on the Power Source of Electric Vehicle Based on Hybrid Super-capacitors[C]. Proceeding of the 6th World Congress on Intelligent Control and Automation, June21-23, 2006, Dalian, China, (2):8283-8287.
    [20]Lu Shuai, Corzine Keith A, Ferdowsi Mehdi. High Efficiency Energy Storage System Design for Hybrid Electric Vehicle with Motor Drive Integration[C]. IEEE IAS'06, 2006, (5):2560-2567.
    [21]Hua Chih-Chiang, Lin Meng-Yu. A Study of Charging Control of Lead-Acid Battery for Electric Vehicles[C]. IEEE Proceedings on Industrial Electronics, 2000, (1):135-140.
    [22]Marcos J, Dios J, Cao A M. Fast Lead-Acid Battery Charge Strategy[C]. IEEE APEC'06, 2006:610-613.
    [23]Cheng P H, Chen C L. High efficiency and nondissipative fast charging strategy[J]. IEE Proceedings on Electric Power Applications, 2003, 15(5):539-545.
    [24]胡明辉,秦大同,舒红.混合动力汽车蓄电池的快速充电方法[J].重庆大学学报(自然科学版),2004,27(11):1-3.
    [25]钟静宏,张承宁,张旺.电动汽车的铅酸蓄电池快速脉冲充电系统[J].电源技术,2006,30(6):504-506.
    [26]刘玉杰,姜印平,孟祥适.关于快速脉冲充电技术的研究[J].蓄电池,2004,41(2):71-73.
    [27]Schupbach R M, Balda J C. Comparing DC-DC Converters for Power Management in Hybrid Electric Vehicles[C]. IEEE IEMDC'03, 2003, (3):1369-1374.
    [28]Caricchi F, Crescimbini F, Capponi F Giulii. Study of Bi-Directional Buck-Boost Converter Topologies for Application in Electrical Vehicle Motor Drives[C]. IEEE APEC'98, 1998, (1):287-293.
    [29]夏超英,刘奎,郭熠.电动汽车用全数字双向DCDC变流器的实现[J].电力电子技术, 2006,40(1):70-72.
    [30]Schuch Lucianom, Rech Cassiano, Hey Helio Leaes, et al. Analysis and Design of a New High-Efficiency Bidirectional Integrated ZVT PWM Converter for DC-Bus and Battery-Bank Interface[J]. IEEE Transactions on Industry Applications, 2006, 42(5): 1321-1332.
    [31]Cheng P H, Chen C L. High efficiency and nondissipative fast charging strategy[J]. IEE Proceedings on Electric Power Applications, 2003, 150(5):539-545.
    [32]K Venkatesan. Current Mode Controlled Bidirectional Flyback Converter[C]. IEEE PESC'89, 1989, (1):835-842.
    [33]H G Langer, H Ch Skudelny. DC to DC Converters With Bidirectional Power Flow and Controllable Voltage Ratio[C]. Proc.of EPE'89, 1989, (1): 1245-1250.
    [34]H L Chart, K W E Cheng, D Sutanto. Bidirectional Phase-shifted DC-DC Converter[J]. IEEE Electronics Letters, 1999, 35(7):523-524.
    [35]H L Chan, K W E Cheng, D Sutanto. A Novel Square-wave Converter with Bidirectional Power Flow[C]. IEEE PEDS'99, 1999, (1):966-971.
    [36]J Calvente, L Martinez-Salamero, P Garces, et al. Dynamic Optimization of Bidirectional Topologies for Battery Charge/Discharge in Satellites[C]. IEEE PES C'01,2001, (1):1994-1999.
    [37]Felix A Himmelstoss. Analysis and Comparison of Half-bridge Bidirectional DC-DC Converter[C]. IEEE PESC'94, 1994, (1): 922-958.
    [38]王聪.软开关功率变流器及其应用[M].科学出版社,2000.
    [39]林周布.无源软开关电路拓扑的研究[J].电路与系统学报,2005,10(5):76-85.
    [40]陈为昀,丁道宏.一种新型的有源缓冲电路研究[J].电力电子技术,1997,31(1):47-49.
    [41]阮新波,严仰光.移相控制恒频零电压开关变流器的发展及现状[J].电力电子技术,1996,(1):85-90.
    [42]孙慧贤,王群,杨卫新.ZVT-PWM Buck变流器的改进[J].电气应用,2005,24(7):81-84.
    [43]Jiang Jiuchun, Zhang Weige, Shen Bo. Analysis and Design of a Novel ZCT-PWM Converter[C]. IEEE PEDS'03, 2003, (1):126-130.
    [44]Bryant Brad, Kazimierczuk Marian K. Modeling the Closed-Current Loop of PWM Boost DC-DC Converters Operating in CCM With Peak Current-Mode Control[J]. IEEE Transactions on Circuits and Systems, 2005, 52(11):2404-2412.
    [45]Ferdowsi Mehdi. An Estimative Current Mode Controller for DC-DC Converters Operating in Continuous Conduction Mode[C]. IEEE APEC'06, 2006, (1):19-23.
    [46]Kelvin Ka-Sing Leung, Henry Shu-Hung Chung. Dynamic Hysteresis Band Control of the Buck Converter With Fast Transient Response[J]. IEEE Transactions on Circuits and Systems, 2005, 52(7):398-402.
    [47]胡庆波,瞿博,吕征宇.一种新颖的应用于PFC电路中电流控制的方法[J].中国电机工程学报,2006,26(3):65-69.
    [48]Chen Jingquan, Prodic Aleksandar, Erickson Robert W. Predictive Digital Current Programmed Control[J]. IEEE Transactions on Power Electronics, 2003, 18(1):41-419.
    [49]Athalye Praneet, Maksimovic Dragan, Erickson Robert. Variable-Frequency Predictive Digital Current Mode Control[J]. IEEE Power Electronics Letters, 2004, 2(4):113-116.
    [50]Chen Jessen, Tang Pei-Chong. A Sliding Mode Current Control Scheme for PWM Brushless DC Motor Drives[J]. IEEE Transactions on Power Electronics, 14(3):541-551.
    [51]Corradini L, Mattavelli P. Analysis of Multiple Sampling Technique for Digitally Controlled dc-dc Converters[C]. IEEE PESC'06, 2006, (1):1-6.
    [52]Gusseme Koen De, David M. Van de Sype, Alex P. Van den Bossche, et al. Sample Correction for Digitally Controlled Boost PFC Converters Operating in both CCM and DCM[C]. IEEE APEC'03, (1):389-395.
    [53]Zhou Jinghai, Lu Zhengyu, Lin Zhengyu, et al. Novel Sampling Algorithm for DSP Controlled 2kW PFC Converter[J]. IEEE Transactions on Power Electronics, 2001, 16(2):217-222.
    [54]Antoni Szumanowski,陈清泉,孙逢春译.混合动力车辆基础[M].北京:北京理工大学出 版社,2001.
    [55]陈清泉,孙逢春,祝嘉光.现代电动汽车技术[M].北京:北京理工大学出版社,2002.
    [56]闫大伟,陈世元.电动汽车驱动电机性能比较[J].汽车电器,2004,(1):4-6.
    [57]沈建新,廖海平,陈永校.电动自行车轮毂式无刷直流电机结构分析[J].电工电能新技术,1998,(1):4-8.
    [58]Wu Zhigan, Zhou Genfu, Ying Jianping. Line adaptive PAM&PWM drive for BLDCM[C]. IEEE IPEMC'04, 2004, (3):1263-1267.
    [59]Taniguchi Katsunori, Saegusa Satoru, Morizane Toshimitsu. PAM Inverter System with Soft-Switching PFC Converter suitable for PM Motor Drives[C]. IEEE PEDS'05, 2005, (1):793-798.
    [60]Taniguchi Katsunori, Kimura Noriyuki, Takeda Yoji, et al. A Novel PAM Inverter System for Induction Motor Drive[C]. IEEE PEDS'95, 1995, (1):129-134.
    [61]Gopalarathnam Tilak, Toliyat Hamid A. A New Topology for Unipolar Brushless DC Motor Drive With High Power Factor[C]. IEEE Transactions on Power Electronics, 2003, 18(6): 1397-1404.
    [62]Krishnan R, Vijayraghavan. A New Power Converter Topology for PM Brushless DC Motor Drives[C]. IEEE IECON'98, 1998, (2):709-714.
    [63]周波,傅颖,耿云亮等.组互感对C-DUMP变流器供电的无刷直流电机运行特性的影响[J].中国电机工程学报,2001,21(3):30-33.
    [64]周波,窦森,穆新华等.基于C-dump双向变流器的新型无刷直流起动/发电机工作特性的理论分析与仿真研究[J].中国电机工程学报,2000,20(12):33-37.
    [65]Lee Byoung-Kuk, Kim Tae-Hyung, Ehsani Mehrdad. On the feasibility of four-switch three-phase BLDC motor drives for low cost commercial application: topology and control[J]. IEEE Transactions on Power Electronics, 2003, 18(1):164-172.
    [66]Lee Byotmg-Kuk, Hong J.P, Ehsani M. Generalized Design Methodology of Reduced Parts Converters for Low Cost BLDC Motor Drives[C]. IEEE APEC'03, 2003, (1):277-280.
    [67]周元芳.分数槽绕组稀土永磁无刷直流电动机反电势的计算[J].微特电机,1997,(2):11-13.
    [68]Kim Tae-Sung, Ahn Sung-Chan, Hyun Dong-Seok. A New Current Control Algorithm for Torque Ripple Reduction of BLDC Motors[C]. IEEE IECON'01,2001, (2):1521-1526.
    [69]Park SungJun, Park HanWoong, Lee Man Hyung. A new approach for minimum-torque-ripple maximum-efficiency control of BLDC motor [J]. IEEE Trans on Industry Electronics, 2000, 47(1):109-115.
    [70]Park Han-woong, Park Sung-jun, Lee Yang-Woo. Reference frame approach for torque ripple minimization of BLDCM over wide speed range including cogging torque[C]. 2001, IEEE PESC, Brazil, Sao Paulo, 153:637-642.
    [71]Song Joongho, Choy lck. Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor[J]. IEEE Trans on Power Electronics, 2004, 19(2):312-319.
    [72]韦鲲,林平,熊宇等.无刷直流电机PWM调制方式的优化研究[J].浙江大学学报工学版,2005,39(7):1038-1042.
    [73]揭贵生,马伟明.考虑换相时无刷直流电机脉宽调制方法研究[J].电工技术学报,2005,20(9):66-71.
    [74]Cros J, Figueroa J R, Viarouge R BLDC Motors with surface mounted PM rotor for wide constant power operation[C]. IEEE IAS'03, 2003, (3):1933-1940.
    [75]Schneider T. Comparative analysis of limited field weakening capability of surface mounted permanent magnet machines[J], lEE Proceedings on Electric Power Applications, 2004, 151(1):76-82.
    [76]Chalmers B J. Variable-Frequency synchronous motor drives for electric vehicles[J]. IEEE Transactions on Industry Applications, 1996, 32 (4):896-903.
    [77]严岚,贺益康,杨德荣.一种复合转子永磁无刷直流电机恒功率弱磁的研究[J].中国电机工程学报,2003,23(11):155-15.
    [78]Miti G K, Renfrew A C, Chalmers B J. Field-weakening regime for brushless DC motors based on instantaneous power theory[C], IEE Proceedings on Electric Power Applications, 2001, 148(3):265-271.
    [79]龚世缨.瞬时无功功率理论在弱磁调速中的应用.电气传动,2006,36(6):31-32.
    [80]Hao Lei, Toliyat Hamid A. BLDC Motor Full-Speed Operation Using Hybrid Sliding Mode Observer[C]. IEEE APEC'03, 2003, (1):286-293.
    [81]Chan C C, Jiang J Z, Chau K T. Novel Wide Range Speed Control of Permanent Magnet Brushless Motor Drives[J]. IEEE Transactions on Power Electronics, 1995, 10(5):539-546.
    [82]徐衍亮.电动汽车用永磁同步电动机功率特性及弱磁扩速能力研究(一)[J].山东大学学报(工学版),2002,32(5):401-405.
    [83]徐衍亮.电动汽车用永磁同步电动机功率特性及弱磁扩速能力研究(一)[J].山东大学学报(工学版),2002,32(5):413-418.
    [84]Sail S K, Acamley P P, Jack A G Analysis and simulation of the high-speed torque performance of brushless DC motor drives[J]. IEEE Transactions on Power Applications, 1995, 142(3):191-199.
    [85]Lawler J S, Bailey J M, Mckeever John W, et al. Extending the Constant Power Speed Range of the Brushless DC Motor Through Dual-Mode Inverter Control[J]. IEEE Transactions on Power Electronics, 2004, 19(3):783-793.
    [86]Lawler J S, Bailey J M, Mckeever John W. Theoretical Verification of the Infinite Constant Power Speed Range of the Brushless DC Motor Driven by Dual Mode Inverter Control[J]. Power Electronics in Transportation, 2002:75-82.
    [87]胡文静,吴彦平.稀土永磁无刷直流电动机电枢反应的分析[J].微电机,2002,35(2):12-15.
    [88]王晋,陶桂林,丁永强等.永磁无刷直流电动机电枢反应的分析[J].大电机技术,2005,(2):13-16.
    [89]李优新,王鸿贵,何鸿肃.永磁方波无刷直流机最佳逻辑解析结构的研究[J].微电机,1999,32(4):3-7.
    [90]李优新.永磁无刷电机电枢反应磁势对最佳换向位置的影响分析[J].微特电机,2000,(3):36-39.
    [1]曾育才.一种新型的铅酸蓄电池一铅晶蓄电池[J].嘉应学院学报,2000,18(6):22-25.
    [2]铅晶电池产品说明书[M].浙江天地之光电池制造公司用户手册,2004.
    [3]Baisden Andrew C, Emadi Ali. Advisor-Based Model of a Battery and an Ultra-Capacitor Energy Source for Hybrid Electric Vehicles[J]. IEEE Transactions on Vehicular Technology, 2004, 53(1):199-205.
    [4]Timmermans J M, Zadora P, Cheng Y. Modelling and Design of Super Capacitors as Peak Power Unit for Hybrid Electric Vehicles[C]. IEEE Proceedings on Vehicle Power and Propulsion, 2005:701-708.
    [5]Zhang Li, Song Jinyan, Zou jiya. Performance Investigations on the Power Source of Electric Vehicle Based on Hybrid Super-capacitors[C]. Proceeding of the 6th World Congress on Intelligent Control and Automation, June21-23, 2006, Dalian, China, (2):8283-8287.
    [6]Lu Shuai, Corzine Keith A, Ferdowsi Mehdi. High Efficiency Energy Storage System Design for Hybrid Electric Vehicle with Motor Drive Integration[C]. IEEE IAS'06, 2006,(5):2560-2567.
    [7]Ozatay Evren, Zile Ben, Anstrom Joel, et al. Power Distribution Control Coordinating Ultracapacitors and Batteries for Electric Vehicles[C]. American Control Conference, 2004, (5):4715-4721.
    [8]明平顺,杨万福.汽车质量与安全检测[M].人民交通出版社,1997.
    [9]董朝晖,李建华.在不同充放电条件下VRLA蓄电池内阻的行为变化规律[C].第七届全国铅酸蓄电池学术年会论文全集,2002,73-79.
    [10]任炼文,熊佳.电动公交车用超级电容器的研究[J].电池工业,2006,11(4):237-240.
    [11]胡庆波,郑继文,吕征宇.混合动力汽车中最小反向充电电压的研究[J].电力电子技术,2007,41(4),pp:4-6.
    [12]胡庆波,阳岳丰,周利强等.全数字双向DC/DC变流器中电流断续控制的研究[J].电力电子技术,2006,40(2):54-56.
    [13]Hua Chih-Chiang, Lin Meng-Yu. A Study of Charging Control of Lead-Acid Battery for Electric Vehicles[C]. IEEE Proceedings on Industrial Electronics, 2000, (1): 135-140.
    [14]胡明辉,秦大同,舒红.混合动力汽车蓄电池的快速充电方法[J].重庆大学学报(自然科学版),2004,27(11):1-3.
    [15]P H Cheng, C L Cheng. High efficiency and nondissipative fast charging strategy[J]. Electric Power Applications, 2003, 150(5):539-545.
    [16]J. Marcos, C.M.Penalver. An approach to real behaviour modeling for traction lead-acid batteries[C]. IEEE PESC'01,2001, (1):620-624.
    [17]李礼夫,符兴锋.混合动力电动汽车电能量监控方法的实验研究[J].现代制造工程,2005,(11):106-108.
    [18]张春润,张煜,资新运等.电动汽车电池能量管理技术研究[J].轻型汽车技术,2003,(12):24-26.
    [1]Schupbach R M, Balda J C. Comparing DC-DC Converters for Power Management in Hybrid Electric Vehicles[C]. 1EEE IEMDC'03, 2003, (3):1369-1374.
    [2]Caricchi F, Crescimbini F, Capponi F Giulii. Study of Bi-Directional Buck-Boost Converter Topologies for Application in Electrical Vehicle Motor Drives[C]. IEEE APEC'98, 1998, (1):287-293.
    [3]夏超英,刘奎,郭熠.电动汽车用全数字双向DC/DC变流器的实现[J].电力电子技术,2006,40(1):70-72.
    [4]胡庆波,瞿博,吕征宇.一种新颖的数控双向DC/DC变流器拓扑[J].电力电子技术,2006,40(1):60-62.
    [5]S Saggini, M Ghioni, A Geraci. An Innovative Digital Control Architecture for Low-Voltage, High-current DC-DC Converters with Tight Voltage Regulation[J]. IEEE Transactions on Power Electronics, 2004, 19(1):210-218.
    [6]Corradini L, Mattavelli P. Analysis of Multiple Sampling Technique for Digitally Controlled dc-dc Converters[C]. IEEE PESC'06, 2006, (1):1-6.
    [7]Gusseme Koen De, David M, Van de Sype, Alex P. Van den Bossche, et al. Sample Correction for Digitally Controlled Boost PFC Converters Operating in both CCM and DCM[C]. IEEE APEC'03, (1):389-395.
    [8]Chen Jessen, Tang Pei-Chong. A Sliding Mode Current Control Scheme for PWM Brushless DC Motor Drives[J]. IEEE Transactions on Power Electronics, 14(3):541-551.
    [9]Kelvin Ka-Sing Leung, Henry Shu-Hung Chung. Dynamic Hysteresis Band Control of the Buck Converter With Fast Transient Response[J]. IEEE Transactions on Circuits and Systems, 2005, 52(7):398-402.
    [10]胡庆波,瞿博,吕征宇.一种新颖的应用于PFC电路中电流控制的方法[J].中国电机工程学报,2006,26(3):65-69.
    [11]Monica E Della, Stefanutti W, Mattavelli E Predictive Digital Control for Voltage Regulation Module Applications[C]. IEEE PEDS'05, 2005, (1):32-37.
    [12]Ferdowsi Mehdi. An Estimative Current Mode Controller for DC-DC Converters Operating in Continuous Conduction Mode[C]. IEEE APEC'06, 2006, (1):19-23.
    [13]Chen Jingquan, Prodic Aleksandar, Erickson Robert W. Predictive Digital Current Programmed Control[J]. IEEE Transactions on Power Electronics, 2003, 18(1):41-419.
    [14]唐建军,梁冠安.移相全桥ZVS DC/DC变流器的极点配置自适应预测控制[J].电源技术应用,2003,6(7):24-27.
    [15]Ferdowsi M, Emadi A. Estimative Current Mode Control Technique for DC-DC Converters Operating in Discontinuous Conduction Mode[J]. IEEE Power Electronics Letters, 2004, 2(1):20-23.
    [16]Lu L, Pytel S G, Santi E. Modeling of IGBT Resistive and Inductive Turn-on Behavior[C]. IEEE IAS'05, 2005, (4):2643-2650.
    [17]Rahimo Munaf T, Shammas Noel Y A. Freewheeling Diode Reverse-Recovery Failure Modes in IGBT Applications[J]. IEEE Transactions on Industry Applications, 2001, 37(2):661-670.
    [18]Nagaune Fumio, Miyasaka Tadashi, Tagami Saburo. Short On-Pulse Reverse Recovery Behavior of Free Wheeling Diode(FWD)[C]. ISPSD'01, 2001, (1):203-206.
    [19]Neilson J M, Kub F J, Hobart K D. Double-Side IGBT Phase Leg Architecture for Reduced Recovery Current and Turn-On Loss[C]. Power Semiconductor Devices and Ics, 2002, (1):141-144.
    [20]Chas. Proteus Steinmetz. On the law of hysteresis[J]. Proc IEEE, 1984, 72(2): 197-221.
    [21]孔剑虹.功率变流器拓扑中磁性元件磁芯损耗的理论与实验研究[M].浙江大学博士论文,2002.
    [22]Jiang Jiuchun, Zhang Weige, Shen Bo. Analysis and Design of a Novel ZCT-PWM Converter[C]. IEEE PEDS'03, 2003, (1):126-130.
    [23]王聪.软开关功率变流器及其应用[M].科学出版社,2000.
    [24]吴国良,吴新科,钱照明等.大功率用改进型ZCT-Boost DC/DC变流器[J].电力电子技术,2006,40(1):29-32.
    [25]llic Milan, Maksimovic Dragan. Averaged Switch Modeling of the Interleaved Zero Current Transition Buck Converter[C]. IEEE PESC'05, 2005, (1):2158-2163.
    [26]Ehsani Mehrdad, Rahman Khwaja M, Bellar Maria D, et al. Evaluation of Soft Switching for EV and HEV Motor Drives[J]. IEEE Transactions on Industrial Electronics, 2001, 48(1):83-90.
    [1]季小尹,符向荣.混合电动汽车用无刷直流电机驱动系统的关键技术研究[J].机械与电子,2004,(2):33-36.
    [2]程伟,徐国卿,冯江华等.基于BP网络的电动汽车用无刷直流电机转矩角控制技术研究[J].电工技术学报,2006,21(3):62-66.
    [3]胡庆波,吕征宇.基于F2407aDSP的全数字混合动力电动汽车驱动系统的设计[J].变频器世界,2006,(5):76-79.
    [4]梁秀玲,李优新,王鸿贵等.新型可调磁永磁无刷直流电动机在电动汽车中的应用[J].广东工业大学学报,2004,21(4):1-5.
    [5]张琛.直流无刷电动机原理及应用[M].机械工业出版社,2001.
    [6]谭徽.应用于两轮车辆的永磁无刷直流电机的研究[M].上海大学博士学位论文,2000.
    [7]Wu Zhigan, Zhou Genfu, Ying Jianping. Line adaptive PAM&PWM drive for BLDCM[C]. IEEE IPEMC'04, 2004, (3):1263-1267.
    [8]Taniguchi Katsunori, Kimura Noriyuki, Takeda Yoji, et al. A Novel PAM Inverter System for Induction Motor Drive[C]. IEEE PEDS'95, 1995, (1):129-134.
    [9]Taniguchi Katsunori, Saegusa Satoru, Morizane Toshimitsu. PAM Inverter System with Soft-Switching PFC Converter suitable for PM Motor Drives[C]. IEEE PEDS'05, 2005, (1):793-798.
    [10]周凯.微机控制的PAM、PWM大功率晶体管交流调速系统[J].冶金自动化,1987,(3):16-20.
    [11]牛百齐.变频空调中的无传感器无刷直流电机控制系统[J].自动化与仪器仪表,2005,(5):58-60.
    [12]曾培.用于人工心脏的无位置传感器无刷直流电机控制[J].江苏理工大学学报,1999,20(1):41-44.
    [13]张晓峰,胡庆波,吕征宇.基于BUCK变流器的无刷直流电机转矩脉动抑制方法[J].电工技术学报,2005,20(9):72-76.
    [14]王萍,王正茂,姚刚等.无刷直流电机中霍尔元件的空间配置[J].微电机,2003,36(6):16-18.
    [15]Krishnan R, Lee Shiyoung. PM Brushless DC Motor Drive with a New Power-Converter Topology[J]. IEEE Transactions on Industry Applications, 1997, 33(4):973-982.
    [16]Lee Byeong-Seok, Krishnan R. A Variable Voltage Converter Topology for Permanent-Magnet Brushless DC Motor Drives using Buck-Boost Front-End Power Stage[C]. IEEE ISIE'99, 1999, (2):689-694.
    [17]Gopalarathnam Tilak, Toliyat Hamid A. A New Topology for Unipolar Brushless DC Motor Drive With High Power Factor[C]. IEEE Transactions on Power Electronics, 2003, 18(6):1397-1404.
    [18]张相军,陈伯时.无刷直流电机控制系统中PWM调制方式对换相转矩脉动的影响[J].电机与控制学报,2003,7(2):87-91.
    [19]Joong H S, Ick C. Commutation Torque Ripple Reduction in Brushless DC Motor Drives Using a Single DC Current Sensor[J]. IEEE Transactions on Power Electronics, 2004, 19(2):312-319.
    [20]齐蓉,周素莹,林辉等.无刷直流电机PWM调制方式与转矩脉动关系研究[J].微电机,2006,39(1):58-62.
    [21]韦鲲,任军军,张仲超.应用于无刷直流电机的新PWM调制方式[J].电气传动,2005,35(2):37-40.
    [22]赵修科.开关电源中磁性元器件[M].南京航空航天大学自动化学院,2004.
    [23]韦鲲,林平,熊宇等.无刷直流电机PWM调制方式的优化研究[J].浙江大学学报工学版,2005,39(7):1038-1042.
    [24]揭贵生,马伟明.考虑换相时无刷直流电机脉宽调制方法研究[J].电工技术学报,2005,20(9):66-71.
    [25]Park SungJun, Park HanWoong, Lee Man Hyung. A new approach for minimum-torque-ripple maximum-efficiency control of BLDC motor [J]. IEEE Transactions on Industry Electronics, 2000, 47(1):109-115.
    [26]Song Joongho, Choy lck. Commutation torque ripple reduction in brushless DC motor drives using a single DC current sensor[J]. IEEE Transactions on Power Electronics, 2004, 19(2):312-319.
    [27]胡庆波,吕征宇.新型无刷直流电机速度闭环控制技术的研究[J].浙江大学学报工学版,2007,41(2),pp:282-286.
    [1]Lai Yen-Shin, Shyu Fu-San, Lin Chia-Wen. Novel Torque Boost Technique for Brushless DC Motor Drives without Current Sensor[C]. IEEE IECON'04, 2004, (3):2870-2873.
    [2]李优新,王鸿贵,何鸿肃.永磁方波无刷直流机最佳逻辑解析结构的研究[J].微电机,1999,32(4):3-7.
    [3]李优新.永磁无刷电机电枢反应磁势对最佳换向位置的影响分析[J].微特电机,2000,(3):36-39.
    [4]Sail S K, Acarnley P P, Jack A G. Analysis and simulation of the high-speed torque performance of brushless DC motor drives[J]. IEEE Transactions on Power Applications, 1995, 142(3):191-199.
    [5]Park Sung-In, Kim Tae-Sung, Ahn Sung-Chan, et al. An Improved Current Control Method for Torque Improvement of High-Speed BLDC Motor[C]. IEEE APEC'03, 2003, (1):294-299.
    [6]Lelkes Andras, Bufe Michael. BLDC Motor for Fan Application with Automatically Optimized Commutation Angle[C]. IEEE PESC'04, 2004, (3):2277-2281.
    [7]Cros J, Figueroa J R, Viarouge P. BLDC Motors with surface mounted PM rotor for wide constant power operation[C]. IEEE IAS'03, 2003, (3):1933-1940.
    [8]Schneider T. C.omparative analysis of limited field weakening capability of surface mounted permanent magnet machines[J], lEE Proceedings on Electric Power Applications, 2004, 151(1):76-82.
    [9]Chalmers B J. Variable-Frequency synchronous motor drives for electric vehicles[J]. IEEE Transactions on Industry Applications, 1996, 32 (4):896-903.
    [10]严岚,贺益康,杨德荣.一种复合转子永磁无刷直流电机恒功率弱磁的研究[J].中国电机工程学报,2003,23(11):156-15.
    [11]Soong W L. Field-weakening performance of brushless synchronous AC motor drives[C]. IEE Proceedings on Electric Power Applications, 1994, 141(6):331-340.
    [12]Chan C C, Jiang J Z, Chau K T. Novel Wide Range Speed Control of Permanent Magnet Brushless Motor Drives[J]. IEEE Transactions on Power Electronics, 1995, 10(5):539-546.
    [13]Hao Lei, Toliyat Hamid A. BLDC Motor Full-Speed Operation Using Hybrid Sliding Mode Observer[C]. IEEE APEC'03, 2003, (1):286-293.
    [14]Lawler J S, Bailey J M, Mckeever John W, et al. Extending the Constant Power Speed Range of the Brushless DC Motor Through Dual-Mode Inverter Control[J]. IEEE Transactions on Power Electronics, 2004, 19(3):783-793.
    [15]龚世缨.瞬时无功功率理论在弱磁调速中的应用[J].电气传动,2006,36(6):31-32.
    [16]Miti G K, Renfrew A C, Chalmers B J. Field-weakening regime for brushless DC motors based on instantaneous power theory[C]. IEE Proceedings on Electric Power Applications, 2001, 148(3):266-271.
    [17]徐衍亮.电动汽车用永磁同步电动机功率特性及弱磁扩速能力研究(一)[J].山东大学学报(工学版),2002,32(5):401-405.
    [18]徐衍亮.电动汽车用永磁同步电动机功率特性及弱磁扩速能力研究(一)[J].山东大学学报(工学版),2002,32(5):413-418.
    [19]周庭阳,江维澄.电路原理[M].浙江大学出版社,2000.
    [20]Lawler J S, Bailey J M, Mckeever J W, et al. Limitations of the conventional phase advance method for constant power operation of the brushless dc motor[C]. IEEE SoutheastCon'02, 2002:174-180.
    [21] Pinto Joao Onofre P, Lawler J S, Filho Nicolau Pereira. Extended Constant Power Speed Range of the Permanent Magnet Synchronous Machine Driven by Dual Mode Inverter Control [C]. IEEE PESC, 2005(1): 1247-1252.
    [22] Lawler J S, Bailey J M, Mckeever John W, et al. Extending the Constant Power Speed Range of the Brushless DC Motor Through Dual-Mode Inverter Control[J]. IEEE Transactions on Power Electronics, 2004,19(3):783-793.
    [23] Lawler J S, Bailey J M, Mckeever John W. Theoretical Verification of the Infinite Constant Power Speed Range of the Brushless DC Motor Driven by Dual Mode Inverter Control[J]. Power Electronics in Transportation, 2002, (1):76-82.
    [24] Hamid A, Nadira Sultana, Deepak S. Shet, et al. Brushless Permanent Magnet (BPM) Motor Drive System Using Load-Commutated Inverter[J]. IEEE Transactions on Power Electronics, 1999, 14(5):831-836.
    [1]程伟,徐国卿,王晓东.电动汽车用永磁无刷电机回馈制动技术研究[J].电气传动,2005,35(11):15-18.
    [2]庞振岳,唐永哲.一种高速工业平缝机精确制动方法[J].微电机,2005,28(5):57-59.
    [3]Swamakar Siddhartha, Mukhopadhyay Siddhartha, Kastha Debaprasad. Fault Detection and Remedial Strategies for Inter-Turn Short Circuit Faults in a Permanent Magnet Brushless DC Motor[C]. INDICON, 2005:492-496.
    [4]Diallo Demba, Mohamed El Hachemi Benbouzid, Makouf Abdessalam. A Fault-Tolerant Control Architecture for Induction Motor Drives in Automotive Applications[J]. IEEE Transactions on Vehicular Technology, 2004, 53(6): 1847-1855.
    [5]Hu Qingbo, Qu Bo, Lu Zhengyu, et al. Realize a Self-recovering Function During Phase-sequence Fault of a Digital Servo SystemiC]. IEEE APEC'06, 2006:1627-1630.
    [6]胡庆波,吕征宇.直流无刷电机中相序故障自恢复功能的实现[J].伺服控制,2006,(9),pp:46-49.
    [7]张舟云,徐国卿,沈祥林.用于电动汽车的电机和驱动器一体化冷却系统[J].同济大学学报(自然科学版),2005,33(10):1367-1371.
    [8]程福秀.现代电机设计[M].机械工业出版社,1995.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700