高速铁路电力系统优化设计方案研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
作为蓬勃发展的高速铁路运输系统,其快捷、舒适的服务正得到广泛的关注与认可,其节能环保问题也逐渐成为关系到国家经济发展的一个重要方面。在提倡节能减排的大环境下,如何做到高速铁路节能降损以达到更快更好地为国民经济发展服务的目的是当今的重大课题。在高速铁路的建设中,必须坚持节能减排与产业发展深度结合,提高资源利用率,降低能源消耗,使企业效益和社会效益达到最优化的要求。从电力角度而言,高速铁路与电力系统密不可分,高速铁路配电系统电力设计的优劣已然成为影响高速铁路节能的一个重要因素。通过对高速铁路电力设计的优化,可以较为全面地为提高铁路系统的安全性、可靠性、经济性提供一系列可行的策略,这将对高速铁路运输系统的发展产生深远的影响,具有较高的研究价值和现实意义。
     本文选用高速铁路合肥—武汉段作为研究样例,针对目前高速铁路电力设计的现状进行了研究分析,总结出现今高速铁路电力设计中存在的一些不合理方面,主要包括:(1)高速铁路在变压器以及电缆截面的选择上缺乏一定的标准,很多路段还处于根据经验值来选择的阶段,并且为了防止过载现象,通常将变压器容量以及电缆截面选择得较大,影响了经济性。(2)无功补偿方面也经常存在不能满足电源连接点对功率因数的以及线路末端电压偏移的要求,危害了电网的电能质量,并为铁路系统自身带来了巨大的经济损失。
     从不足之处出发,本文针对发现的问题结合PSCAD/EMTDC仿真软件提出了相应的优化方案,其中仿真软件起到了良好的帮助作用。在研究变压器容量选择方面充分考虑结合变压器的过载能力以及储能装置的运用,通过比较变压器投资等年值求得最为经济的变压器选择方案。在关于电缆截面选择,以经济性为入手点,先采用经济比较的形式初步确定截面大小,再通过校验电压降以及热稳定性和机械强度最终确定选择方案。在无功补偿方面主要以集中分散补偿方式为切入点,全面考虑贯通线以及车站在各种情况下的补偿方案。并且通过仿建模,将动态无功补偿装置SVC以及STATCOM用于贯通线补偿中,观察其补偿效果。总结各类方案的优缺点,得到贯通线上最适宜采用集中分散补偿方式的结论。
     本文提出的相关优化方案已经得到了项目委托方的认可,为高速铁路的经济节能以及电能质量的控制提供了可行的改进依据,具有一定的实际意义。
In the big background of energy saving and emission reduction, how to save more energy and reduce the depletion and to make the national economy in sound and rapid development is a big research project. The high speed railway line system is now in a vigorous period, its convenience has caused worldwide concern, but the energy saving and environment protecting of it is an important aspect of the national economy. In high speed railroad's construction, low energy reduces and the industrial development must be united deeply and the traditional development way and the pattern be changed,raises the availability of resources, reduces the energy consumption, causes the performance of enterprises and the social efficiency achieves optimized request. Nowadays, high speed railway line system is connected closely to the power system and many facilities such as communication and lighting can not run without electric power. Obviously, good or bad in the electric design of the high speed electrified railway will affect the economic and social benefits of enterprise. Through the research in key technology of the energy efficiency electric design of the high speed railway would contribute practical and heuristic significance to improve the economy of railway line.
     In this paper, unreasonableness in the electric design in the railway line are analyzed. Firstly, in a long period of time, the way of selecting the distribute transformers for the continuous power transmission line is just estimate the peak load, and then multiply by a coefficient known from experience. So, it may lead to transformers' overload or oversize. Secondly, the selection of section for electric cable is also unreasonable. Thirdly, there are also irrationalities in the reactive power compensations. Now in railway line, fixed electric reactors are used as the compensation, so it is not flexible and can not meet the request of the loads when they fluctuate.
     Because of the unreasonableness analyzed above, some optimum schemes are given with the help of PSCAD/EMTDC. The overload ability of transformers and the initial project investment and cost of manufacture are both considered, then a choice for the selection methods is made. An idea of the application of super capacitor is considered which can provide new ideas for new energy resource development research direction. Then from the angle of economy and reliability, feasible method of the section selection is given with theory analysis and calculation. At the end, from the aspect of traditional compensation method, the overall analysis has been done. And the effect of SVC as well as STATCOM in the railway is considered and compared with the traditional method.
     Optimization scheme proposed in this paper related to the project has been recognized by the clients and will contribute practical and heuristic significance to improve the economy of railway line.
引文
[1]颜秋容.高速电气化铁路供电系统相关问题研究[D].武汉:华中科技大学,2006
    [2]谭秀炳,刘向阳.交流电气化铁道牵引供电系统[M] .成都:西南交通大学出版社,2007
    [3]冯仁杰.电气化铁路供电系统[M].北京:中国铁道出版社,1997
    [4]冯金柱.我国电气化铁路突破两万公里[J].铁道知识,2006,2:7-9
    [5]铁路第四勘察设计院.高速铁路电力供电方案研究.2006,4:4-28
    [6]熊以旺.SVG对电气化铁路电能补偿效果的研究[D].上海:上海交通大学,2009
    [7]廖宇.合宁铁路供配电系统设计探讨[J].建筑电气.2008,9(27),20-25
    [8]蔡玉涛.光伏风力互补发电与铁路贯通线的综合利用[J].科技创新导报.2008,(2),80
    [9]孙营芳.铁路10 kV箱式配电所设计方案探讨[J].电气化铁道.2004(3),4-6
    [10]田庆才.浅谈箱式变电站在高校供电系统中的应用[J].中国科技信息2009(16),22-23
    [11]刘敬.10kV电力贯通线的电容效应问题[J].福建电力与电工.1995,2(15),16-17
    [12]李群湛,贺建闽.牵引供电系统分析[M].成都:西南交通大学出版社,2007
    [13]曹志平,韩富春.配电变压器容量选取与经济运行问题研究[J].电力学报,2003(3).190~191,196
    [14]张峰,郭忍全,赵桂花等.配电变压器负载率与容量的优化选取[J].内蒙古电力技术,2002(20),31-33
    [15]并列运行变压器经济运行模式分析.徐建政,凌云。电力自动化设备,2009,2(9):46-48
    [16]常炳双,辛健,配电变压器经济运行模式的探讨.电网技术2007,23(增):247-248
    [17]张焰,严正,刘东等.电力系统规划[M].北京:中国电力出版社,2008
    [18]何仰赞,温增银.电力系统分析(下册)[M].武汉:华中科技大学出版社,2006
    [19]桂长清.新型贮能元件超级电容器[J] .船电技术,2003,23-26.
    [20]张娜,张宝宏.电化学超级电容器的研究进展[J] .应用科技,2003,30(9):54-60
    [21] J. Moreno, M.E. Ortuzar, J.W. Dixon. Energy-management system for a hybrid electric vehicle,using ultra-capacitors and neural networks[J]. IEEE Transactions on Industrial Electronics,Vol.53,IS 2,Apr.2006: 614-623
    [22] S.M. Halpin, R.L. Spyker, R.M. Nelms, R.F. Burch. Application of double Layer capacitor technology to static condensers for distribution system voltage control[J]. IEEE Transactions on Power Systems,Vol.11, IS 4, Nov.1996: 1899-1904
    [23]李荐,钟晖,钟海云等.超级电容器应用设计[J].电源技术,2004,28(6):388-391
    [24]余伟成.超级电容器直流春储能单元研究与应用设计[D].北京:华北电力大学,2007
    [25]汪娟华,超级电容器储能系统在分布式发电技术中的应用研究[D].河北:华北电力大学硕士论文,2007
    [26]张建成,陈志业,杨以涵.飞轮储能技术在电力系统中的应用[J].电力情报,1997(3):4-7
    [27] C. Zheng. High pulse power system through engineering battery-capacitor combination. Energy Conversion Engineering Conference and Exhibit,2000,7(2):752-755
    [28] R.M. Lamaison,J. Bordonau,A. Esquivel,J. Peracaula. Analysis and Design of a Resonant Battery Charger for Photovoltaic Systems[J]. ISIE'99, Vo1.2:463-468
    [29] R. Hebner .J. Beno , A. Walls. Flywheel batteries come around again[J]. Spectrum, IEEE Vol.39, IS 4, 2002(4):46-51
    [30] A. Zahedl. Development of an Electrical Model for A PV Battery System for Performance Prediction. Renewable Energy, 1998, 15(1):531-534
    [31] C.J Farahmandj. High Power 2300F Double Layer Capacitor Based on AC/DC Composite Electrode Technology. Extended Abstracts of 188th Fall Meeting. Electrochemical Society. Oct.1995, Chicago
    [32]马奎安.超级电容器储能系统中双向DC-DC变流器设计[D].杭州:浙江大学,2010
    [33]王云玲.基于超级电容器储能的电能质量调节器研究[D].武汉:华中科技大学,2007
    [34] J. Geza, R.E. Jose. Three-phase series var compensation based on a voltage-controlled current source inverter with supplemental modulation index control[J]. IEEE Trans on Power Electronics,1999,14(3):587-598
    [35]何伟.合理选择导线截面探讨[J].机械与电气,2008(5):100-101,105
    [36]马国栋.关于电线电缆载流量与节能技术诸问题的论述[J] .第七届全国电技术节能学术会议论文集,2003
    [37]王志强,刘淞伯,郑永新.按经济电流选择电缆截面的方法[J].电气工程应用,2004(1):27-34
    [38]刘卓辉.铁路贯通线容性参数及仿真的研究[J].电气化铁道,2009(2):5-7
    [39]刘建强.配电系统无功补偿技术方案比较[J].广东电力,2003,16(1):41-44
    [40]张宁.提高特高压电网输电能力研究[D].济南:山东大学,2008
    [41]邵华平,袁佳歆,陈柏超.电气化铁路瞬时无功信息检测及动态无功补偿系统[J].武汉大学学报,2003,36(6):109-112
    [42]余梦泽,陈柏超,田翠华等.采用磁控电抗器的静止型高压动态无功补偿装置[J].高电压技术,2009,35(7):1770-1775
    [43]张静刚.电力系统无功补偿控制器的设计[D].西安:西安理工大学,2008
    [44]王兆安,杨君.谐波抑制和无功功率补偿.机械工业出版社,1998
    [45]张刘春,韩如成.无功补偿装置的现状和发展趋势[J].太原重型机械学院学报,2004,25(1):30-33,39
    [46] N. Mithulananthan, C.A. Canizares, J. Reeve, G.J. Rogers, Comparison of PSS,SVC and STATCOM controllers for damping power system oscillations. IEEE Transactions Or Power Systems, Vo1.18, IS.2, May 2003: 786-792
    [47] Comparative Analysis between SVC and DSTATCOM Devices for Improvement of Induction Generator Stability. IEEE, 2004.
    [48]杨翠茹.直接电压型SVC静态性能分析和动态仿真研究[D].太原:太原理工大学,2006
    [49] G.R. Dehnavi, H.A. Shayanfar, J. Mahdavi, etc, Some New Aspect of Design and Implementation of TCR for Load Balancing and Power Factor Correction in Distribution Systems, In: IEEE, IEEE Porto Power Tech Conference, Portugal: IEEE, 2001: 109-114
    [50] V.J. Farias, J.C. De Oloveira, J.C. F.Silveira, Performance analysis of static TCR compensators for load balancing under asymmetrical voltages, In: IEEE, Proceedings of the 1991 IEEE Power Engineering Society, 1991:953-958
    [51]周建丰,顾亚琴,韦寿祺.SVC与STATCOM的综合比较分析[J].电力自动化设备,2007,27(12):57-59
    [52]王锡凡,方万良,杜正春.电力系统分析[M].北京:科学出版社
    [53]涂春鸣,李慧,唐杰,罗安.电网电压不对称对D-STATCOM的影响分析及抑制[J].电工技术学报,2009,24(8):114-121.
    [54] S.H. Lee, I.S. Bae, C.H. Jung. A Study on System Stability Improvement of Distribution System with High Speed Electric Railway Using STATCOM, IEEE, 2003: 61-67
    [55] H.F. Wang. Interaction analysis and coordination of SVC voltage and damping control[C]. The International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2000: 361-365
    [56] H.F. Wang,F. Li. Design of STATCOM Multivariable Sampled Regulator[C]. The International Conference on Electric Utility Deregulation and Restructuring and Power Technologies, 2000: 1-6
    [57]石伟对.FACTS元件-静止同步并联补偿器(STATCOM)控制算法的研究[D].河北工业大学硕士,2007
    [58]董云龙.静止同步补偿器(STATCOM)的仿真与实现[D].南京:东南大学电气工程学院,2004
    [59]罗安,欧剑波,唐杰等.补偿配电网电压不平衡的静止同步补偿器控制方法研究[J].中国电机工程学报,2009,29(6):55-60

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700