原发性肝癌细胞Coronin-1C基因后干扰Rac1基因激活及损伤肿瘤形成潜能的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究Coronin-1C在HCC中的作用及其可能机制进行了探讨,以期为临床CCRCC的有效治疗提供新的有效靶位点。
     方法:采用免疫组织化学染色和蛋白质免疫印迹的方法检测了Coronin1C在HCC中的表达情况;采用MTT分析,伤口愈合实验,小室侵袭实验检测了Coronin1C对HCC细胞增殖,迁移及侵袭能力的影响。裸鼠体外成瘤实验检测了Coronin1C对HCC成瘤能力的影响。采用免疫荧光染色和鬼笔环肽标记的方法检测了Coronin1C对HCC细胞的极性和肌动蛋白网络的影响。GST-pull down实验结合蛋白质免疫印迹检测了Coronin1C对Rac-1活化的影响。
     结果:Coronin1C mRNA和Coronin1C蛋白在HCC组织中的表达普遍上调;在细胞创伤愈合实验中,Coronin1C过表达使伤口愈合速度变快,而Coronin1C敲除抑引起伤口愈合速度减缓;MTT分析中,Coronin1C的敲除引起细胞增殖抑制;小室侵袭实验中,Coronin1C敲除后穿过基膜的细胞数量明显减少;裸小鼠成瘤实验中,Coronin1A敲除的细胞体内致瘤能力下降;免疫荧光染色和鬼笔环肽标记发现Coronin1A敲除的稳定转染细胞中,应力纤维的含量明显下降,高尔基器的重排减少,同时细胞片状伪足的数量也明显减少;GST-pull down实验发现Coronin1C敲除后细胞中与GST-PKA-CD结合的Rac1的量减少。
     结论:在HCC组织中Coronin1C的表达普遍增高,在HCC细胞中抑制Coronin1C的表达引起细胞的增殖,迁移以及侵袭能力下降,进一步的研究发现Coronin1C的表达是通过调节肌动蛋白骨架的装配,减少细胞的极性,激活Rac1促进肿瘤细胞的生长增殖。
Objective: To investigate roles of Coronin-1C in hepatocellular carcinoma cells, andto unclose the related mechanisms.
     Methods: q-PCR, Western blotting and immunochemistry were used to determine theexpression of Coronin1C mRNA and protein in HCC; HCC cell line BEL-7402cellwith stable knock-down of Coronin1C was generated. Wound healing assay and MTTassay and transwell migration assay were performed to investigate the effects ofCoronin1C on HCC cell migration, proliferation ability and invation ability respectly.Immunofluorescence and FITC-phalloidin staining metholds were used to detect thethe effect of Coronin1C on cell polarity and stress fiber network. Rac1GST-PAKpull-down assay was performed to to determine the effect of Coronin1C on Rac1activity. The effect of Coronin1C on cell tumorigenicity was evaluted by an in vivomouse model.
     Results: Coronin-1C was overexpressed in human HCC tissues compared with theadjacent non-tumor tissues. Overexpression of Coronin-1C enhanced the cellmigration in the human HCC cell line BEL-7402, whereas suppressed cell migrationand proliferation were observed in Coronin-1C-knockdown BEL-7402cells togetherwith impaired cell polarity, disrupted cytoskeleton and decreased Rac-1activation.Moreover, the Coronin-1C knockdown cells displayed a lower degree of malignancyby inducing smaller tumors in nude mice.
     Conclusion: From results mentioned above we demonstrated a relationship betweenCoronin-1C overexpression and human HCC growth through enhancement of tumorcell proliferation and migration, which are correlated with Rac-1activation.
引文
[1] El‐Serag, H.B., A.C. Mason, and C. Key, Trends in survival of patients with hepatocellularcarcinoma between1977and1996in the United States. Hepatology,2001.33(1): p.62‐5.
    [2] Altekruse, S.F., K.A. McGlynn, and M.E. Reichman, Hepatocellular carcinoma incidence, mortality,and survival trends in the United States from1975to2005. J Clin Oncol,2009.27(9): p.1485‐91.
    [3] Jemal, A., et al., Cancer statistics,2002. CA Cancer J Clin,2002.52(1): p.23‐47.
    [4] Fan, S.T., et al., Continuous improvement of survival outcomes of resection of hepatocellularcarcinoma: a20‐year experience. Ann Surg,2011.253(4): p.745‐58.
    [5] Tang, Z.Y., et al., A decade's studies on metastasis of hepatocellular carcinoma. J Cancer Res ClinOncol,2004.130(4): p.187‐96.
    [6] Tang, Z., et al., Surgical treatment of hepatocellular carcinoma and related basic research withspecial reference to recurrence and metastasis. Chin Med J (Engl),1999.112(10): p.887‐91.
    [7] Yilmaz, M. and G. Christofori, Mechanisms of motility in metastasizing cells. Mol Cancer Res,2010.8(5): p.629‐42.
    [8] Bugyi, B. and M.F. Carlier, Control of actin filament treadmilling in cell motility. Annu Rev Biophys,2010.39: p.449‐70.
    [9] Wu, L., et al., Coronin‐1C is a novel biomarker for hepatocellular carcinoma invasive progressionidentified by proteomics analysis and clinical validation. J Exp Clin Cancer Res,2010.29: p.17.
    [10] de Hostos, E.L., et al., Coronin, an actin binding protein of Dictyostelium discoideum localized tocell surface projections, has sequence similarities to G protein beta subunits. EMBO J,1991.10(13): p.4097‐104.
    [11] Wu, L., et al., MicroRNA‐142‐3p, a new regulator of RAC1, suppresses the migration and invasionof hepatocellular carcinoma cells. FEBS Lett,2011.585(9): p.1322‐30.
    [12] Parsons, J.T., A.R. Horwitz, and M.A. Schwartz, Cell adhesion: integrating cytoskeletal dynamicsand cellular tension. Nat Rev Mol Cell Biol,2010.11(9): p.633‐43.
    [13] Uetrecht, A.C. and J.E. Bear, Coronins: the return of the crown. Trends Cell Biol,2006.16(8): p.421‐6.
    [14] Chan, K.T., S.J. Creed, and J.E. Bear, Unraveling the enigma: progress towards understanding thecoronin family of actin regulators. Trends Cell Biol,2011.21(8): p.481‐8.
    [15] Rosentreter, A., et al., Coronin3involvement in F‐actin‐dependent processes at the cell cortex.Exp Cell Res,2007.313(5): p.878‐95.
    [16] Thal, D., et al., Expression of coronin‐3(coronin‐1C) in diffuse gliomas is related to malignancy. JPathol,2008.214(4): p.415‐24.
    [17] Spiering, D. and L. Hodgson, Dynamics of the Rho‐family small GTPases in actin regulation andmotility. Cell Adh Migr,2011.5(2): p.170‐80.
    [18] Xue, Y., et al., Role of Rac1and Cdc42in hypoxia induced p53and von Hippel‐Lindau suppressionand HIF1alpha activation. Int J Cancer,2006.118(12): p.2965‐72.
    [19] Gomaa, A.I., et al., Hepatocellular carcinoma: epidemiology, risk factors and pathogenesis. WorldJ Gastroenterol,2008.14(27): p.4300‐8.
    [20] El‐Serag, H.B. and K.L. Rudolph, Hepatocellular carcinoma: epidemiology and molecularcarcinogenesis. Gastroenterology,2007.132(7): p.2557‐76.
    [21] Bosch, F.X., et al., Primary liver cancer: worldwide incidence and trends. Gastroenterology,2004.127(5Suppl1): p. S5‐S16.
    [22] Abu El Makarem, M., An overview of biomarkers for the diagnosis of hepatocellular carcinoma.Hepat Mon,2012.12(10HCC): p. e6122.
    [23] Pawlik, T.M., et al., Tumor size predicts vascular invasion and histologic grade: Implications forselection of surgical treatment for hepatocellular carcinoma. Liver Transpl,2005.11(9): p.1086‐92.
    [24] Otto, G., et al., Survival and recurrence after liver transplantation versus liver resection forhepatocellular carcinoma: a retrospective analysis. Ann Surg,1998.227(3): p.424‐32.
    [25] Poon, R.T., et al., Long‐term survival and pattern of recurrence after resection of smallhepatocellular carcinoma in patients with preserved liver function: implications for a strategy ofsalvage transplantation. Ann Surg,2002.235(3): p.373‐82.
    [26] Shrimal, A., M. Prasanth, and A.V. Kulkarni, Interventional radiological treatment ofhepatocellular carcinoma: an update. Indian J Surg,2012.74(1): p.91‐9.
    [27] Lauffenburger, D.A. and A.F. Horwitz, Cell migration: a physically integrated molecular process.Cell,1996.84(3): p.359‐69.
    [28] Le Clainche, C. and M.F. Carlier, Regulation of actin assembly associated with protrusion andadhesion in cell migration. Physiol Rev,2008.88(2): p.489‐513.
    [29] Schwartz, M.A. and A.R. Horwitz, Integrating adhesion, protrusion, and contraction during cellmigration. Cell,2006.125(7): p.1223‐5.
    [30] Ananthakrishnan, R. and A. Ehrlicher, The forces behind cell movement. Int J Biol Sci,2007.3(5): p.303‐17.
    [31] Gerisch, G., et al., Chemoattractant‐controlled accumulation of coronin at the leading edge ofDictyostelium cells monitored using a green fluorescent protein‐coronin fusion protein. Curr Biol,1995.5(11): p.1280‐5.
    [32] de Hostos, E.L., et al., Dictyostelium mutants lacking the cytoskeletal protein coronin aredefective in cytokinesis and cell motility. J Cell Biol,1993.120(1): p.163‐73.
    [33] Rauchenberger, R., et al., Coronin and vacuolin identify consecutive stages of a late, actin‐coatedendocytic compartment in Dictyostelium. Curr Biol,1997.7(3): p.215‐8.
    [34] Maniak, M., et al., Coronin involved in phagocytosis: dynamics of particle‐induced relocalizationvisualized by a green fluorescent protein Tag. Cell,1995.83(6): p.915‐24.
    [35] Hacker, U., R. Albrecht, and M. Maniak, Fluid‐phase uptake by macropinocytosis in Dictyostelium.J Cell Sci,1997.110(Pt2): p.105‐12.
    [36] Suzuki, K., et al., Molecular cloning of a novel actin‐binding protein, p57, with a WD repeat and aleucine zipper motif. FEBS Lett,1995.364(3): p.283‐8.
    [37] Zaphiropoulos, P.G. and R. Toftgard, cDNA cloning of a novel WD repeat protein mapping to the9q22.3chromosomal region. DNA Cell Biol,1996.15(12): p.1049‐56.
    [38] Terasaki, A.G., M. Ohnuma, and I. Mabuchi, Identification of actin‐binding proteins from seaurchin eggs by F‐actin affinity column chromatography. J Biochem,1997.122(1): p.226‐36.
    [39] Okumura, M., et al., Definition of family of coronin‐related proteins conserved between humansand mice: close genetic linkage between coronin‐2and CD45‐associated protein. DNA Cell Biol,1998.17(9): p.779‐87.
    [40] Stirnimann, C.U., et al., WD40proteins propel cellular networks. Trends Biochem Sci,2010.35(10): p.565‐74.
    [41] de Hostos, E.L., The coronin family of actin‐associated proteins. Trends Cell Biol,1999.9(9): p.345‐50.
    [42] Appleton, B.A., P. Wu, and C. Wiesmann, The crystal structure of murine coronin‐1: a regulator ofactin cytoskeletal dynamics in lymphocytes. Structure,2006.14(1): p.87‐96.
    [43] Cai, L., et al., Phosphorylation of coronin1B by protein kinase C regulates interaction with Arp2/3and cell motility. J Biol Chem,2005.280(36): p.31913‐23.
    [44] Goode, B.L., et al., Coronin promotes the rapid assembly and cross‐linking of actin filaments andmay link the actin and microtubule cytoskeletons in yeast. J Cell Biol,1999.144(1): p.83‐98.
    [45] Oku, T., et al., Homotypic dimerization of the actin‐binding protein p57/coronin‐1mediated by aleucine zipper motif in the C‐terminal region. Biochem J,2005.387(Pt2): p.325‐31.
    [46] Gatfield, J., et al., Association of the leukocyte plasma membrane with the actin cytoskeletonthrough coiled coil‐mediated trimeric coronin1molecules. Mol Biol Cell,2005.16(6): p.2786‐98.
    [47] Xavier, C.P., et al., Evolutionary and functional diversity of coronin proteins. Subcell Biochem,2008.48: p.98‐109.
    [48] Cai, L., A.M. Makhov, and J.E. Bear, F‐actin binding is essential for coronin1B function in vivo. JCell Sci,2007.120(Pt10): p.1779‐90.
    [49] Tsujita, K., et al., Proteome of acidic phospholipid‐binding proteins: spatial and temporalregulation of Coronin1A by phosphoinositides. J Biol Chem,2010.285(9): p.6781‐9.
    [50] Kimura, T., S. Taniguchi, and I. Niki, Actin assembly controlled by GDP‐Rab27a is essential forendocytosis of the insulin secretory membrane. Arch Biochem Biophys,2010.496(1): p.33‐7.
    [51] Spoerl, Z., et al., Oligomerization, F‐actin interaction, and membrane association of theubiquitous mammalian coronin3are mediated by its carboxyl terminus. J Biol Chem,2002.277(50): p.48858‐67.
    [52] Chan, K.T., et al., Coronin1C harbours a second actin‐binding site that confers co‐operativebinding to F‐actin. Biochem J,2012.444(1): p.89‐96.
    [53] Oku, T., et al., Two regions responsible for the actin binding of p57, a mammalian coronin familyactin‐binding protein. Biol Pharm Bull,2003.26(4): p.409‐16.
    [54] Goley, E.D. and M.D. Welch, The ARP2/3complex: an actin nucleator comes of age. Nat Rev MolCell Biol,2006.7(10): p.713‐26.
    [55] Machesky, L.M., et al., Mammalian actin‐related protein2/3complex localizes to regions oflamellipodial protrusion and is composed of evolutionarily conserved proteins. Biochem J,1997.328(Pt1): p.105‐12.
    [56] Humphries, C.L., et al., Direct regulation of Arp2/3complex activity and function by the actinbinding protein coronin. J Cell Biol,2002.159(6): p.993‐1004.
    [57] Galletta, B.J., D.Y. Chuang, and J.A. Cooper, Distinct roles for Arp2/3regulators in actin assemblyand endocytosis. PLoS Biol,2008.6(1): p. e1.
    [58] Lin, M.C., et al., Overlapping and distinct functions for cofilin, coronin and Aip1in actin dynamicsin vivo. J Cell Sci,2010.123(Pt8): p.1329‐42.
    [59] Liu, S.L., et al., Mechanism of a concentration‐dependent switch between activation andinhibition of Arp2/3complex by coronin. J Biol Chem,2011.286(19): p.17039‐46.
    [60] Gandhi, M., et al., Coronin switches roles in actin disassembly depending on the nucleotide stateof actin. Mol Cell,2009.34(3): p.364‐74.
    [61] Brieher, W.M., et al., Rapid actin monomer‐insensitive depolymerization of Listeria actin comettails by cofilin, coronin, and Aip1. J Cell Biol,2006.175(2): p.315‐24.
    [62] Xavier, C.P., et al., Phosphorylation of CRN2by CK2regulates F‐actin and Arp2/3interaction andinhibits cell migration. Sci Rep,2012.2: p.241.
    [63] Oku, T., et al., Constitutive turnover of phosphorylation at Thr‐412of human p57/coronin‐1regulates the interaction with actin. J Biol Chem,2012.287(51): p.42910‐20.
    [64] Oku, T., et al., Phorbol ester‐dependent phosphorylation regulates the association ofp57/coronin‐1with the actin cytoskeleton. J Biol Chem,2008.283(43): p.28918‐25.
    [65] Yokoyama, K., et al., Rab27a negatively regulates phagocytosis by prolongation of theactin‐coating stage around phagosomes. J Biol Chem,2011.286(7): p.5375‐82.
    [66] Nal, B., et al., Coronin‐1expression in T lymphocytes: insights into protein function during T celldevelopment and activation. Int Immunol,2004.16(2): p.231‐40.
    [67] Grogan, A., et al., Cytosolic phox proteins interact with and regulate the assembly of coronin inneutrophils. J Cell Sci,1997.110(Pt24): p.3071‐81.
    [68] Jayachandran, R., et al., Survival of mycobacteria in macrophages is mediated by coronin1‐dependent activation of calcineurin. Cell,2007.130(1): p.37‐50.
    [69] Moriceau, S., et al., Coronin‐1is associated with neutrophil survival and is cleaved duringapoptosis: potential implication in neutrophils from cystic fibrosis patients. J Immunol,2009.182(11): p.7254‐63.
    [70] Foger, N., et al., Requirement for coronin1in T lymphocyte trafficking and cellular homeostasis.Science,2006.313(5788): p.839‐42.
    [71] Haraldsson, M.K., et al., The lupus‐related Lmb3locus contains a disease‐suppressing Coronin‐1Agene mutation. Immunity,2008.28(1): p.40‐51.
    [72] Mueller, P., et al., Regulation of T cell survival through coronin‐1‐mediated generation ofinositol‐1,4,5‐trisphosphate and calcium mobilization after T cell receptor triggering. NatImmunol,2008.9(4): p.424‐31.
    [73] Mugnier, B., et al., Coronin‐1A links cytoskeleton dynamics to TCR alpha beta‐induced cellsignaling. PLoS One,2008.3(10): p. e3467.
    [74] Di Giovanni, S., et al., In vivo and in vitro characterization of novel neuronal plasticity factorsidentified following spinal cord injury. J Biol Chem,2005.280(3): p.2084‐91.
    [75] Williams, H.C., et al., Role of coronin1B in PDGF‐induced migration of vascular smooth musclecells. Circ Res,2012.111(1): p.56‐65.
    [76] Rana, M.K. and R.A. Worthylake, Novel mechanism for negatively regulating Rho‐kinase (ROCK)signaling through Coronin1B protein in neuregulin1(NRG‐1)‐induced tumor cell motility. J BiolChem,2012.287(26): p.21836‐45.
    [77] Lee, C.W., et al., Regulation of acetylcholine receptor clustering by ADF/cofilin‐directed vesiculartrafficking. Nat Neurosci,2009.12(7): p.848‐56.
    [78] Nakamura, T., et al., A neurally enriched coronin‐like protein, ClipinC, is a novel candidate for anactin cytoskeleton‐cortical membrane‐linking protein. J Biol Chem,1999.274(19): p.13322‐7.
    [79] Marshall, T.W., H.L. Aloor, and J.E. Bear, Coronin2A regulates a subset of focal‐adhesion‐turnoverevents through the cofilin pathway. J Cell Sci,2009.122(Pt17): p.3061‐9.
    [80] Yoon, H.G., et al., Purification and functional characterization of the human N‐CoR complex: theroles of HDAC3, TBL1and TBLR1. EMBO J,2003.22(6): p.1336‐46.
    [81] Huang, W., et al., Coronin2A mediates actin‐dependent de‐repression of inflammatory responsegenes. Nature,2011.470(7334): p.414‐8.
    [82] Rybakin, V., et al., Molecular mechanism underlying the association of Coronin‐7with Golgimembranes. Cell Mol Life Sci,2008.65(15): p.2419‐30.
    [83] Rybakin, V. and C.S. Clemen, Coronin proteins as multifunctional regulators of the cytoskeletonand membrane trafficking. Bioessays,2005.27(6): p.625‐32.
    [84] Iizaka, M., et al., Isolation and chromosomal assignment of a novel human gene, CORO1C,homologous to coronin‐like actin‐binding proteins. Cytogenet Cell Genet,2000.88(3‐4): p.221‐4.
    [85] Samarin, S.N., et al., Coronin1C negatively regulates cell‐matrix adhesion and motility ofintestinal epithelial cells. Biochem Biophys Res Commun,2010.391(1): p.394‐400.
    [86] Kimura, T. and I. Niki, Rab27a, actin and beta‐cell endocytosis. Endocr J,2011.58(1): p.1‐6.
    [87] Kimura, T. and I. Niki, Rab27a in pancreatic beta‐cells, a busy protein in membrane trafficking.Prog Biophys Mol Biol,2011.107(2): p.219‐23.
    [88] Kimura, T., et al., The GDP‐dependent Rab27a effector coronin3controls endocytosis of secretorymembrane in insulin‐secreting cell lines. J Cell Sci,2008.121(Pt18): p.3092‐8.
    [89] Kimura, T., et al., Glucose‐induced translocation of coronin3regulates the retrograde transport ofthe secretory membrane in the pancreatic beta‐cells. Biochem Biophys Res Commun,2010.395(3): p.318‐23.
    [90] Ziemann, A., et al., CRN2enhances the invasiveness of glioblastoma cells. Neuro Oncol,2013.
    [91] Ren, G., et al., Coronin3promotes gastric cancer metastasis via the up‐regulation of MMP‐9andcathepsin K. Mol Cancer,2012.11: p.67.
    [92] Roadcap, D.W., C.S. Clemen, and J.E. Bear, The role of mammalian coronins in development anddisease. Subcell Biochem,2008.48: p.124‐35.
    [93] Winter, S.C., et al., Relation of a hypoxia metagene derived from head and neck cancer toprognosis of multiple cancers. Cancer Res,2007.67(7): p.3441‐9.
    [94] Luan, S.L., et al., Primary effusion lymphoma: genomic profiling revealed amplification of SELPLGand CORO1C encoding for proteins important for cell migration. J Pathol,2010.222(2): p.166‐79.
    [95] Arzumanyan, A., H.M. Reis, and M.A. Feitelson, Pathogenic mechanisms in HBV‐andHCV‐associated hepatocellular carcinoma. Nat Rev Cancer,2012.13(2): p.123‐35.
    [96] Zidan, A., et al., Epidemiological pattern of hepatitis B and hepatitis C as etiological agents forhepatocellular carcinoma in iran and worldwide. Hepat Mon,2012.12(10HCC): p. e6894.
    [97] Bharadwaj, M., et al., Tackling hepatitis B virus‐associated hepatocellular carcinoma‐the future isnow. Cancer Metastasis Rev,2012.
    [98] Cabibbo, G., et al., Causes of and prevention strategies for hepatocellular carcinoma. SeminOncol,2012.39(4): p.374‐83.
    [99] Cai, L., et al., Coronin1B antagonizes cortactin and remodels Arp2/3‐containing actin branches inlamellipodia. Cell,2008.134(5): p.828‐42.
    [100] Chen, R., et al., Establishment of three human liver carcinoma cell lines and some of theirbiological characteristics in vitro. Sci Sin,1980.23(2): p.236‐47.
    [101] Nabi, I.R., The polarization of the motile cell. J Cell Sci,1999.112(Pt12): p.1803‐11.
    [102] Lee, M. and V. Vasioukhin, Cell polarity and cancer‐‐cell and tissue polarity as a non‐canonicaltumor suppressor. J Cell Sci,2008.121(Pt8): p.1141‐50.
    [103] Jaffe, A.B. and A. Hall, Rho GTPases: biochemistry and biology. Annu Rev Cell Dev Biol,2005.21:p.247‐69.
    [104] Bustelo, X.R., V. Sauzeau, and I.M. Berenjeno, GTP‐binding proteins of the Rho/Rac family:regulation, effectors and functions in vivo. Bioessays,2007.29(4): p.356‐70.
    [105] Saci, A., L.C. Cantley, and C.L. Carpenter, Rac1regulates the activity of mTORC1and mTORC2andcontrols cellular size. Mol Cell,2011.42(1): p.50‐61.
    [106] Etienne‐Manneville, S. and A. Hall, Rho GTPases in cell biology. Nature,2002.420(6916): p.629‐35.
    [107] Charest, P.G. and R.A. Firtel, Big roles for small GTPases in the control of directed cell movement.Biochem J,2007.401(2): p.377‐90.
    [108] Shiow, L.R., et al., The actin regulator coronin1A is mutant in a thymic egress‐deficient mousestrain and in a patient with severe combined immunodeficiency. Nat Immunol,2008.9(11): p.1307‐15.
    [109] Castro‐Castro, A., et al., Coronin1A promotes a cytoskeletal‐based feedback loop that facilitatesRac1translocation and activation. EMBO J,2011.30(19): p.3913‐27.
    [110]Maack, C., et al., Oxygen free radical release in human failing myocardium is associated withincreased activity of rac1‐GTPase and represents a target for statin treatment. Circulation,2003.108(13): p.1567‐74.
    [111] Sawada, N., Y. Li, and J.K. Liao, Novel aspects of the roles of Rac1GTPase in the cardiovascularsystem. Curr Opin Pharmacol,2010.10(2): p.116‐21.
    [112]Moissoglu, K., et al., In vivo dynamics of Rac‐membrane interactions. Mol Biol Cell,2006.17(6): p.2770‐9.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700