新的吡唑衍生物对血管内皮细胞和A549肺癌细胞凋亡的影响及其作用机制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
血管内皮细胞功能的失调不仅引发血管疾病,还会导致人体的其它多种疾病。血管内皮细胞凋亡与动脉粥样硬化和多种血管退行性疾病有直接的关系。因此,抑制血管内皮细胞凋亡对防治这些重大血管疾病具有重要意义。我们的先前研究表明,去除血清和FGF-2可以诱导人脐静脉血管内皮细胞(HUVECs)凋亡,本论文利用该实验模型,从化学遗传学角度出发,以新的吡唑衍生物为工具,筛选血管内皮细胞凋亡抑制剂并研究其发挥作用的分子机制。
     研究方法:
     1.血管内皮细胞的提取和培养,参考Jaffe等的方法[Jaffe et al,1973]
     2.倒置相差显微镜观察细胞形态变化
     3.MTT检测细胞存活率
     4.吖啶橙染色结合激光扫描共聚焦显微镜观察,检测细胞核凝集
     5.TUNEL染色检测DNA片段化和细胞凋亡率
     6.免疫荧光化学检测血管内皮细胞膜整连蛋白β4,p53的水平
     7.荧光探针DCHF检测ROS表达水平
     研究结果:
     1乙烷基3-(o-氯苯基)-5-甲基-1H-g比唑-羧酸酯(4a)(100μM),乙烷基5-甲基-3-(o-硝基苯基)-1H-吡唑-4-羧酸酯(4b)(100μM),均能显著抑制HUVECs存活;1-苯基-3-p-甲苯基-1H-吡唑-5-ol(4f)(25μM)显著提高HUVECs存活率。
     2乙烷基3-(o-氯苯基)-5-甲基-1-苯基-1H-吡唑-羧酸酯(4d,MPD)(20,25μM)抑制去除血清和FGF-2诱导的血管内皮细胞凋亡,但是在50,100μM时促进凋亡。
     3 MPD(25μM)可显著抑制由于去除血清和FGF-2而导致的膜整连蛋白β4和p53蛋白水平的升高。
     4 MPD(25μM)可降低细胞内ROS水平。
     5在有血清和FGF-2存在时,MPD(25,50,100μM)对HUVECs形态和存活率没有影响。
     6当分别用100μM 4a和50,100μM 4d处理A549肺癌细胞时,其生长受到显著抑制(p<0.01),并诱导其凋亡。4b,3-(o-硝基苯基)-1-苯基-1H-5-ol(4e)以及4f对A549肺癌细胞生长没有明显影响。
     结论:
     1在无血清和FGF-2的条件下,4a(100μM),4b(100μM),4d(100μM)均能显著抑制HUVECs存活。4d(25μM),4f(25μM)显著提高HUVECs存活率。
     2低浓度的MPD(25μM)抑制去除血清和FGF-2诱导的HUVECs凋亡,而高浓度的MPD(100μM)促进其凋亡。
     3 MPD(25μM)可能通过下调膜整连蛋白β4和p53以及细胞内ROS水平抑制去除血清和FGF-2诱导的凋亡。
     4在有血清和FGF-2存在时,MPD对HUVECs形态和存活率没有影响。
     5 4a(100μM),MPD(50,100μM)均可诱导A549细胞凋亡。
Effects of new pyrazole derivatives on apoptosis of vascular endothelial cells and A549 lung cancer cells and the corresponding mechanisms
     Vascular endothelial cells(VEC)form the inner lining of all blood vessels and function to maintain vascular tone and anticoagulant properties of blood vessels.VEC apoptosis plays important roles in many diseases,including atherosclerosis and cancer. Previously,we found that deprivation of serum and FGF-2 could induce HUVEC apoptosis.In this study,in the light of chemical genetics,we used new pyrazole derivatives as tools to study the molecular mechanism of apoptosis in HUVECs and A549 lung cancer cells.
     METHODS:
     1.HUVECs were gained as described previously[Jaffe et al.,1973].
     2.The morphological changes were observed under a phase contrast microscope.
     3.The cell proliferation was measured by MTT assay.
     4.DNA nuclear fragmentation was analyzed by acridine orange staining.
     5.The TdT-mediated dUTP nick end labeling technique was used to detect in situ nuclear DNA fragmentation and count apoptosis ratio.
     6.The expressions and distributions of integrinβ4 and p53 were analysed by immunofluorescence assay.
     7.The fluorescence probe,DCHF was used to analyze ROS level.
     RESULTS:
     1 When we treated HUVECs with Ethyl 3-(o-chlorophenyl)-5-methyl-1H-pyrazole-4-carboxylate(4a),Ethyl
     5-methyl-3-(o-nitrophenyl)-1H-pyrazole-4-carboxylate(4b)at 100μM, respectively,the viability of HUVECs decreased obviously.But,when we treated HUVECs with 1-Phenyl-3-p-tolyl-1H-pyrazol-5-ol(4f)at 25μM,the viability of HUVECs increased obviously.
     2 Ethyl 3-(o-chlorophenyl)-5-methyl-1-phenyl-1H-pyrazole-4-carboxylate(4d, MPD)(25μM)inhibited the apoptosis induced by deprivation of serum and FGF-2,but promoted the apoptosis at 100μM.
     3 The high levels of integrinβ4 and p53 induced by the deprivation of serum and FGF-2 could be depressed by the treatment of MPD(25μM).
     4 MPD(25μM)could depress the accumulation of intracellular ROS.
     5 MPD(25,50,100μM)could not affect the morphology and viability of HUVECs in the present of serum and FGF-2.
     6 When treated with 4a(100μM)and 4d(MPD)(50,100μM),respectively,A549 cell growth was obviously suppressed(p<0.01)and the cells were induced to apoptosis.
     7 4b,3-(o-nitrophenyl)-1-phenyl-1H-pyrazol-5-ol(4e),4f,had no obvious effects on A549 cell growth.
     CONCLUSION:
     1 In the absence of serum and FGF-2,4f(25μM)could increase the viability of HUVECs obviously,but 4a and 4b could depress the viability of HUVECs obviously at 100μM,respectively..
     2 MPD inhibited the apoptosis of HUVECs induced by the deprivation of serum and FGF-2 at low concentration(25μM),but promoted apoptosis at high concentrations(50,100μM).
     3 MPD(25μM)inhibited the apoptosis through down-regulating the levels of integrinβ4,p53,and ROS.
     4 MPD(25,50,100μM)could not affect the viability of HUVECs in the present of serum and FGF-2.
     5 The growth of A549 cells decreased after treatment with 4a at 100μM for 24 h or 48 h,respectively.
     6 The growth of A549 cells decreased after treatment with MPD 50,100μM, respectively.
引文
Choy JC, Granville DJ, Hunt DW, et al. Endothelial cell apoptosis: Biochemical characteristics and potential implications for atherosclerosis. J Mol Cell Cardiol. 2001, 33: 1673-1690.
    
    Bombeli T, Karsan A, Tait JF, Harlan JM. Apoptotic vascular endothelial cells become procoagulant. Blood. 1997, 89:2429-42.
    
    E. Durand, A. Scoazec, A. Lafont, J. Boddaert, A. Al Hajzen, F. Addad, M. Mirshahi, M. Desnos, A. Tedgui, Z. Mallat. In Vivo Induction of Endothelial Apoptosis Leads to Vessel Thrombosis and Endothelial Denudation A Clue to the Understanding of the Mechanisms of Thrombotic Plaque Erosion. Circulation. 2004, 109:2503-2506
    
    Huber J, Vales A, Mitulovic G, Huber J, Vales A, MitulovicG, et al. Oxidized membrane vesicles and blebs from apoptotic cells contain biologically active oxidized phospholipids that induce monocyte-endothelial interactions. Arterioscler Thromb Vasc Biol. 2002,22:101-7.
    
    E. Lutgens, M.J. Daemen, M. Kockx, et al. Atherosclerosis in APOE*3-Leiden transgenic mice: from proliferative to atheromatous stage. Circulation. 1999,99:276-83..
    
    Banfi C, B rioschi M,Wait R, et al. Proteome of endothelial cell-derived pro-Coagulant microparticles. Proteomics. 2005,5:4443-4455.
    Ross JS, Stagliano NE, Donovan MJ, Breitbart RE, Ginsburg GS Atherosclerosis: a cancer of the blood vessels? J Physiol. 2006, 574:63-71.
    
    Loo G. Redox-sensitive mechanisms of phytochemical-mediated inhibition of cancer cell proliferation (review). J Nutr Biochem. 2003,14:64-73.
    Sun Y, Oberley LW. Redox regulation of transcriptional activators. Free Radic Biol Med. 1996,21:335-48.
    
    Lene Dreyer Eva PrescottFinn Gyntelberg Association between atherosclerosis and female lung cancer-a Danish cohort study. Lung Cancer 2003, 42:247-254.
    
    Burch PR. The tumorigenic theory of atherosclerosis. Arch Pathol Lab Med. 1979, 103:543-4.
    
    Constantinides P. Appraisal of the tumorigenic theory of atherosclerosis. Arch Pathol Lab Med. 1978,102:490.
    
    Trosko JE, Chang CC. An integrative hypothesis linking cancer, diabetes and atherosclerosis: the role of mutation and epigenetic changes. Med Hypotheses. 1980, 6:455-68.
    
    Jian-Jun Li, Run-Lin Gao. Should atherosclerosis be considered a cancer of the vascular wall? Medical Hypotheses. 2005,64:694-698.
    
    Loft S, Poulsen HE. Cancer risk and oxidative DNA damage in man. J Mol Med. 1996,74:297-312.
    
    Paul SA, Simons JW, Mabjeesh NJ. HIF at the crossroads between ischemia and carcinogenesis. J Cell Physiol. 2004,200:20-30.
    
    Nievers MG, Schaapveld RQ, Oomen LC, Fontao L, Geerts D. Sonnenberg A. Ligand-independent role of the beta 4 integrin subunit in the formation of hemidesmosomes. J. Cell Sci. 1998, 111: 1659-1672.
    
    Mercurio AM, Rabinovitz I, Shaw LM. The alpha 6 beta 4 integrin and epithelial cell migration. Curr Opin Cell Biol. 2001,13: 541-545.
    
    Bachelder RE., et al. Activation of p53 Function in Carcinoma Cells by the α6β4 integrin. J Biol. Chem.1999,274: 20733-20737.
    
    Weaver VM, et al. Beta4 integrin-dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium. Cancer Cell. 2002, 3: 205-216.
    
    Zhao J, Miao J, Zhao B, Zhang S, Upregulating of Fas, integrin beta4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide. FEBS Lett. 2005, 579: 5809-5813.
    
    Zhao Q, Araki S, Zhang S, Miao J. Rattlesnake venom induces apoptosis by stimulating PC-PLC and upregulating the expression of integrin beta4, P53 in vascular endothelial cells. Toxicon. 2004a, 44:161-168.
    Zhao Q,Wang N,Jia R,Zhang S,Miao J,Integfin beta 4 is a target of rattlesnake venom during inducing apoptosis of vascular endothelial cells.Vascul Pharmacol.2004b,41:1-6.
    Bennett M,Macdonald K,Chan SW,Luzio JP,Simari R,Weissberg P.Cell surface trafficking of Fas:a rapid mechanism of p53-mediated apoptosis.Science.1998,282:290-3.
    Schuler M,Bossy-Wetzel E,Goldstein JC,Fitzgerald P,Green DR.p53 induces apoptosis by caspase activation through mitochondrial cytochrome c release.J Biol Chem.2000,275:7337-42.
    C hipuk JE,Kuwana T,Bouchier-Hayes L,Droin NM,Newmeyer DD,Schuler M,Green DR.Direct activation of Bax by p53 mediates mitochondrial membrane permeabilization and apoptosis.Science.2004,303:1010-4.
    Iacopetta B,Wysocki S,Norman P,House A.The p53 tumor suppressor gene is overexpressed but not mutated in human atherosclerotic tissue.Int J Oncol.1995,7:399-402.
    Ihling C,Menzel G,Wellens E,Monting JS,Schaefer HE,Zeiher AM.Topographical association between the cyclin-dependent kinases inhibitor p21,p53accumulation,and cellular proliferation in human atherosclerotic tissue.Art Thromb Vasc Biol.1997,17:2218-24.
    Martinet W,Knaapen M,De Meyer G,Herman A,Kockx M.Elevated levels of oxidative DNA damage and DNA repair enzymes in human atherosclerotic plaques.Circ Res.2002,106:927-32.
    von der Thusen JH,van Vlijmen B J,Hoeben RC,Kockx MM,Havekes LM,van Berkel TJ,Biessen EA.Induction of atherosclerotic plaque rupture in apolipoprotein E-/- mice aider adenovirus-mediated transfer of p53.Circulation.2002,105:2064-70.
    Bennett MR,Littlewood TD,Schwartz SM,Weissberg PL.Increased sensitivity of human vascular smooth muscle cells from atherosclerotic plaque to p53-mediated apoptosis.Circ Res.1997,81:591-9.
    John Mercer,Melli Mahmoudi,Martin Bennett DNA damage,p53,apoptosis and vascular disease Mutation Research. 2007,621:75-86.
    
    Kockx MM, Herman AG. Apoptosis in atherosclerosis: beneficial or detrimental? Cardiovasc Research. 2000,45:736-46.
    
    Freeman BA, Crapo JD. Biology of disease: free radicals and tissue injury.Lab Invest. 1982,47:412-426.
    
    Chiarugi P, Cirri P. Redox regulation of protein tyrosine phosphatases during receptor tyrosine kinase signal transduction. Trends. Biochem. Sci. 2003, 28: 509-514.
    
    Chandel NS, Budinger GRS. The cellular basis for diverse responses to oxygen.Free Radical. Biology & Medicine. 2006,42: 165-174.
    
    He CH, Waxman AB, Lee CG, Link H, Rabach ME, Ma B, Chen Q, Zhu Z, Zhong M, Nakayama K, Nakayama KI, Homer R, Elias JA. Bcl-2-related protein A1 is an endogenous and cytokinestimulated mediator of cytoprotection in hyperoxic acute lung injury. J. Clin. Invest. 2005,115:1039-1048.
    
    Budinger GR, Tso M, McClintock DS, Dean DA, Sznajder JI, Chandel NS. Hyperoxia induced apoptosis does not require mitochondrial reactive oxygen species and is regulated by Bcl-2 proteins. J. Biol. Chem. 2002,277:15654-15660.
    
    Zhang X, Shan P, Sasidhar M, Chupp GL, Flavell RA, Choi AM, Lee PJ, Reactive oxygen species and extracellular signalregulated kinase 1/2 mitogen-activated protein kinase mediate hyperoxia-induced cell death in lung epithelium. Am. J. Respir. Cell Mol. Biol. 2003,28: 305-315.
    
    Bonomini F, Tengattini S, Fabiano A, Bianchi R, Rezzani R Atherosclerosis and oxidative stress. Histol Histopathol. 2008,23:381-90.
    
    U Rueckschloss, N Duerrschmidt, H Morawietz. NADPH oxidase in endothelial cells: impact on atherosclerosis, Antioxid. Redox Signal. 2003, 5:171-180.
    U Rueckschloss, MT Quinn, J Holtz, H Morawietz. Dosedependent regulation of NAD(P)H oxidase expression by angiotensin II in human endothelial cells: protective effect of angiotensin II type 1 receptor blockade in patients with coronary artery disease. Arterioscler. Thromb. Vasc. Biol. 2002,22:1845-1851.
    
    I Jialal. Evolving lipoprotein risk factors: lipoprotein(a) and oxidized low-density lipoprotein.Clin.Chem.1998,44:1827-1832.
    Rivera MP.Multimodality therapy in the treatment of lung cancer.Semin Respir Crit Care Med.2004,25 Suppl 1:3-10.
    Suryanto A,Herlambang K,Rachmatullah P.Comparison of Tumor Density by CT Scan Based on Histologic Type in Lung Cancer Patients.Acta Med Indones.2005,37:195-198.
    Jarvinen K,Pietarinen-Runtti P,Linnainmaa K,Raivio KO,Krejsa CM,Kavanagh T,Kinnula VL.Antioxidant defense mechanisms of human mesothelioma and lung adenocarcinoma cells.Am J Physiol Lung Cell Mol Physiol.2000,278:L696-L702.
    Belanger MM,Gaudreau M,Roussel E,Couet J.Role of Caveolin-1 in Etoposide Resistance Development in A549 Lung Cancer Cells.Cancer Biology Therapy.2004,3:954-959.
    Chang LW,Ronald F,Spanjersberg,Jacobien K.2,6-Disubstituted and 2,6,8-trisubstituted purines as adenosine receptor antagonists.J Med Chem.2006,49:2861-2867.
    HUANG Chang-jiang et al.Synthesis and pharmacological activity of pyrazole Chinese Journal of New Drugs.2007,Vol.16 No.24.
    Hashimoto H,Imamura K,Haruta J,Wakitani K.4-(4-cycloalkyl/aryl-oxazol-5-yl)benzenesulfonamides as selective cyclooxygenase-2 inhibitors:enhancement of the selectivity by introduction of a fluorine atom and identification of a potent,highly selective,and orally active COX-2 inhibitor JTE-522(1).Journal of medicinal chemistry.2002,45:1511-7.
    Habeeb AG,Praveen Rao PN,Knaus EE.Design and synthesis of celecoxib and rofecoxib analogues as selective cyclooxygenase-2(COX-2)inhibitors:replacement of sulfonamide and methylsulfonyl pharmacophores by an azido bioisostere.Journal of medicinal chemistry.2001,44:3039-42.
    Ranattmge RR,Earl RA,Garvey DS,Janero DR,Letts LG,Martino AM,Murty MG,Richardson SK,Schwalb D J,Young DV,Zemtseva IS..3-(2-Methoxytetrahydrofuran-2-yl)pyrazoles:a novel class of potent,selective cyclooxygenase-2(COX-2)inhibitors.Bioorg Med Chem Lett.2004,14:6049-52.
    Singh SK,Saibaba V,Rao KS,Reddy PG,Daga PR,Rajjak SA,Misra P,Rao YK.Synthesis and SAR/3D-QSAR studies on the COX-2 inhibitory activity of 1,5-diarylpyrazoles to validate the modified phannacophore.European journal of medicinal chemistry.2005,40:977-90.
    Elzein E,Kalla R,Li X,Perry T,Parkhill E,Palle V,Varkhedkar V,Gimbel A,Zeng D,Lustig D,Leung K,Zablocki J.Novel 1,3-dipropyl-8-(1-heteroarylmethyl-lH-pyrazol-4-yl)-xanthine derivatives as high affinity and selective A2B adenosine receptor antagonists.Bioorg Med Chem Lett.2006,16:302-6.
    Gohring U-J,Schondorf T,Kiecker VR,Becker M,Kurbacher CM and Scharl A:Immunohistochemical detection of H-ras proto-oncoprotein p21 indicates favourable prognosis in node-negative breast cancer patients.Tumour Biol.1999,20:173-183.
    Stockwell BR.Chemical Genetics:Ligand-Based Discovery of Gene Function.Nature Reviews Genetics.2000,1:116-125.
    Spring DR.,Chemical genetics to chemical genomics:small molecules offer big insights.Chem Soc Rev.2005,34:472-82.
    Collins FS,Green ED,Guttmacher AE,et al.A vision for the future of genomics research.Nature.2003,422:835-847.
    Jaffe EA,Nachrnan RL,Becker CG.and Minick RC.Culture of human endothelial cells derived from umbilical veins.J.Clin.Invest.1973,52:2745-2756.
    Du A,Zhang S,Miao J,Zhao B.Safrole oxide induces apoptosis in A549human lung cancer cells.Exp Lung Res.2004,30:419-429.
    Zhao J,Miao J,Zhao B,Zhang S.Upregulating of Fas,integrin beta4 and P53and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide.FEBS Lett.2005,579:5809-5813.
    Liu X,Yin D,Zhang Y,Zhao J,Zhang S,Miao J.Vascular endothelial cell senescence mediated by integrin beta4 in vitro.FEBS Lett.2007,581:5337-5342.
    Nabata A,Kuroki M,Ueba H,Hashimoto S,Umemoto T,Wada H,Yasu T, Saito M,Momomura SI,Kawakami M.C-reactive protein induces endothelial cell apoptosis and matrix metalloproteinase-9 production in human mononuclear cells:Implications for the destabilization of atherosclerotic plaque.Atherosclerosis.2008,196:129-35.
    Winn RK,Harlan JM.The role of endothelial cell apoptosis in inflammatory and immune diseases.J Thromb Haemost.2005,3:1815-1824.
    Zhao BX,Du AY,Miao JY,Zhao KW,Du CQ.Effects of novel safrole oxide derivatives,1-methoxy-3-(3,4-methylenedioxyphenyl)-2-propanol and 1-ethoxy-3-(3,4-methylenedioxyphenyl)-2-propanol,on apoptosis induced by deprivation of survival factors in vascular endothelial cells.Vascul Pharmacol.2003,40:183-187.
    Oldak M,Smola-Hess S,Maksym R.Integrin beta4,keratinocytes and papillomavirus infection.Int J Mol Med.2006,17:195-202.
    Bertotti A,Comoglio PM,Trusolino L.Beta4 integrin is a transforming molecule that unleashes Met tyrosine kinase tumorigenesis.Cancer Res.2005,65:10674-10679.
    Sakakura C,Hagiwara A,Nakanishi M,Shimomura K,Takagi T,Yasuoka R,FujitaY,Abe T,Ichikawa Y,Takahashi S,Ishikawa T,Nishizuka I,Morita T,ShimadaH,Okazaki Y,Hayashizaki Y,Yamagishi H.Differential gene expression profiles of gastric cancer cells established from primary tumor and malignant ascites.Br.J.Cancer.2002,87:1153-1161.
    Weaver VM,Lelievre S,Lakins JN,Chrenek MA,Jones JC,Giancotti F,Werb Z,Bissell MJ.Beta4 integrin dependent formation of polarized three-dimensional architecture confers resistance to apoptosis in normal and malignant mammary epithelium.Cancer Cell.2002,2:205-216.
    Diaz LK,Cristofanilli M,Zhou X,Welch KL,Smith TL,Yang Y,Sneige N,Sahin AA,Gilcrease MZ.Beta4 integrin subunit gene expression correlates with tumor size and nuclear grade in early breast cancer.Modern Pathology.2005,18:1165-1175.
    Guo W,Pylayeva Y,Pepe A,Yoshioka T,Muller WJ,Inghirami G,Giancotti FG. Beta 4 integrin amplifies ErbB2 signaling to promote mammary tumorigenesis.Cell.2006,126:489-502.
    Laptenko O,Prives C.Transcriptional regulation by p53:one protein,many possibilities.Cell Death Differ.2006,13:951-961.
    Cheng Y,Zhao Q,Liu X,Araki S,Zhang S,Miao J.Phosphatidylcholine-specific phospholipase C,P53 and ROS in the association of apoptosis and senescence in vascular endothelial cells.FEBS Lett.2006,580:4911-4915.
    Zhao J,Miao J,Zhao B,Zhang S.Upregulating of Fas,integrin β4 and P53 and depressing of PC-PLC activity and ROS level in VEC apoptosis by safrole oxide.FEBS Lett.2005,579:5809-5813.
    Fu YC,Yin SC,Chi CS,Hwang B,Hsu SL.Norepinephrine induces apoptosis in neonatal rat endothelial cells via a ROS-dependent JNK activation pathway.Apoptosis.2006,11:2053-2063.
    Irani K.Oxidant signaling in vascular cell growth,death,and survival:a review of the roles of reactive oxygen species in smooth muscle and endothelial cell mitogenic and apoptotic signaling.Circ Res.2000,87:179-183.
    Bikfalvi A.Tumor angiogenesis.Bull Cancer.2007,94:F193-8.
    Hordijk PL.Regulation of NADPH oxidases:the role of Rac proteins.Circ.Res.2006,98:453-462。
    Patrizia Dentelli et al.Oxidative Stress-mediated Mesangial Cell ProliferationRequires RAC-1/Reactive Oxygen Species Production and β4 Integrin Expression.THE JOURNAL OF BIOLOGICAL CHEMISTRY.2007,36:26101-26110.
    赵卫红.细胞凋亡.第一版.(1997)河南医科大学出版社24.
    成令忠.组织学与胚胎学.第四版.(1998)北京:人民卫生出版社196-197
    林桂椿,刘莉,张亮仁等.氯腺苷衍生物的合成及生物活性研究.合成化学.2002.10:405-408.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700