溶聚丁苯橡胶基本性能与结构研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文通过傅里叶红外光谱仪(FTIR)、差示扫描量热仪(DSC)、热重分析仪(TG)等分析测试方法对具有不同1,2结构含量的充油溶聚丁苯橡胶和具有不同端基偶联方式的非充油溶聚丁苯橡胶的微观结构进行了表征,并与两种乳聚丁苯橡胶进行对比,考察了十五种炭黑填充溶聚丁苯橡胶的结构对其物理机械性能及动态粘弹性的影响,还对SSBRT2003的异构化现象进行了研究,并与BR进行了比较。结果表明:
     端基偶联溶聚丁苯橡胶中SL563的1,2结构含量最高,T5800的反-1,4结构含量最高,2305的顺-1,4结构含量最高;炭黑填充胶中,2305的拉伸强度最高,T5800的撕裂强度最高,2606的定伸应力最高;2305的损耗因子峰最高,且其峰温最高,2606的Payne效应最高。
     端基非偶联溶聚丁苯橡胶T2003的顺-1,4结构含量最高,5025-0的反-1,4结构含量最高,1,2结构含量也最高;炭黑填充胶中,T2000R的回弹性最好,T2003的硬度和Payne效应最高,5025-0的300%定伸、损耗因子峰高和峰温均最高。
     高乙烯基溶聚丁苯橡胶中,2557A的Tg最低,72606的分子量最高,且其分子量分布最窄;炭黑填充胶中,5025-1在高弹态的储能模量最大,2564T的储能模量最小且损耗因子峰最高,5025-1的损耗因子峰最低,2564A和5025-1的Payne效应较大。
     低乙烯基溶聚丁苯橡胶中,T1534的Tg最低;炭黑填充胶中,2535L的拉伸强度最高,储能模量最低,而T1534的耐磨性最低,Payne效应最小,2530的Payne效应最大。
     BR/S/NS体系的非等温硫化过程和等温硫化过程中均存在顺反异构化反应,且非等温硫化过程中的顺反异构化程度比等温硫化过程高。BR/S/NS体系的非等温硫化过程和等温硫化过程中的顺反异构化均在硫化后期比较明显。
     SSBR/S/NS体系的非等温硫化过程和等温硫化过程中均存在顺反异构化反应,且非等温硫化过程中的顺反异构化程度比等温硫化过程高。SSBR/S/NS体系非等温硫化过程中的顺反异构化在硫化后期比较明显,而等温硫化过程中的顺反异构化在整个反应过程中稳步上升。对于SSBR/S/NS体系的非等温硫化过程,促进剂对顺反异构化的作用小于硫黄。
In this paper, Fourier transform infrared spectroscopy (FTIR), differential scanning calorimetry (DSC), thermogravimetric analysis (TG) were used to test the microstructure of oil filled-SSBR with different content of 1,2-polymerized styrene butadiene rubber and non-oil filled-SSBR coupled with different terminal groups.And then 15 types of carbon black filled SSBR’s physical and mechanical properties,dynamic viscoelastic properties were researched to investigate the effect according to the structure compared with two kinds of ESBR. And the impact of the isomerization about SSBRT2003R had been studied and compared with the BR. The results showed that:
     Among the SSBR with coupling terminal group, SL563 had the highest content of vinyl. T5800 contained the most content of trans-1,4. 2305 had the largest amount of cis-1,4. As for the SBR filled with carbon black N330, the tensile strength of 2305 was the highest. The tearing strength of T5800 was the highest. The modulus at 100%&300% of 2606 was the highest and its Payne effect was also higher than any other one. The peak of loss factor of 2305 was the largest and so as to the temperature of the peak.
     As to the SSBR with uncoupling terminal group, the cis-1,4 content of T2003 was the highest. The trans-1,4 content of 5025-0 was the highest and the content of vinyl was also the highest. For the SBR filled with carbon black, the rebound resilience of T2000R was best, The hardness and Payne effect of 2003 were the highest and 5025-0 had the highest 300% modulus,peak of loss factor, and temperature of the peak.
     Among the SSBR with highvinyl, The Tg of 2557A was the lowest, and 72606 had the highest molecular weight and its molecular weight distribution was the narrowest. About the SSBR filled with carbon black, 5025-1 had the largest storage modulus and the lowest peak of loss factor, however, 2564T had the lowest storage modulus and the highest peak of loss factor. Both 2564A and 5025-1 had the highest Payne effect.
     As to the SSBR with lowvinyl, the Tg of 1534 was the lowest. Among carbon black filled SSBR, The 2535L had the highest tensile strength and the lowest storage modulus, however, 1534 had the lowest abrasive resistance and Payne effect. 2530 had the highest Payne effect.
     The cis-trans isomerism on the system of BR/S/NS appeared regardless of the isothermal or non-isothermal vulcanizated process. And the degree of cis-trans isomerism of non-isothermal vulcanizated process was much deeper than isothermal vulcanizated process. The cis-trans isomerism of BR/S/NS was evident during the last stage of vulcanization.
     There was cis-trans isomerism on the system of SSBR/S/NS and the degree of cis-trans isomerism in the process of non-isothermal vulcanization was deeper than the isothermal vulcanization. The cis-trans isomerism of non-isothermal vulcanizated process on the system of SBR/S/NS was obvious during the later stage of vulcanization, however, the cis-trans isomerism of isothermal vulcanizated process was steady during the process of vulcanization. As to the process of non-isothermal vulcanization about SSBR/S/NS, The effect of accelerator to cis-trans isomerism was smaller than the effect of sulphur.
引文
[1] Moore D G,Day G L.Elastomerics[J].1985,3:22
    [2] Day G L,Futamura S.Kautsch Gummi Kunstst[J].1987,40(1) :39
    [3] Schuring D J.Rubber Chem [J].1995,68:600
    [4] Takino K,Nakayama R,Yamada Y,et a1.Rubber Chem Tech[J].1997,70:584
    [5] Manley K,Barry M.re Technology International[M].Dorking:UK&International Press,1998:72
    [6] CHEN Shi.Zhao(陈士朝).JSyrnh RubberInd(合成橡胶工业)[J].1997,20
    [7] Mathew N M, Bhow mick A K, De S K .Chemical and scanning electron microscopy studies on fatigue failure of natural rubber vulcanizates[J]. Rubber Chemistry and Technology, 1982, 55(1):51~61
    [8]刘卫东,顾建明,金政吉等.天然橡胶/顺丁橡胶并用硫化胶的力学破坏机理[J].橡胶工业,1994,41(5):260
    [9] Uraneck CA [J].Ind Eng Chem,1955,47:1716
    [10]杨清芝主编.现代橡胶工艺学[M].北京:中国石化出版社,1997.19张士齐,周翠薇,邓知庆等.研究炭黑补强硫化橡胶疲劳的分子历程[J].橡胶工业,1988,35(10):616
    [11]吕百龄,刘登辉.实用橡胶手册[M].北京:化学工业出版社,1986.324 [13] Blow C M. Ed, Rubber technology and manufacuture, Clevel and, Ohio:CRC Press, 1971, 227~261
    [12]王新龙,贾红兵,吉庆敏等.溶聚丁苯的微观结构对其硫化胶性能的影响[J].南京理工大学学报, 2000, 24(3):36
    [13]周彦豪,赵素合.两种转化率的丁苯橡胶流变性能的研究[J].合成橡胶工业,1986,9(5):384-353
    [14]赵素合,周彦豪,白国春.废胶粉/SBR共混胶料的流变形态力学性能研究[J].合成橡胶工业,199316(13):152~156
    [15]赵素合,张兴英,严荣华等.胎面材料锡偶联型溶聚丁苯橡胶的研究[J].合成橡胶工业, 1995,18(4):212~215
    [16]颜文礼,李英杰,诗云芳,等.热氧增塑对丁苯橡胶粘性流动的影响[J].合成橡胶工业, 1981,4(4):279~283
    [17]陈士朝.溶聚丁苯橡胶的技术进展[J].合成橡胶工业, 1997,20(1):6~9
    [18]王珍,赵素合.锡偶联型溶聚丁苯橡胶的流变性能[J].合成橡胶工业,2001,24(6):341-343
    [19]赵素合,王真.锡偶联型SSBR的动态行为[J].合成橡胶工业,2000, 23(1): 20~23
    [20] Fsumi F,Sakakiba M,Ohishima N.Structure and dynamic properties of solution SBR coupled with Tin compounds.Rubber Chemistry and Technology[J].1990,63(1):8~12
    [21] Bond R.A tailor made polymer for tire application.Polymer[J],1984,25(1):133~135
    [22]服部岩和·溶液重合スチレン一ブタジエンゴム·日本ゴム协会讠志[J],1993,66(9):605~611
    [23]堤文雄·スズカツブリンゲ溶液重合スチレンブタシエンゴムの开发·日本ゴム协会讠志[J],1990,65(2):243~245
    [24]赵素合,张兴英·胎面材料锡偶联型溶液丁苯橡胶的研究·合成橡胶工业[J],1995,18(4): 212~215
    [25] Coran, A. Y. Vulcanization: Conventional and Dynamic.Rubber Chem. Technol[J]. 1995, 68: 351-375.
    [26] Kresja, M. R., Koenig, J. L. A Review of Sulfur Crosslinking Fundamentals for Accelerated and Unaccelerated Vulcanization. Rubber Chem. Techno[J]l.1993: 376-410.
    [27] Donnet, J.-B., Bansal, R. C., Wang, M.-J., Eds. Carbon Black: Science and Technology[J]. Marcel Dekker:New York, Basel, Hong Kong, 1993.
    [28] Kluppel, M., Schuster, R. H., Heinrich, G. Structure and Properties of Reinforcing. Rubber Chem. Techno[J]l.1997, 70: 243-255.
    [29] Heinrich, G., Vilgis, T. A. Contributions of Entanglements to the Mechanical-Properties of Carbon-Black Filled Polymer Networks. Macromolecules[J].1993, 26 (5):1109-1119.
    [30] Waddell, W. H., Evans, L. R. Use of Nonblack Fillersin Tire Compounds. Rubber Chem. Technol[J]. 1996:377-423.
    [31] Andreis, M., Koenig, J. L. Application of NMR toCross-linked Polymer Systems. Adv. Polym. Sci[J].1989, 89:71-160.
    [32] Stejskal, E. O., Memory, J. O. High-Resolution NMRin the Solid State: Fundamentals of CP/MAS, OxfordUniversity Press: New York[M], 1994:66-79.
    [33] Koenig, J. L. Spectroscopy of Polymers: ACS: Washington,DC[M], 1992:Chapter 9.
    [34] Mori, M., Koenig, J. L. A Review of High-ResolutionNMR Studies of Vulcanized Elastomers. Annu. Rep.NMR Spectrosc[J]. 1997, 34:231-299.
    [35] Komoroski, R. A., Schocker, J. P., Gregg, E. C.Savoca, J. L. Characterization of Elastomers andRubber Chemicals by Modern NMR Techniques.Rubber Chem. Technol[J]. 1986, 59:328-346.
    [36] Wehrli, F. W., Wirthlin, T. Interpretation of Carbon-13 NMR Spectra, Heyden: London[M], 1978.
    [37] Koenig, J. L., Patterson, D. J. Application of Solid State 13C NMR Spectroscopy to Sulfur Vulcanized Natural Rubber: I. The Method. Elastomers RubberTechnol[J]. 1987, 32:31-53.
    [38] Zaper, A. M., Koenig, J. L. Solid State Carbon-13NMR Studies of Vulcanized Elastomers. II, Sulfur Vulcanization of Natural Rubber. Rubber Chem.Technol[J]. 1987, 60 (2):252-277.
    [39] Andreis, M., Liu, J., Koenig, J. L. Solid-State Carbon-13 NMR Studies of Vulcanized Elastomers. V. Observationof New Structures in Sulfur-vulcanized Natural Rubber. J. Polym. Sci., Polym. Phys[J]. 1989,27:1389-1404.
    [40] Zaper, A. M, Koenig, J. L. Solid State 13C NMRStudies of Vulcanized Elastomers. 4, a Sulfurvulcanized Polybutadiene. Makromol. Chem[J]. 1988,189:1239-1251.
    [41] Clough, R. S., Koenig, J. L. Solid State Carbon-13NMR Studies of Vulcanized Elastomers. VI, Sulfur-Vulcanized Cis-1,4-Polybutadiene at 75.5 MHz. Rubber Chem. Technol[J]. 1989, 62 (5):908-927.
    [42] Zaper, A. M., Koenig, J. L. Solid State Carbon-13NMR Studies of Vulcanized Elastomers. III, Accelerated Sulfur Vulcanization of Natural Rubber. RubberChem. Technol[J]. 1987, 60 (2): 278-297.
    [44] Krejsa, M. R., Koenig, J. L. Carbon-13 NMR Studies of Vulcanized Elastomers. X.N-tert-Butyl-2-Benzothiazole Sulfenamide Accelerated Sulfur Vulcanizationof Cis-Polyisoprene at 75.5 MHz. Rubber Chem.Technol[J]. 1992, 65 (2):427-443.
    [43] Gronski, W., Hoffman, U., Simon, G., Wutzler, A.,Straube, E. Structure and Density of Cross-Links in Natural-Rubber Vulcanizates - A Combined Analysis by NMR-Spectroscopy, Mechanical Measurements, and Rubber-Elastic Theory. Rubber Chem.Technol[J]. 1992, 65:63-77.
    [45] Mori, M., Koenig, J. L. Solid-State C-13 NMR Studies of Vulcanized Elastomers XVII. Effect of Carbon-Black Grade on the Network Structure in Natural Rubber Vulcanizates. Rubber Chem. Technol[J]. 1997,70:671-680.
    [46] Hill, C., Koenig, J. L. Solid State Carbon-13 NMR Studies of Silica-Filled, TBBS-Accelerated, Sulfur Vulcanized, CIS-1,4 Polyisoprene. Polym. Bull[J]. 1998,40:275-282.
    [47]焦剑,雷渭媛.高聚物结构性能与测试[M].北京:化学工业出版社,2003:426~427
    [48]邓友娥,章文贡.动态机械热分析技术在高聚物性能研究中的应用[J].实验技术,实验室研究与探索,2002,(1)
    [49]王雁冰,黄志雄,张联盟. DMA在高分子材料研究中的应用[J].国外建材科技,2004,25(2)
    [50]何曼君,陈维孝,董西侠.高分子物理[M].上海:复旦大学出版社,1990
    [51]孙玉,郑帼. DMC法对阳离子染料可染共聚酯热性能的研究[J].合成纤维工业,2008,31(3):27~30
    [52]周大鹏. DSC法研究不同邻对位比值酚醛树脂的固化行为[J].高分子材料科学与工程,2008,24(10):132~135
    [53]郭凯,罗运军.PBAMO的非等温结晶行为研究[J].2009,17(1):92~95
    [54] Wang M J, Wolff S, Donnt J B. Filler-elastomer interactions. PartⅠ: Silica surface energies and interactions with model compounds. Rubber Chem.Technol,1990,64(3):559~564
    [55] Wolff S., Gorl U., Wang M. J., Wolff W. How does silica differ from carbon black. Eur Rubber [J]. 1994, 176(1):17
    [56] Li Y. B., Wang M. J., Zhang T., et al. Study on dispersion morphology of silica in rubber [J]. Rubber Chemistry and Technology, 1994,67(4):693~699
    [57] Wolff S., Wang M. J., Tan E H. Dynamic properties of carbon-blach filled wulcanizates and shift factors[J]. Kauts.Gummi Kunstst., 1995,48(2):82~87
    [58]宁凯军,王小萍,贾德民.白炭黑的特性及其在胎面胶中的应用[J].合成橡胶工业, 2001:56
    [59] Crombie K.Cis-trans isomerism was formerly called gemetricar isomerism[J]. Q. Rev. Chem. Soc.1952 ,(6):101-140
    [60] Pad~A,Albrecht F.Concentration effects in the photochem-ical syn-anti isomeriation of an oxime ether [J].Org.Chem,1974,39(16):236l-2366
    [61]李锋,王敏.顺反异构化过程及其机理[J].化学试剂,2005,27(1):2l-23
    [62] M.A.Golub.Cis-trans Isomerisation in Polybutadiene[J].Journal Of Polymer Science .1957, XXV (110):373-377
    [63] William A. Bishop, Sulfur-Induced cis-trans Isomerization of Polybutadiene[J].Journal of Polymer Science, 1961, 55: 827-839
    [64] Liimel,H.B.Rubber. Chem. Technol[J].1964,37(2):408
    [65] E. W. Madge, Chem. Ind. (London) [M].1962,42:1806.
    [66] H. Blumel, Kautsch. Gummi Kunstst. Rubber Chem. Technol[J].1964,37:408
    [67] P. J. Corish, Plast. Rubber Muter. 1980.
    [68] John Wiley .Cis/Trans Isomerization in Cured,Black-Reinforced,High Cis-l,4-Polybutadiene [J].Journal of Polymer Science. 1984,22:843-846
    [69] Edward F.Devlin. The effect of cure variables on cis/trans isomerization in carbon black- reinforced cis-1,4-polybutadiene[J]. Rubber. Chem. Technol .1986.59(657):666-670
    [70]于诚,张涛.硫化条件对顺丁橡胶顺反异构化作用的影响.橡胶工业[J].1991,38(9):520-524
    [71] Luis Gondlez Hernandez, Luis lbarra Rueda, Addition of Chlorine and Nitrogen Dioxide to Linear Polybutadiene. Degree of Isomerization, Die Makromolekulare Chemie 1974(175):231 7-2328
    [72] S.TSAIKOVA,S.STOEVA,P.TSAIKOV,T.GEORGIEV,Interaction of sulphur-vulcanised elastomer based on cis-1,4-polybutadiene with nitric acid.Oxidation Communications[J]. 2006, 1:163-171
    [73] K. H. Meyer, C. Ferri, Helv. Chim. Acta, Rubber Chem. and Technol., 1936, 9:570
    [74] C. Ferri, Helv. Chim. Acta, Rubber Chem. and Technol., 1938, 11:350
    [75] C.H.Chen,J.L.Koenig,J.R.S.helton,E.A.Collins.Charaterization of the reversion process inaccelerated sulfur curing of natural rubber[J]. Rubber Chem. and Technol., 1981, 54:734-750
    [76] G.A.Blokh,Organic accelerators in the vulcanization of rubber,Israel Program for Scientic Translations Ltd. 1968

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700