组织工程支架材料用聚乳酸/纳米磷酸钙复合纤维的制备研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本文首先研究了聚乳酸(PLA)的电纺,系统研究了PLA电纺过程中的影响因素。结果表明,当溶剂为二氯甲烷(DCM)和N,N-二甲基甲酰胺(DMF)的混合溶剂时,可以形成良好的聚乳酸电纺溶液体系;DCM与DMF以体积比8:2或者7:3混合都是PLA电纺比较理想的溶剂配比;接收距离对电纺纤维直径的影响与浓度有关,对于PLA溶液,随着接收距离的增大电纺纤维直径变小,而接收距离小于10cm时,电压的增大有利于超细纤维的形成;电压变化在9kV~22kV时都可纺丝,随着电压的增加,纤维的直径变小,电压过高纺丝过程不稳定;纤维直径对PLA电纺纤维膜的力学拉伸性能影响很大,随着纺丝液浓度的增大,PLA电纺纤维膜的拉伸强度先增大然后又减小,电压的增大使得PLA电纺纤维膜拉伸强度下降,而分子量的提高则拉伸强度增加。
     根据对聚乳酸电纺的研究,我们将纳米磷酸钙(NCP)掺加到聚乳酸(PLA)中通过静电纺丝法制备了生物医用复合纳米纤维以及利用新型电纺法制备具有排列取向的复合纤维。配制一系列质量浓度为7%的聚乳酸溶液,然后依次掺加0,1%,3%,5%,7%,9%,11%和13%的磷酸钙进行静电纺丝。其中掺加磷酸钙的量为聚乳酸质量的百分比。透射电镜(TEM)表明,磷酸钙成功地掺加到了聚乳酸纤维当中;扫描电镜(SEM)结果表明,磷酸钙掺加浓度在7%之前,纤维形貌没有很明显的变化,但是随着浓度的增大,纺丝状态开始变得不稳定,纤维形貌开始变的不规则,随着浓度的进一步增大,纤维形貌更不好以致很难成功纺丝;拉伸测试表明,NCP对PLA电纺纤维的强度有很大影响,随着磷酸钙浓度的增大,拉伸强度是不断增加的,但是,当浓度超过7%后,强度又逐渐变小。利用新型电纺法制备了排列取向复合纤维并且利用扫描电镜对其进行了表征。扫描电镜结果表明,所得的纤维具有较好的排列取向,而且纤维的直径较常规纺丝法得到纤维要大2~3倍。掺加的NCP浓度为0~7%时,纺丝状态较稳定;但是随着NCP浓度继续增加到9%~15%时,纺丝状态开始不稳定,出丝变得不连续;当NCP浓度达到15%时,几乎很难成纤。
In this paper, electrospinning of PLA was studied systematically and the effective factors in the electrospinning were also demonstrated. The results indicated that when solvent is the mixture of DCM and DMF, a good solution system can be gained for electrospinning. DCM and DMF mixed with a volume ratio of 8:2 or 7:3 were all suitable solvent system. When the concentration of the PLA is fixed, the distance between spinneret and the receiver has an effect on diameter of the fibers. While the distance is less than 10cm, it is easy to form superfine fibers with the increasing of the voltage. Electrospinning for PLA can be carried out under the voltage between 9kV and 22kV. As the increasing of the voltage, the diameter of fibers decreased and electrospinning process became unsteady. The diameter of fibers was a key factor for the tensile properties of PLA electrospun fibers. With the increasing of concentration of PLA solution, the tensile strength of PLA fibers mats increased in the beginning and decreased gradually. The higher voltage in the electrospinning made the tensile strength of PLA fiber mats decreased. Tensile strength increased with the increasing of molecular weight of PLA.
     Based on the research of PLA, biomedical composite nanofibers were prepared with Nano-Calcium Phosphate (NCP) mixed into Poly lactic acid (PLA) by electrospinning and arranged oriented composite fibers were made by new electrospinning. A series of PLA solutions with weight concentration of 7% were produced and NCP with weight concentration 0, 1%, 3%, 5%, 7%, 9%, 11% and 13% were mixed into solutions and then electrospinning was carried out. The amount of NCP was the percentage of the weight of PLA. Transmission Electronic Microscope (TEM) indicated that NCP was mixed into PLA successfully. Scanning Electronic Microscope (SEM) showed that when the NCP concentration was less than 7%, the surface morphology of the fibers had no obvious changes. However, with increase of the NCP concentration, the electrospinning process became unsteady and the morphology of the fibers turned bad. As the NCP concentration had a deep increase, the morphology of the fibers became worse so that it was difficult to electro spin successfully. Tension tests indicated that NCP made a great effect on tensile strength of electrospun nanofibers. With the increase of NCP concentration, tensile strength increased ceaselessly and when the concentration exceeded 7% the strength decreased. The arranged oriented composite fibers were prepared by new electrospinning and characterized by SEM. The SEM images revealed that the fibers owed perfect orientation and their diameters were 2 or 3 times larger than those made by traditional electrospinning. When the NCP concentration was 0-7%, the electrospinning process was relatively steady. Nevertheless, when the NCP concentration increased to 9%-15%, the electrospinning became unsteady and fibers became discontinuous. It was very difficult to get fibers when the NCP concentration reached 15%.
引文
[1]倪永红等.纳米材料制备研究的若干新进展[J].无机材料学报,2000,15(1):9-15.
    [2]王世敏,许祖勋,傅晶.纳米材料制备技术[M].北京:化学工业出版社,2002:161-183.
    [3]朱丹丹,李从举,李小宁等.聚醚砜电纺纳米纤维结构与形态的研究[J].云南大学学报,2005,27(3):231-233.
    [4]刘芸,戴礼兴.静电纺丝形态及其主要影响因素[J].合成技术及应用,2005,20(1): 25-29.
    [5]吴大诚,杜仲良,高绪珊.纳米纤维[M].北京:化学工业出版社,2003:10-11.
    [6]王新威,胡祖明等.纳米纤维的制备技术[J].材料导报,2003,17(9):21-26.
    [7]赵婷婷,张玉梅等.纳米纤维的技术进展[J].产业用纺织品,2003,21(157):38-42.
    [8]覃小红,王善元.静电纺丝纳米纤维的工艺原理、现状及应用前景[J].高科技纤维与应用,2004,29(2):28-31.
    [9]王新威.电纺丝制备高聚物纳米纤维[D].上海:东华大学,2004.
    [10]袁晓燕等.静电纺丝制备生物降解性聚合物超细纤维[J].天津大学学报,2003,36(6):707-709.
    [11]刘芸,戴礼兴.静电纺丝形态及其主要影响因素[J].合成技术及应用,2005,20(1):25-29.
    [12] Formhals A..Process and Apparatus for Preparing Artificial Threads [P].US Patent:1975504,1934-10-02.
    [13] Reneker D. H.,Yarin A. L.,et al.Bending Instability of Electrically Charged Liquid Jets of Polymer Solutions in Electrospinning[J].Journal of Applied Physics,2000,87(9):4531-4546.
    [14] Fong H.,Reneker D. H..Beaded nanofibers formed during electrospinning[J].Structure Formation in Polymeric Fibers,2000,5:225-246.
    [15] Bunyan N.,Chen I.,Chen J..Examination of the flow field in an electrically driven jet [J].Fiber Society Symposium (Abstracts),2002,8:36-37.
    [16] Jun Z.,Bognttzki M.,Hou H..Electrostatic fiber spinning from polymer melts[J].Fiber Society Symposium (Abstracts),2002,12:84-87.
    [17] Greiner A..Experimental characterization of electrospinning:the electrically forced jet andinstabilities[J].Fiber Society Symposium (Abstracts),2002,1:5-6.
    [18] Dersch R.,Liu T. Q.,Greiner A.,Wendorff J. H..Electrospun nanofibers Internal structure and intrinsic orientation[J].J. Poly. Sci. Part A:Polym. Chem,2003,41(4):545-553.
    [19] Boland E. D.,Bowlin G. L.,Simpson D. G..Electrospinning of Tissue Engineering Scaffolds[J].J. Macromol. Sci .Pur. Appl. Chem,2001,A38(12):1231-1232.
    [20] Theron A.,Zussman E.,Yarin A. L..Electrostatic field-assisted alignment of electrospun nanofibres[J].Nanotechnology,2001,12(3):384-390.
    [21] Deitzel J. M.,Hirvonen J. K.,Beck Tan N. C.,et al.Controlled Deposition and Collection of Electro-spun Poly(ethylene oxide) Fibers[J].Polymer,2001,2: 8163-8187.
    [22] Sundaray B.,Subramanian V.,Natarajan T. S..Preparation and characterization of polystyrene-multiwalled carbon nanotube composite fibers by electrospinning[J].Appl. Phys. Lett.,2004,84(7):4874-4880.
    [23]张锡伟,夏禾,徐纪纲.塑料[J].2000,29(2):16-19.
    [24]廖镜华.聚乳酸纤维[J].化纤与纺织技术,2003,3(4):23-27.
    [25]姚军燕等.高性能聚乳酸纤维的研究进展[J].化工进展,2006,25(3):286-291.
    [26]迟蕾等.静电纺丝方法制备纳米纤维的最新进展[J].纺织科技进展,2004,5:1-6.
    [27] Boland E. D.,Bowlin G. L.,Simpson D.G.,et al.Electrospinning of Tissue Engineering Scaffolds [J].J. Macromol. Sci .Pur. Appl. Chem,2001,A38(12):1231-1232.
    [28] Theron A.,Zussman E.,Yarin A. L..Electrostatic field-assisted alignment of electrospun nanofibres[J].Nanotechnology,2001,12(3):384-390.
    [29] Lee K. H.,Kimb H.Y.,Bang H. J.,et al.The change of bead morphology formed on electrospun polystyrene fibers[J].Polymer,2003,44:4029–4034.
    [30]尹桂波,张幼珠.电子纺丝及其制备的纳米纤维的应用[J].合成纤维,2004,6(1):13-16.
    [31] Huang C. B.,Reneker D. H.,Hou H. Q.,et al.High-Strength Mats from Electrospun Poly(p-Phenylene Biphenyltetracarboximide) Nanofibers[J]Advanced Materials,2006,18:668-671.
    [32] Koombhongse S.,Liu W.,Reneker D.H..Electrospinning Process and Application of Electrospun Fibers[J].Journal of Polymer Science,Part B:Polymer Physics,2001,39:2598-2606.
    [33] Deitzel J. M.,Hirvonen J. K.,Kleinmeyer J. D.,et al.Controlled Deposition and Collection of Electrospun Poly (ethylene oxide) Fibers[J].Polymer,2001,42:8163-8187.
    [34] Lin T.,et al.Self-crimping Bicomponent Nanofibres Electrospun from Polyacrylonitrile and Elastomeric Polyurethane[J].Advanced Materials,2005,17:2699-2703.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700