不同能量重离子碰撞流体力学演化源的干涉学分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
对HIRFL-CSR能量下的(2+1)维流体力学演化源进行了2π干涉学分析。考虑了粒子的化学冻出(CFO)、部分化学平衡(PCE)和热冻出(TFO)发射模型。结果发现,热冻出情况下的横向和纵向速度差别很大。利用包含Rol交叉项的Bertsch-Pratt参数公式对2π关联函数进行拟合,发现交叉项对纵向HBT半径R1的影响很大。利用Yano-Koonin-Podgoretskii参数公式拟合关联函数,在LCMS参考系中,初始半径越大,源的寿命也越大。在PCMS参考系中,在较大的π对快度区域,PCE粒子发射的动力学关联大于CFO的情况。对三种粒子发射模型,源的视像半径和HBT半径都随着π对横动量的增加而减小。CFO的视像半径最小,TFO的最大。在纵向,视像半径和HBT半径都与源的初始纵向半径z。有关
     对GSI-FAIR能量下柱形流体力学演化源进行HBT干涉学分析。考虑了nb/s=0.06和nb/s=0.08的两种系统。对于nb/s=0.06的系统,考虑了系统初始处在QGP相和混合相软点的两种情况。对于nb/s=0.08的系统,考虑的是初始系统处在软点和强子化点的两种情况。在LCMS参考系中,利用包含Rol交叉项的Bertsch-Pratt参数公式对HBT关联函数进行拟合。对于K介子,交叉项对nb/s=0.06系统的HBT半径影响较大。对于π介子,交叉项对初始在软点系统的HBT半径影响更加明显。利用Yano-Koonin-Podgoretskii参数化公式进行关联函数拟合,在LCMS参考系中,横向半径R⊥和纵向半径R‖随着粒子对横动量K⊥的增加而减小。粒子对快度Yππ(YKK)增加,横向半径R⊥保持不变,而纵向半径R‖和寿命R0都减小。当系统初始在软点时,源的寿命最大。在PCMS参考系中,干涉学半径与粒子对快度无关。K介子的HBT半径均小于相应的π介子的HBT半径。视像源函数分布特征半径同HBT半径随粒子对横动量的变化基本一致。在out和long方向视像源函数与高斯分布偏离较大。
     基于QGP颗粒源模型,研究了极端相对论能量下重离子碰撞的π介子横动量谱和HBT干涉学。QGP颗粒按球对称流体力学演化。研究表明,QGP颗粒源模型能够得到与RHIC(?)=200GeV Au-Au和LHC(?)=2.76TeV Pb-Pb中心碰撞实验的π介子横动量谱和HBT半径数据符合的结果。相对于RHIC的碰撞,由于LHC碰撞产生系统的碎裂时间晚,颗粒源在空间横向和纵向分布的范围都更大,其HBT半径也更大。对LHC能量下的颗粒源进行视像分析,发现视像源函数分布的特征半径和2π关联函数拟合得到的HBT半径符合得很好。视像源函数在side方向和高斯分布很接近,而在out和long方向有长的尾巴。
Two-pion interferometry analysis for the hydrodynamic evolving sources in (2+1) dimen-sion at HIRFL-CSR energy are performed. The particle emission models of chemical freeze-out (CFO), partial chemical equilibrium (PCE), and thermal freeze-out (TFO) are considered. We find that there is a much difference between the transverse and longitudinal velocities in TFO case. The two-pion correlation functions are fitted with the Bertsh-Pratt parameterized formu-la with a cross-term of Rol. The fitted results indicate that the cross-term has a great impact on the longitudinal HBT radius, R1. We also fit the correlation functions with Yano-Koonin-Podgoretskii parameterized formula in LCMS and PCMS frames. In LCMS, the lifetime of source is large if the initial source radius is large. In PCMS, the dynamic correlation for PCE particle emission is stronger than that for CFO at large pair rapidity. For the three particle e-mission models, both the source imaging radii and HBT radii decrease with the increase of transverse momentum of pion pair. The imaging radius for CFO is smallest, and the radius for TFO is largest. In longitudinal direction, both the imaging radius and HBT radius are related to the longitudinal initial source radius z0.
     We examine the HBT interferometry for the hydrodynamic evolution sources in cylinder geometry at GSI-FAIR energy. Two systems for nB/s=0.6and0.8are considered. For nb/s=0.06, the systems are initially located in QGP phase and at the soft point of mixed phase. For nb,/s=0.08, the systems are initially located at the soft point and hadronization point. In LCMS, the HBT correlation functions are fitted with the Bertsh-Pratt parameterized formula with the cross-term of Rol. For kaon, the effect of the cross-term on the HBT radii is great for the system with nb/s=0.06. For pion, the effect of the cross-term is more significant for the system initially at the soft point. We also fit the HBT correlation functions with Yano-Koonin-Podgoretskii parameterized formula. In LCMS, both the transverse and longitudinal radii R⊥and R‖decrease with the transverse momentum of the particle pair. The transverse radius R⊥is not sensitive to the rapidity of the particle pair, Yππ (or YKk).However, the longitudinal radius R‖and lifetime R0of source decrease with the rapidity. The systems reach their maximal lifetimes when they are initially located at soft points.In PCMS, the HBT radii are independent of the pair rapidity Yππ (or YKK). The lifetime and HBT radii for kaon sources are smaller than those for pion sources. The characteristic radii of the distributions of imaging source functions are almost as the same functions of pair transverse momentum as those for the HBT radii. The imaging source functions are much different from Gaussian distribution in out and long directions.
     We investigate the transverse momentum spectra and HBT interferometry of pion in ul-trarelativistic heavy ion collisions in the granular source model of quark-gluon plasma droplets. The QGP droplets evolve hydrodynamically. We find that the results of the QGP granular source model agree well with the data of pion transverse momentum spectra and HBT radii in the cen-tral collisions of (?)=200GeV at RHIC and (?)=2.76TeV at LHC. Because the systems produced in the collisions at LHC energy have a longer breakup time than that for RHIC colli-sions, the granular sources for LHC have wider transverse and longitudinal droplet distributions in space. It leads to larger HBT radii for the collisions at LHC energy. By the imaging analysis for the granular sources at LHC energy, we find that the characteristic radii of the distributions of imaging source functions are consistent with the HBT radii obtained by correlation function fit. The imaging source function in side direction is closed to a Gaussian distribution. However, there are long tails in the imaging source functions in out and long directions.
引文
[1]Shuryak E V. Quantum Chromodynamics and the Theory of Superdense Matter[J]. Phys. Rep.,1980, 61:71-158.
    [2]Shuryak E V. Theory and Phenomenology of the QCD Vacuum[J]. Phys. Rep.,1984,115:151-314.
    [3]Stocker H, Greiner W. High Energy Heavy Ion Collisions-probing the Equation of State of Highly Excited Hardronic Matter[J]. Phys. Rep.,1986,137:277-392.
    [4]Bass A, Gyulassy M, Stoecker H. Signatures of Quark-gluon-plasma Formation in High Energy Heavy-ion Collisions:A Critical Review[J]. J. Phys. G.,1999,25:R1-R57.
    [5]Gyulassy M. The Next Yukawa Phase of QCD at Rhic[J]. Nucl. Phys. A.,2001,685:432-448.
    [6]Djordjevic M, Gyulassy M. Ter-mikayelian Effect on QCD Radiative Energy Loss[J]. Phys. Rev. C., 2003,68:034914.
    [7]Arsene I, Bearden I J, Deavis D, et al (BRAHMS Collaboration). Quark-Gluon Plasma and Color Glass Condensate at RHIC? The Perspective from the BRAHMS Experiment[J]. Nucl. Phys. A.,2005, 757:1-27.
    [8]Back B B, Baker M D, Ballintijn M, et al (PHOBOS Collaboration). The PHOBOS Perspective on Discoveries at RHIC PHOBOS Collaboration[J]. Nucl. Phys. A.,2005,757:28-101.
    [9]Adams J, Aggarwal M M, Ahammed Z, et al (STAR Collaboration). Experimental and Theoretical Challenges in the Search for the Quark-Gluon Plasma: The STAR Collaboration's Critical Assessment of the Evidence from RHIC Collisions[J]. Nucl. Phys. A.,2005,757:102-183.
    [10]Adcox K, Adler S S, Afanasiev S, et al (PHENIX Collaboration). Formation of Partonic Matter in Relativistic Nucleus-Nucleus Collisions at RHIC:Experimental Evaluation by the PHENIX Collabo-ration[J]. Nucl. Phys. A.,2005,757:184-283.
    [11]Stock R. Nucleus-Nucleus Collisions:from the BEVALAC to RHIC[J]. J Phys. G.,2004,30:S633-S648.
    [12]Abbott T, Akiba Y, Beavis D, et al. Charged Hadron Distributions in Central and Peripheral Si+A Collisions at 14.6A GeV/c[J]. Phys. Rev. C.,1994,50:1024-1047.
    [13]Ahle L, et al (E802 Collaboration). Particle Production at High Baryon Density in Central Au+ Au Reactions at 11.6A GeV/c[J]. Phys. Rev. C.,1998,57:R466-R470.
    [14]Ahle L, Akiba Y, Ashktorab K, et al (E802 Collaboration). System, Centrality, and Transverse Mass Dependence of Two-Pion Correlation Radii in Heavy Ion Collisions at 11.6 and 14.6 A GeV[J]. Phys. Rev. C.,2002,66:054906.
    [15]Lisa M A, Ajitanand N N, Alexander J, et al (E895 Collaboration). Bombarding Energy Dependence of π-Interferometry at the Brookhaven AGS[J]. Phys. Rev. Lett.,2000,84:2798-2802.
    [16]Liu H, Ajitanand N N, Alexander J, et al (E895 Collaboration). Sideward Flow in Au+ Au Collisions between 2A and 8A GeV[J]. Phys. Rev. Lett.,2000,84:5488-5492.
    [17]Panitkin S Y, Ajitanand N N, Alexander J, et al (E895 Collaboration). Model-Independent Source Imaging Using Two-Pion Correlations in (2 to 8) A GeV Au+ Au Collisions[J]. Phys. Rev. Lett., 2001,87:112304.
    [18]Klay J L, Ajitanand N N, Alexander J, et al (E895 Collaboration). Longgitudinal Flow of Protons from (2-8) A GeV Central Au+ Au Collisions[J]. Phys. Rev. Lett.,2002,88:102301.
    [19]Klay, Ajitanand N N, Alexander J, et al (E895 Collaboration). Charged Pion Production in 2A to 8A GeV Au+ Au Collisions[J]. Phys. Rev. Lett.,2003,68:054905.
    120] Barrette J, Bellwied R, Bennett S, et al (E877 Collaboration). Proton and Pion Production Relative to the Plane in Au+ Au Collisions at AGS Energies[J]. Phys. Rev. C.,1997,56:3254-3264.
    [21]Barrette J, Bellwied R, Bennett S, et al (E877 Collaboration). Recent Results from E877 for Au+ Au Collisions at AGS Energy [J]. Nucl. Phys. A.,1999,661:198-204.
    [22]Barrette J, Bellwied R, Bennett S, et al (E814 and E877 Collaborations). Two-Proton Correlations from 14.6A GeV/c Si+ Pb and 11.5A GeV/c Au+ Au Centra Collisions[J]. Phys. Rev. C.,1999,60:054905.
    [23]Ahle L, Akiba Y, Ashktorab K, et al (E866 and E917 Collaborations). Au+ Au Reactions at the AGS: Experiments E866 and E917[J]. Nucl. Phys. A.,1998,638:57c-68c.
    [24]Ahle L, Akiba Y, Ashktorab K, et al (E866 and E917 Collaborations). Excitation Function of K+and π+Production in Au+ Au Reactions at 2-10 AGeV[J], Phys. Lett. B.,2000,476:1-8.
    [25]Armstrong T A, Barish K N, Batsouli S, et al (E864 Collaboration). Mass Dependence of Light Nucleus Production in Ultrarelativistic Heavy Ion Collisions[J]. Nucl. Phys. A.,1999,83:5431-5434.
    [26]Armstrong T A, Barish K N, Batsouli S, et al (E864 Collaboration). Search for Strange Quark Matter Producted in Relativistic Heavy Ion Collisions[J]. Phys. Rev. C.,2001,63:054903.
    [27]Bearden I G, B(?)ggild H, Boissevain J, et al (NA44 Collaboration). Collective Expansion in High Energy Heavy Ion Collisions[J]. Phys. Rev. Lett.,1997,78:2080-2083.
    [28]B(?)ggild H, Boissevain J, Dodd J, et al (NA44 Collaboration). Charged Kaon and Pion Production at Midrapidity in Proton Nucleus and Sulphur Nucleus Coliisions[J]. Phys. Rev. C.,1999,59:328-335.
    [29]Bearden I G, B(?)ggild H, Boissevain J, et al (NA44 Collaboration). Particle Production in Central Pb+ Pb Collisions at 158/A GeV[J]. Phys. Rev. C.,2002,66:044907.
    [30]Adamova D, Agakichiev G, Appelshauser H, et al (CERES/NA45 Collaboration). Latest Results from CERES/NA45[J]. Nucl. Phys. A.,2003,715:262-271.
    [31]Antinori F, Bacon P, Badal A, et al (NA57 Collaboration). Study of the Transverse Mass Spectra of Strange Particles in Pb-Pb Collisions at 158 A GeV/c[J]. J. Phys. G.,2004,30:823-840.
    [32]Aggarwal M M, Agnihotri A, Ahammed Z, et al (WA98 Collaboration). Freeze-Out Parameters in Central 158 A GeV208Pb-208Pb Collisions[J]. Phys. Rev. Lett.,1999,83:926-930.
    [33]Aggarwal M M, Agnihotri A, Ahammed Z, et al (WA98 Collaboration). Observation of Direct Photons in Central 158 A GeV 208Pb-208Pb Collisions[J]. Phys. Rev. Lett.,2000,85:3595-3599.
    [34]Aggarwal M M, Ahammed Z, Angelis A L S, et al (WA98 Collaboration). Event-by-Event Fluctuation in Particle Multiplicities and Transverse Energy Production in 158A GeV Pb+ Pb Collisions[J]. Phys. Rev. C.,2002,65:054912.
    [35]Appelshauser H, Bachler J, Bailey S J, et al (NA49 Collaboration). Baryon Stopping and Charged Particle Distributions in Central Pb+Pb Collisions at 158 GeV per Nucleon[J]. Phys. Rev. Lett.,1999, 82:2471-2475.
    [36]Alt C, Anticic T, Baatar B, et al (NA49 Collaboration). Directed and Elliptic Flow of Charged Pions and Protons in Pb+ Pb Collisions at 40 and 158A GeV[J]. Phys. Rev. C.,2003,68:034903.
    [37]Aoki Y, Endrodi G, Fodor Z, Katz S D, Szabo K K. The order of the quantum chromodynamics transi-tion predicted by the standard model of particle physics[J]. Nature.,2006,443:675-678.
    [38]Schukraft J for ALICE Collaboration. First Results from the ALICE Experiment at the LHC[J]. Nucl. Phys. A.,2011,862/863:78-84.
    [39]Aamodt K, et al (ALICE Collaboration). Charged-Particle Multiplicity Destributions at Mid-Rapidity in Central Pb-Pb Collisions at (?)=2.76 TeV[J]. Phys. Rev. Lett.,2010,105:252301.
    [40]Aamodt K, et al (ALICE Collaboration). Elliptic Flow of Charged Particles in Pb-Pb Collisions al (?)=2.76 TeV[J]. Phys. Rev. Lett.,2010,105:252302.
    [41]ALICE Collaboration. Suppression of Charged Particle Production at Large Transverse Momentum in Pb-Pb Collisions at (?)=2.76 TeV[J]. Phys. Lett. B.,2011,696:30-39.
    [42]ALICE Collaboration. Two-Pion Bose-Einstein Correlations in Central Pb-Pb Collisions at (?)=2.76 TeV[J]. Phys. Lett. B.,2011,696:328-337.
    [43]Aamodt K, et al (ALICE Collaboration). Centrality Dependenc of the Charged-Particle Multiplici-ty Density at Mid-Rapidity in Pb-Pb Collisions at (?)=2.76 TeV[J]. Phys. Rev. Lett.,2011, 106:032301.
    [44]Aad G, et al (ATLAS Collaboration). Observation of a Centrality-Dependent Dijet Asymmetry in Lead-Lead Collisions at (?)=2.76 TeV with the ATLAS Detector at the LHC[J]. Phys. Rev. Lett.,2010, 105:252303.
    [45]ATLAS Collaboration. Measurement of the Centrality Dependence of J/Ψ Yields and Observation of Z Production in Lead-Lead Collisions with the ATLAS Detector at the LHC[J]. Phys. Lett. B.,2011, 697:294-312.
    [46]ATLAS Collaboration. Measurement of the Pseudorapidity and Transverse Momentum Dependence of the Elliptic Flow of Charged Particles in Lead-Lead Collisions at (?)=2.76 TeV with the ATLAS Detector[J]. Phys. Lett. B.,2012,707:330-348.
    [47]Chatrchyan S, et al (CMS Collaboration). Study of Z Boson Production in PbPb Collisions at (?)=2.76TeV[J]. Phys. Rev. Lett.,2011,106:212301.
    [48]Chatrchyan S, et al (CMS Collaboration). Observation and Studies of Jet Quenching in PbPb Collisions at (?)=2.76 TeV[J]. Phys. Rev. C.,2011,84:024906.
    [49]Uphoff J, Fochler O, Xu Z, Greiner C. Heavy Quark Production at RHIC and LHC within a Partonic Transport Model[J]. Phys. Rev. C.,2010,82:044906.
    [50]Csernai L P, Magas V K, Stocker H, Strottman D D. Fluid Dynamical Prediction of Charged v1-Flow at LHC[J].Phys. Rev. C.,2011,84:024914.
    [51]Ayala A, Jalilian-Marian J, Ortiz A, et al. Three-Hadron Angular Correlations from RHIC and LHC[J]. Phys. Rev. C.,2011,84:024915.
    [52]Deng W T, Wang X N, Xu R. Gluon Shadowing and Hadron Production in Heavy-Ion Collisions ar LHC[J]. Phys. Lett. B.,2011,701:133-136.
    [53]Schenke B, Jeon S, Gale C. Anisotropic Flow in (?)=2.76 TeV Pb + Pb Collisions at the LHC[J]. Phys.Lett. B.,2011,702:59-63.
    [54]Bhatt J R, Mishra H, Sreekanth V. Shear Viscosity, Cavitation and Hydrodynamics at LHC[J]. Phys. Lett. B.,2011,704:486-489.
    [55]Kormilitzin A, Levin E, Rezaeian A H. On the Nuclear Modification Factor at RHIC and LHC[J].Nucl. Phys. A.,2011,860:84-101.
    [56]Levai P. Jet Energy Loss in Heavy Ion Collisions from RHIC to LHC Energies[J]. Nucl. Phys. A., 2011,862/863:146-152.
    [57]Kopeliovich B Z, Potashnikov I K, Schmidt I. Nuclear Suppression of J/Psi:from RHIC to the LHC[J]. Nucl. Phys. A.,2011,864:203-212.
    [58]Strickland M, Bazow D. Thermal Bottomonium Suppression at RHIC and LHC[J].Nucl. Phys. A., 2012,879:25-58.
    |59] Antoniou N G. Kapoyannis A S. Bootstraping the QCD Critical Point[J]. Phys. Lett. B.,2003,563:165-172.
    [60]Hatta Y, Ikeda T. Critical/Tricritical Point and the Quark Number Susceptibility[J]. Phys. Rev. D., 2003,67:014028.
    [61]Fodor Z, Katz S D. Critical Point of QCD at Finite T and μ,Lattice Results for Physical Quark Mass-es[J]. JHEP.,2004,0404:050.
    [62]Gavai R V, Gupta S. The Critical end Point of QCD[J]. Phys. Rev. D.,2005,71:114014.
    [63]Asakawa M, Bass S A, Muller Bm Nonaka C. Transverse Velocity Dependence of the Proton-Antiproton Ratio as a Signature of the QCD Critical Endpoint[J]. Phys. Rev. Lett.,2008,101:122302.
    [64]Ejiri S. Canonical Partition Function and Finite Density Phase Transition in Lattice QCD[J]. Phys. Rev. D.,2008,78:074507.
    [65]Stephans G S F. The RHIC Low Energy Program[J]. J. Phys. G.,2006,32:S447-S454.
    [66]Stephans G S F. Exploring the QCD Phase Diagram with Low Energy Beams at RHIC:CritRHI[J]. J. Phys. G.,2008,35:044050.
    [67]Aggarwal M M, Ahammed Z, Alakhverdyants A V, et al (STAR Collaboration). An Experimental Exploration of the QCD Phase Diagram:The Search for the Critical Point and the Onset of De-confinement[J].arXiv:1007.2613.
    [68]Antoniou N, Christakoglou P, Diakonos F, et al (NA49 Collaboration). A New SPS Programme[J]. arXiv:nucl-ex/0612007.
    [69]Gazdzicki M for NA61/SHINE Collaboration. Ion Program of NA61/SHINE at the CERN SPS[J].J. Phys. G.,2009,36:064039.
    [70]Gazdzicki for NA49 and NA61/SHINE Collaborations. NA49/NA61:Results and Plans on Beam En-ergy and System Size Scan at the CERN SPS[J]. arXiv:1107.2345.
    [71]Friese V. The CBM Experiment at GSI/FAIR[J]. Nucl Phys. A.,2006,774:377-386.
    [72]Peters K. Hadron Physics at FAIR[J]. Nucl. Phys. B. (Proc. Suppl.).,2006,154:35-41.
    [73]Rosner G. Future Facility:FAIR at GSI[J]. Nucl. Phys. B. (Proc. Suppl.).,2007,167:77-81.
    [74]Henning W F. FAIR-Recent Developments and Status[J]. Nucl Phys. A.,2008,805:502c-510c.
    [75]Alt C, Anticic T, Baatar B, et al. Bose-Einstein Correlations of Pion pairs in Central Pb+ Pb Collisions at CERN SPS Energies[J]. Phys. Rev. C.,2008,77:064908.
    [76]Hohne C. SPS Energy Scan Results and Physics Prospects at FAIR[J]. Nucl Phys. A.,2009,830:369c-376c.
    [77]Heuser J M for CBM Collaboration. The Compressed Baryonic Matter Experiment at FAIR:Progress with Feasibility Studies and Detector Developments[J]. Nucl Phys. A.,2009,830:563c-566c.
    [78]Abelev B I, Aggarwal M M, Ahammed Z, et al (STAR Collaboration). Identified Particle Production, Azimuthal Anisotropy, and Interferometry Measurements in Au+Au Collisions at-(?)=9.2 GeV[J]. Phys. Rev. C.,2010,81:024911.
    [79]Gazdzicki M, Gorenstein M, Seybothe P. Onset of Deconfinement in Nucleus-Nucleus Collisions:Re-view for Pedestrians and Experts[J]. Acta Phys. Polon. B.,2011,42:307-351.
    [80]Qin S X, Chang L, Huang C, Liu Y X, Roberts C D. Phase Diagram and Critical Endpoint for Strongly-Interacting Quarks[J]. Phys. Rev. Lett.,2011,106:172301.
    [81]Srivastava P K, Tiwari S K, Singh C P. On Locating the Critical End Point in QCD Phase Diagram[J]. Nucl. Phys. A.,2011,862/863:424-426.
    [82]Fraga E S, Palhares L F, Sorensen P. Finite-Size Scaling as a Tool in the Search for the QCD Critical Point in Heavy Ion Data[J]. Phys. Rev. C.,2011,84:011903.
    [83]Tarnowsky T J for STAR Collaboration. Searching for the QCD Critical Point Using Particle Ratio Fluctuations and Higher Moments of Multiplicity Distributions[J]. J. Phys. G.,2011,38:124054. [84] Luo X for STAR Collaboration. Probing the QCD Critical Point with Higher Moments of Net-Proton Multiplicity Distributions[J]. J. Phys. Conf. Ser.,2011,316:012003. [85] Schaefer B J, Wagner M. QCD Critical Region and Higher Moments for Three Flavor Models[J]. Phys. Rev. D.,2012,85:034027.
    [86]Bicudo P. Cardoso M, Cardoso N. QCD Confinement and Chiral Crossover, Two Critical Points?[J]. arXiv:1102.5531.
    [87]Zheng C, Xiao Z G.XuH S, et al. Hadron Physics Programs at HIRFL-CSRm:Plan and Status[J]. High Energ Phys. Nucl. Phys.,2007.31:1177-1180.
    [88) Xia J W, Yuan Y J, Liu Y, et al (HIRFL-CSR commissioning group). HIRFL-CSR Commissioning in 2006 and 2007[J]. Chin. Phys. C.,2009,33:12-17.
    [89]Yang X D, Mao L J, Li G H, et al. Commissioning of Electron Cooling CSRe[J]. Chin. Phys.C.,2010, 34:998-1004.
    [90]Wagner A, Muntz C, Oeschler H, et al. Evidence for Different Freeze-Out Radii of High-and Low-Energy Pions Emitted in Au+ Au Collisions at 1 A GeV[J]. Phys. Lett. B.,1998,420:20-24.
    [91]黄卓然著,张卫宁译.高能重离子碰撞导论[M].哈尔滨:哈尔滨工业大学出版社,2002.
    [92]Bjorken J D. Highly Relativistic Nucleus-Nucleus Collisions:The Central Rapidity Region[J].Phys. Rev. D.,1983,27:140-151.
    [93]Hanbury-Brown R, Twiss R Q. A Test of a New Type of Stellar Interferometry on Sirius[J]. Nature., 1956,178:1046-1048.
    [94]Goldhaber G, Goldhaber S, Lee W, Pais A. Influence of Bose-Einstein Statistics on the Antiproton-Proton Annihilation Process[J]. Phys. Rev.,1960,120:300-312.
    [95]Kopylov G I, Podgoretskii M I. Correlations of Identical Particles Emitted by Highly Excited Nuclei[J], Sov. J. Nucl. Phys..1972,15:219-223.
    [96]Kopylov G I, Podgoretskii M I. Multiple Production and Interference of Particles Emitted by Moving Sources[J]. Sov. J. Nucl. Phys.,1974,18:336-341.
    [97]Kopylov G I. Like Particle Correlations as a Tool to Study the Multiple Production Mechanism[J]. Phys. Lett. B.,1974,50:472-474.
    [98]Shuryak E V. The Correlations of Identical Pions in Multibody Production[J]. Phys.Lett. B.,1973, 44:387-389.
    [99]Cocconi G. Second-Order Interference as a Tool for the Determination of Hardron Fireball Dimension-s[J]. Phys. Lett. B.,1974,49:459-461.
    1100] Koonin S E. Proton Pictures of High-Energy Nuclear Collisions[J]. Phys. Lett. B.,1977,70:43-45.
    [101]Yano F B, Koonin S E. Determining Pion Source Parameters in Relativistic Heavy-ion Collisions[J]. Phys. Lett. B.,1978,78:556-559.
    [102]Fowler G N, Weiner R M. Possible Evidence for Coherence of Hadronic Fields from Bose-Einstein Correlation Experiments[J]. Phys. Lett. B.,1977,70:201-203.
    [103]Fowler G N, Weiner R M. Effects of Classical Fields in Meson Correlations[J]. Phys. Rev. D.,1978, 17:3118-3123.
    [104]Gyulassy M, Kaufmann S K, Wilson L W. Pion Interferometry of Nuclear Collisions:I. Theory[J]. Phys. Rev. C.,1979,20:2267-2292.
    [105]Fung S Y, Gorn W, Kiernan G P, et al. Observation of Pion Interferometry in Relativistic Nuclear Collisions[J]. Phys. Rev. Lett.,1978,41:1592-1594.
    [106]Beavis D, Fung S Y, Gorn W, et al. Pion Source Parameters in Ar on KCl Collisions[J]. Phys. Rev. C., 1983,27:910-913.
    [107]Beavis D, Chu S Y, Fung S Y, et al. Pion Interferometry Analysis for 1.2 GeV/Nucleon Ar on KC1[J]. Phys. Rev. C.,1983,28:2561-2564.
    [108]Zajc, W A, Bistirlich A, Bossingham R R, et al. Two-Pion Correlations in Heavy Ion Collisions[J]. Phys. Rev. C.,1984,29:2173-2187.
    [109]Beavis D, Chu S Y, Fung S Y, et al. Expanding Pion Emitting Source in Ar on Pb Collisions[J].Phys. Rev. C.,1986,34:757-760.
    [110]Liu Y M, Beavis D, Chu S Y, et al. Three-Pion Correlations in Relativistic Heavy Ion Collisions[J]. Phys. Rev. C.,1986,34:1667-1672.
    [[111]Chacon A D, Bistirlich J A, Bossingham R R, et al. Pion Correlations in Relativistic Heavy Ion Colli-sions for Three Symmetric Systems[J]. Phys. Rev. C.,1991,43:2670-2688.
    [112]Bossy H, Bistirlich J A, Bossingham R R, et al. Two-Pion Correlations and Multiplicity Effects in La on La Collisions[J]. Phys. Rev. C.,1993,47:1659-1665.
    [113]B(?)ggild H, et al (NA44 Collaboration). Identified Pion Interferometry in Heavy-Ion Collisions at CERN[J]. Phys. Lett. B.,1993,302:510-516.
    [114]Barrette J, et al (E814 Collaboration). Evidence for Expansion of a hot Fireball from Two-Pion Corre-lations for Si+ Pb Collisions at AGS Energy [J]. Phys. Lett. B.,1994,333:33-38.
    [115]Alber T, et al (NA35 and NA49 Collaborations). Two-Pion Interferometry in Central Nucleus-Nucleus Collisions at the CERN SPS-Results from Experiments NA35 and NA49[J]. Nucl. Phys. A.,1995, 590:453c-458c.
    [116]Alber T, etal (NA35 Collaboration). Transverse Momentum Dependence of Bose-Einstein Correlations in 200A GeV/c S+A Collisions[J]. Phys. Rev. Lett.,1995,74:1303-1306.
    [117]Bercker H, et al (NA44 Collaboration),mr Dependence of Boson Interferometry in Heavy Ion Colli-sions at the CERN SPS[J]. Phys. Rev. Lett.,1995,74:3340-3343.
    [118]B(?)ggild H, et al (NA44 Collaboration). Directional Dependence of the Pion Source in High-Energy Heavy-Ion Collisions[J]. Phys. Lett. B.,1995,349:386-392.
    [119]Barrette J, et al (E877 Collaboration). Two-Pion Correlations in Au+Au Collisions at 10.8 GeV/c per Nucleon[J]. Phys. Rev. Lett.,1997,78:2916-2919.
    [120]Bearden I G, et al (NA44 Collaboration). High Energy Pb+Pb Collisions Viewed by Pion Interferom-etry[J]. Phys. Rev. C.,1998,58:1656-1665.
    1121] B(?)ggild H, et al (NA44 Collaboration). Three-Pion Correlations in Sulphur-Lead Collisions at the CERN SPS[J]. Phys. Lett. B.,1999,455:77-83.
    [122]Lisa M A, et al (E895 Collaboration). Azimuthal Dependence of Pion Interferometry at the AGS[J]. Phys. Lett. B.,2000,496:1-8.
    [123]Boal D H, Gelbke C K, Jennings B K. Intensity Interferometry in Subatomic Physics[J]. Rev. Mod. Phys.,1990,62:553-602.
    [124]Wiedemann U A, Heinz U. Particle interferometry for relativistic heavy-ion collisions[J]. Phys. Rept., 1999,319:145-230.
    [125]Weiner R M. Boson interferometry in high-energy physics[J]. Phys. Rept.,2000,327:249-346.
    1126] Adler C, et al (STAR Collaboration). Pion Interferometry of (?)=130 GeV Au+ Au Collisions at RHIC[J]. Phys. Rev. Lett.,2001,87:082301.
    [127]Adcox K, et al (PHENIX Collaboration). Transverse-Mass Dependence of Two-Pion Correlations in Au+Au Collisions at (?)=130 GeV[J]. Phys. Rev. Lett.,2002,88:192302.
    [128]Adler S S, et al (PHENIX Collaboration). Bose-Einstein Correlations of Charged Pion Pairs in Au+ Au Collisions at (?)=200 GeV[J]. Phys. Rev. Lett.,2004,93:152302.
    [129]Adams J, et al (STAR Collaboration). Pion Interferometry in Au+Au Collisions at (?)=200 GeV[J]. Phys. Rev. C.,2005,71:044906.
    [130]Rischke D H, Gyulassy M. The Time-Delay Signature of Quark-Gluon Plasma Formation in Relativis-tic Nuclear Collisions[J]. Nucl Phys. A.,1996.608:479-512.
    [131]Teaney D, Shuryak E V. Unusual Space-Time Evolution for Heavy-Ion Collisions at High Energies due to the QCD Phase Transition[J]. Phys. Rev. Lett.,1999,83:4951-4954.
    [132]Soff S, Bass S A, Dumitru A. Pion Interferometry at Rhic:Probing a Thermalized Quark-gluon Plas-ma?[J]. Phys. Rev. Lett.,2001,86:3981-3984.
    [1331 Zschiesche D, Stocker H, Greiner W. Space-Time Evolution and Hanbury Brown-Twiss Analysis of Relativistic Heavy Ion Collisions in a Chiral SU(3)xSU(3) Model[J]. Phys. Rev. C.,2002,65:064902.
    [134]Hirano T, Tsuda K. Collective Flow and Two-Pion Correlations from a Relativistic Hydrodynamic Model with Early Chemical Freeze out[J]. Phys. Rev. C,2002,66:054905.
    [135]Heinz U W, Kolb P F. Early Thermalization at RHI[J]. Nucl. Phys. A.,2002,702:269-280.
    [136]Pratt S. Correlations and Fluctuations, A Summary of Quark Matter 2002[J]. Nucl. Phys. A.,2003, 715:389c-398c.
    [137]Soff S, Bass S A, Hardtke D H. Particle Correlations at Rhic-Scrutiny of a Puzzle[J]. Nucl. Phys. A., 2003,715:801c-804c.
    [138]Lisa M A, Pratt S, Soltz R, Wiedemann U. Femtoscopy in Relativistic Heavy Ion Collisions: Two Decades of Progress[J]. Ann. Rev. Nucl. Part. Sci.,2005,55:357-402.
    [139]Lin Z W, Ko C M, Pal S. Partonic Effects on Pion Interferometry at the Relativistic Heavy-Ion Collid-er[J]. Phys. Rev. Lett.,2002,89:152301.
    [140]Socolowski O, Grassi F, Hama Y, et al. Fluctuations of the Initial Conditions and the Continuous E-mission in the Hydrodynamical Description of Two-Pion Interferometry [J]. Phys. Rev. Lett.,2004, 93:182301.
    [141]Cramer J G, Gerald A M, Jackson M, et al. Quantum Opacity, the RHIC HBT Puzzle, and the Chiral Phase Transition[J]. Phys. Rev. Lett.,2005,94:102302.
    [142]Frodermann E, Heinz U, Lisa M A. Fitted Hanbury-Brown-Twiss Radii versus Space-Time Variances in Flow-Dominated Models[J]. Phys. Rev. C.,2006,73:044908.
    [143]Broniowski W, Chojnacki M, Florkowski W, Kisiel A. Uniform Description of Soft Observables in Heavy-Ion Collisions at (?)=200 GeV[J]. Phys. Rev. Lett..2008,101:022301.
    [144]Pratt S. Resolving the Hanbury Brown- Twiss Puzzle in Relativistic Heavy Ion Collisions[J]. Phys. Rev. Lett.,2009,102:232301.
    [145]Zhang W N, Efaaf M J, Wong C Y. Pion Interferometry for a Granular Source of Quark-Gluon Plasma Droplets[J]. Phys. Rev. C.,2004,70:024903.
    [146]Zhang W N, Ren Y Y, Wong C Y. Analysis of Pion Elliptic Flow and Hanbury-Brown-Twiss Inter-ferometry in a Granular Quark-Gluon Plasma Droplet Model[J]. Phys. Rev. C.,2006,74:024908.
    [147]Zhang W N, Wong C Y. Explanation of the RHIC HBT Puzzle by a Granular Source of Quark-Gluon Plasma Droplets[J]. Int. J. Mod. Phys. E.,2007,16:3262-3270.
    [148]ALICE Collaboration. Two-Pion Bose-Einstein Correlations in Central Pb-Pb Collisions[J]. Phys. Lett. B.,2011,696:328-337.
    [149]Wong C Y. Intensity Interferometry for a Chaotic Source with a Collective Flow and Multiple Scatter-ing[J]. J. Phys. G.,2003,29:2151-2167.
    [150]Yu L L, Zhang W N, Wong C Y. HBT Interferometry with Quantum Transport of the Interfering Pair[J]. Phys. Rev. C.,2008,78:014908.
    [151]Chung P, Taranenko A, Laccy R, et al. Extraction of Source Images in Au+ Au and d+ Au Collisions at RHIC[J]. Nucl. Phys. A.,2005,749:275c-278c.
    [152]Adler S S, Afanasiev S, Aidala C, et al (PHENIX Collaboration). Evidence for a Long-Range Compo-nent in the Pion Emission Source in Au+Au Collisions at (?)=200 GeV[J]. Phys. Rev. Lett.,2007, 98:132301.
    [153]Chung P and Danielewicz P for NA49 Collaboration. Evidence for Non-Gaussian Tail in 3-Dimensional Pion Emission Source at SPS[J]. J. Phys. G.,2007,34:S1109-S1112.
    [154]Afanasiev S, Aidala C, Ajitanand N N, et al (PHENIX Collaboration). Source Breakup Dynamics in Au +Au Collisions at(?)=200 GeV via Three-Dimension Imaging[J]. Phys. Rev. Lett.,2008, 100:232301.
    [155]Chung P for PHENIX Collaboration. Three-Dimensional Two-Pion Emission Source at RHIC-PHENIX[J]. J. Phys. G.,2008,35:04403.
    [156]Lacey R A for PHENIX Collaboration. PHENIX Measurements of 3D Emission Source Functions in Au+ Au Collisions at(?)=200 GeV[J]. J. Phys. G.,2008,35:104139.
    [157]Brown D A, Danielewicz P. Observing Non-Gaussian Sources in Heavy-Ion Reactions[J]. Phys. Rev. C.,2001,64:014902.
    [158]Lin Z W, Ko C M. Kaon Interferometry at RHIC from AMPT Model[J]. J. Phys. G.,2004,30:S263-S270.
    [159]Csogro T, Hegyi S, Zajc W A. Bose-Einstein correlations for Levy stable source distributions[J]. Eur. Phys.J. C.2004,36:67-78.
    [160]Zhang W N, Yang Z T, Ren Y Y. Characteristic Quantities of Pion-Emitting Sources Extracted by Model-Independent Analysis in Relativistic Heavy Ion Collisions[J]. Phys. Rev. C.,2009,80:044908.
    [161]Brown D A, Danielewicz P. Imaging of Sources in Heavy-Ion Reactions[J]. Phys Lett. B.,1997, 398:252-258.
    [162]Brown D A, Danielewicz P. Optimized Discretization of Sources Imaged in Heavy-Ion Reactions[J]. Phys. Rev. C.,1998,57:2474-2483.
    [163]Danielewicz P, Pratt S. Analysis of Low-Momentum Correlations with Cartesian Harmonics[J]. Phys. Lett. B.,2005,618:60-67.
    [164]Danielewicz P, Pratt S. Analyzing Correlation Functions with Tesseral and Cartesian Spherical Har-monics|J]. Phys. Rev. C.,2007,75:034907.
    [165]Verde G, Brown D A, Danielewicz P, et al. Imaging Sources with Fast and Slow Emission Compo-nents|J]. Phys. Rev. C.,2002,65:054609.
    [166]Chung P, Ajitanand N N, Alexander J M. Comparison of Source Images for Protons,π-s, and A's in 6A GeV Au+Au Collisions[J]. Phys. Rev. Lett.,2003,91:162301.
    [167]Brown D A, Enokizono, Heffner M, et al. Imaging Three Dimensional Two-Particle Correlations for Heavy-Ion Reaction Studies[J]. Phys. Rev. C.,2005,72:054902.
    [168]Yang Z T, Zhang W N, Huo L, Zhang J B. Imaging of Granular Sources in High Energy Heavy Ion Collisions[J]. J. Phys. G.,2009,36:015113.
    1169] LANDAU L D, LIFSHITZ E M. Fluid Mechanics (1st ed)[M]. New York:Pergamon Press,1959.
    [170]DEGROOT S R, LEEUWEN W A V, WEERT C G V. Relativistic Kinetic Theory[M]. Amsterdam:North Holland,1980.
    [171]Rischke D H. Fluid Dynamics for Relativistic Nuclear Collisions[J]. arXiv:nucl-th/9809044.
    [172]Kolb P, Heinz U. Hydrodynamic Description of Ultrarelativistic Heavy-Ion Collisions[J]. arXiv:nucl-th/0305084.
    [173]Sod G A. A Numerical Study of a Converging Cylindrical Shock[J]. J. Fluid Mech.,1977,83:785-794.
    [174]Rischke D H, Bernard S, Maruhn J A. Relativistic Hydrodynamics for Heavy-Ion Collisions[J]. Nucl. Phys.A.,1995,595:346-382.
    [175]Rischke D H, Pursiin Y, Maruhn J A. Relativistic Hydrodynamics for Heavy-Ion Collisions[J]. Nucl. Phys.A.,1995,595:383-408.
    [176]Harten A, Lax P D, Van Leer B. On Upstream Differencing and Godunov-Type Schemes for Hyperbolic Conservation Laws[J]. SIAM Rev.,1983,25:35-61.
    [177]Einfeldt B. On Godunov-Type Methods for Gas Dynamics[J]. SIAM J. Numer. Anal.,1988,25:294-318.
    [178]Schneider V, Katscher U, Rischke D H, et al. New Algorithms for Ultra-Relativistic Numerical Hydro-dynamics[J].J. Comput. Phys.,1993,105:92-107.
    [179]Holt M. Numerical Methods in Fluid Dynamics[J]. Springer Series in Comput. Physics (Springer) Berlin.,1977.
    [180]Pratt s, Csorgo T, Zimdnyi T. Detailed Predictions for Two-Pion Correlations in Ultrarelativistic Heavy-Ion Collisions[J]. Phys. Rev. C.,1990,42:2646-2652.
    [181]Panitkin S Y, Brown D A. Imaging Proton Sources and Space-Momentum Correlations[J]. Phys. Rev. C.,1999,61:021901.
    [182]Yu L L, Jirimutu, Zhang W N, et al. Two-Pion Interferometry in Heavy Ion Collisions at HIRFL-CSR energy[J]. Chin. Phys. C.,2008,32:897-902.
    [183]Bebie H, Gerber P, Goity J L, et al. The Role of the Entropy in an Expanding Hadronic Gas[J]. Nucl. Phys. B.,1992,378:95-128.
    [184]Cleymans J, Redlich K. Unified Description of Freeze-Out Parameters in Relativistic Heavy Ion Colli-sions[J]. Phys. Rev. Lett.,1998,81:5284-5286.
    [185]Pratt S. Pion Interferometry of Quark-Gluon Plasma[J]. Phys. Rev. D.,1986,33:1314-1327.
    [186]Chapman S, Heinz U. HBT Correlators-Current Formalism vs. Wigner Function Formulation[J]. Phys. Lett. B.,1994,340:250-253.
    [187]Akkelin S V, Sinyukov Yu M. The HBT-Interferometry of Expanding Sources[J]. Phys. Lett. B.,1995, 356:525-530.
    [188]Bertsch G, Gong M, Tohyama M. Pion Interferometry in Ultrarelativistic Heavy-Ion Collisions[J]. Phys. Rev. C.,1988,37:1896-1900.
    [189]Podgoretsky M I. On the Comparison of Identical Pion Correlations in Different Reference FramesfJ]. Sov. J. Nucl. Phys.,1983,37:272-278.
    [190]Chapman S, Scotto P, Heinz U. A New Cross Term in the Two-Particle Hanbury-Brown-Twiss Corre-lation Function[J]. Phys. Rev. Lett.,1995,74:4400-4403.
    [191]Chapman S, Nix J R, Heinz U. Extracting Source Parameters from Gaussian Fits to Two-Particle Cor-relations[J]. Phys. Rev. C.,1995,52:2694-2703.
    [192]Toneev V D, Nikonov E G, Friman B. Strangeness Production in Nuclear Matter and Expansion Dy-namics.[J]. Eur. Phys. J. C.,2003,32:399-415.
    [193]Hung C M, Shuryak E. Equation of State, Radial Flow, and Freeze-Out in High Energy Heavy Ion Collisions[J]. Phys. Rev. C.,1998,57:1891-1906.
    [194]Ivanov Y B, Russkikh V N, Toneev V D. Relativistic Heavy-Ion Collisions within Three-Fluid Hydro-dynamics:Hadronic Scenario[J]. Phys. Rev. C.,2006,73:044904.
    [195]Yu L L, Efaaf M J, Zhang W N. Interferometry Signatures for QCD First-Order Phase Transition in High Energy Heavy Ion Collisions[J]. Chin. Phys. Lett.,2010,27:022501.
    [196]Wu Y F, Heinz U, Tomasik B, et al. Yano-Koonin-Podgoretski Parametrisation of the Hanbury Brown-Twiss Correlalor[J]. Euo. Phys. J. C.,1998,1:599-617.
    [197]Ganz R et al (NA49 Collaboration). HBT Correlation in 158 AGeV Pb+Pb Collisions[J]. arXiv:nucl-ex/9808006.
    [198]Back B B et al (PHOBOS Collaboration). Transverse Momentum and Rapidity Dependence of HBT Correlations in Au+ Au Collisions at (?)= 62.4 and 200 GeV[J]. Phys. Rev. C.,2006,73:031901.
    [199]Baym G. Friman B L, Blazot J P, et al. Hydrodynamics of Ultra-Relativistic Heavy Ion Collisions[J]. Nucl. Phys. A.,1983,407:541-570.
    [200]Adler S S et al (PHENIX Collaboration). Identified Charged Particle Spectra and Yields in Au+Au Collisions at (?)=200 GeV[J]. Phys. Rev. C.,2004,69:034909.
    [201]Adams J et al (STAR Collaboration). Identified Particle Distributions in pp and Au+Au Collisions at (?)=200GeV[J]. Phys. Rev. Lett.,2004,92:112301.
    [202]Floris M (ALICE Collaboration). Identified Particles in pp and Pb-Pb Collisions at LHC Energies with the ALICE Detector[J]. Plenary talk at Quark Matter 2011, May 26,2011, Annecy, France.
    [203]Aamodt K et al (ALICE Collaboration). Two-pion Bose-Einstein correlations in Central Pb-Pb Colli-sions at (?)=2.76 TeV[J]. Phys. Lett. B.,2011,696:328-337.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700