NO前体/供体在大鼠脑缺血中作用研究及OX42和MAP2阳性细胞反应的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
研究背景与目的:
     自从80年代内源性一氧化氮(Nitric oxide,NO)被发现以来,其广泛而重要的生理及病理作用已越来越引起人们的重视。作为一种重要的信使分子广泛参与生物体内的各种病理生理过程,具有非常广泛的生物作用。近年来,NO在急性脑缺血中的双重作用日益受到人们关注,其既表现为神经保护作用,又有神经毒性作用。NO起神经保护作用还是毒性作用主要取决于NO生成的量、浓度、生成的部位、作用部位、产生的时间和NO氧化还原状态。我们的实验中建立大鼠大脑中动脉阻塞(MCAO)模型,局部介入给予NO的前体L-精氨酸(L-Arginine,L-ARG)和供体硝酸甘油(Nitroglycerine, NG),结合神经行为学,TTC、HE染色观察NO前体/供体在脑缺血中的作用;同时探讨NO前体/供体对脑缺血过程中OX42和MAP2阳性细胞反应性的影响。
     材料和方法:
     以66只健康成年雄性Sprague-Dawley白色大鼠为研究对象。按照随机化原则分为4组,假手术组(n=12);标准MCAO模型组(n=18);NG给药组(n=18):再灌注即刻局部介入给予NG ;L-ARG组(n=18):再灌注即刻局部介入给予L-ARG;各组根据处死时间不同,再分为2个亚组:缺血2h再灌注3h和缺血2h再灌注24h组,3h时间点6只大鼠。24h时间点假手术组6只老鼠,其余3组12只老鼠,于再灌注3h和再灌注24h分别进行行为学评分。然后断头取脑,用红四氮唑(2,3,5 -triphenyltetrazolium chloride,TTC)染色测定脑梗死体积,每只大鼠的相邻脑切片分别进行苏木素-伊红(Hematoxylin-Eosin, HE)染色观察组织学变化,小鼠抗CD11b/c单克隆抗体(OX42)免疫组织化学(IHC)染色和微管相关蛋白-2(MAP2)免疫荧光染色检测神经元改变。
     结果:
     (一) Longa评分:再灌注3h L-ARG和NG组Longa评分与MCAO模型组Longa评分相比有统计学意义,(P<0.025)。再灌注24h,L-ARG和NG组Longa评分与MCAO模型组Longa评分相比无统计学意义(P>0.025)
     (二)TTC梗死体积:再灌注24h时间点,TTC染色显示两个介入给药组苍白区明显减小,与MCAO模型组相比有显著性差异(P<0.05)。
     (三)病理形态学观察
     1. HE染色:再灌注3h时间点各组大鼠脑组织HE染色未见明显神经元脱失。再灌注24h时间点MCAO模型组神经元大量脱失。NG、L-ARG组神经元脱失不明显,有部分锥体状或圆型神经元保留。
     2. OX-42:再灌注3h和24h两个时间点,NG、L-ARG组与MCAO模型组相比大鼠脑组织皮层和海马CA1、CA3区小胶质细胞细胞着色较浅,阳性细胞数量少,和MCAO模型组相比有统计学意义(P<0.05)。
     3. MAP-2:再灌注3h和24h两个时间点,NG和L-ARG组与MCAO模型组相比大鼠脑组织皮层和海马CA1、CA3区阳性细胞数量增加,免疫染色强度增强,(MAP2阳性细胞平均光密度明显降低)。大鼠脑组织皮层和海马CA1,CA3区可见绿色细长条索状结构,排列规则。提示大量细胞骨架结构修复,与MCAO模型组具有显著性差异(P<0.05)。
     结论:
     1.通过神经行为学,TTC、HE染色观察等组织学方法分析,NO前体/供体介入给药对脑缺血具有明显的神经保护作用。
     2.在脑血管病早期介入给与NO前体/供体可能通过抑制小胶质细胞的活化,降低小胶质细胞阳性细胞表达。以及抑制MAP2降解,修复大量细胞骨架结构。起到脑保护作用。
Background and Purpose:
     Endogenous Nitric oxide (NO) was discovered in 1980s , from then on , NO play very important physiology and pathology roles. As an important messenger molecule, NO participate various physiology and pathology processes and has extensive biological action. NO has a Janus nature, it can either function as a beneficial or venomous agent in nervous system. Whether NO is helpful or harmful depends on a variety of factors, such as the cellular environment, site of action and the time in which NO is released, the quantity and concentration of NO, the state of oxidation-reduction and so on. In order to validate whether NO precursor / donor had the protection effects on brain injury in acute ischemic stage and further to approach a better way to prevention and cure cerebral ischemia, we employed the model of transient middle cerebral artery occlusion (MCAO), which was intervened with Arginine and Nitroglycerin .
     Material and Methods:
     66 healthy male adult Sprague-Dawley white rats were divided into four groups randomly: (1)Sham-operated group(n=12); (2) MCAO group (n=18); (3) Nitroglycerin Group (n=18):Nitroglycerin was intervened immediately after reperfusion; (4) Arginine group(n=18): Arginine was intervened immediately after reperfusion; Every group was divided into two subgroups according to the different sacrificed time point :ischemia 2h and reperfusion 3h; ischemia 2h and reperfusion 24h;3h time point was 6 rats, 24h time point: Sham-operated group was 6 rats, other groups were 12 rats.Longa score was recorded at different time points. Animals were sacrificed after record. Infarct volume was assessed by TTC (2, 3, 5-triphenyl Tetrazolium chloride). The brain sections were Hematoxylin-eosin (HE) stained to show the histological change, neuron injury was detected by immunohistochemical stained with purified anti-rat CD11b/c (OX42) and immunofluorescence stained with microtubule associated protein-2 (MAP-2).
     Results:
     1. Longa score: The Arginine group and NG group had significant difference compared with MCAO group at 3h after reperfusion (P<0.025).There were no difference beteen various groups at 24h after reperfusion.
     2. TTC: The Arginine, Nitroglycerin group had significant neuropro- tective effect compared with the MCAO group at 24h after reperfusion (P<0.05).
     3. (1) HE staining: There was no obvious neuron loss among each group at 3h after reperfusion. Bulks of neurons were lost in MCAO group at 24h after reperfusion. There were slightly decreased in Arginine, Nitroglycerin group compared with MCAO group.
     (2) OX42 Immunohistochemistry staining: Compared with MCAO group, the number of OX42 positive cells in the cortex of CP and CA1, CA3 of the hippocampus formation of Arginine ,Nitroglycerin group were significant decreased at 3h and 24h time point after reperfusion(P<0.05).
     (3) MAP-2 immunofluorescence staining: Compared with MCAO group, The optical density of MAP2 positive cells In the cortex of CP and CA1, CA3 of the hippocampus formation of Arginine ,Nitroglycerin group was significant decreased at 3h and 24h time point after reperfusion(P<0.05).
     Conclusion:
     1. NO precursor/ donor has significant neuroprotection after focal cerebral ischemia by photothrombosis in rat.
     2. With the way of reducing the number and activity of OX42 positive cells, inhibiting the degradation of MAP2 positive cells and recover bulk cytoskeleton structure .The intervention of NO precursor/ donor in the MCAO model, has the protection effects on brain injury in acute ischemic stage.
引文
1. NU Weir, AM Demchuk, AM Buchan,et al. Stroke prevention. Matching therapy to the patient with TIA. Postgrad Med, 2005,117:26-30
    2. Duncan AJ, Heales SJ. Nitric oxide and neurological disorders. Mol Aspects Med. 2005, 26: 67-96
    3.何 学 令 , 尹 海 林 . 脑 缺 血 动 物 模 型 的 研 究 进 展 [J].中 国 比 较 医 学 杂 志 .2004.14(4):248-252.
    4. Longa EZ, Weinstein PR, Carlson S, Cummins R .Reversible middle cerebral artery occlusion without craniectomy in rats. Stroke. 1989,20: 84-91.
    5. Stutzmann JM, Mary V, Wahl F, Grosjean-Piot O, Uzan A, Pratt J. Neuroprotective profile of enoxaparin, a low molecular weight heparin, in vivo models of cerebral ischemia or traumatic brain injury in rats: a review. CNS Drug Rev. 2002; 8(1): 1-30
    6. Eckert A, Keil U, Kressmann S,et al. Effects of GBE 761 Ginkgo biloba extract on mitochondrial function and oxidative stress. Pharmacopsychiatry. 2003,Suppl 1:S15-23
    7. Zhang Z , Chopp M , Powers C1 Temporal profile of microglisl response following t rsnsit (2 h) middle cerebral artery occlusion [ J ] . Brain Res , 1997 , 744 :189- 198.
    8. Kato H , Kogure K, Araki T. Graded expression of immunomocules on activated microglia in the hippocampus following ischemia in a rat model of ischemia tolerance [J] . Brain Res. 1995, 694:85-93.
    9. 李露 斯 , 刘之荣 . 大鼠 慢性 脑灌注不足脑 内小 胶质 细胞 活化 和脑的病理改变[ J ] . 第三军医大学学报,2001 , 23 (4) : 398-400.
    10. Stoll G, Jander S, Schroeter M. Inflammation and glial responses in ischemic brain lesions. Prog Neurobiol. 1998 Oct, 56(2):149-71.
    11. Gianfranco Di Renzo. Ginkgo biloba and the central nervous system. Fitoterapia, 2000 ,71: S43-S47
    12. Shelanski M L ,Feit H.Filaments and tubules in the nervous system[A]. In: BourneGH.The structure and function of the nervous tissue[M].Academic Press,NewYork,1972.47-80
    13. Johnson GV, Jope RS. The role of microtubule-associated protein 2 (MAP-2) in neuronal growth, plasticity, and degeneration. J Neurosci Res. 1992, 33(4):505-12.
    14. Zhang Z, Davies K, Prostak J,et al. Quantitation of microvascular plasma perfusion and neuronal microtubule-associated protein in ischemic mouse brain by laser-scanning confocal microscopy. J Cereb Blood Flow Metab. 1999, 19(1):68- 78.
    15 Johnson GV, Litersky JM, Jope RS,et al. Degradation of microtubule-associated protein 2 and brain spectrin by calpain: a comparative study [J]. JNeurochem. 1991, 56(5):1630-8.
    16. Pettigrew LC, Holtz ML, Craddock SD,et al. Microtubular proteolysis in focal cerebral ischemia. J Cereb Blood Flow Metab. 1996, 16(6):1189-202.
    17. Dawson DA, Hallenbeck JM. Acute focal ischemia-induced alterations in MAP2 immunostaining: description of temporal changes and utilization as a marker for volumetric assessment of acute brain injury. J Cereb Blood Flow Metab. 1996,
    16(1):170-4.
    18. Bigot D, Matus A, Hunt SP. Reorganization of the Cytoskeleton in Rat Neurons Following Stimulation With Excitatory Amino Acids In Vitro.Eur J Neurosci. 1991, 3(6):551-558.
    19.Yanagihara T.Immunohistochemical assessment of cerebral ischemia [A].Rigor BM,SchurrA. Cerebral Ischemia and Resuscitation [M].NewYork:CRCPress, 1990, 389-412.
    20. Hatakeyama T,.Immunohistochemical investigation of ischemic and post ischemic damage after bilateral carotid occlusion ingerbils [J]. Stroke,1988, 19(12):1526- 1534.
    21. Pettigrew LC, Holtz ML, Craddock SD, et al. Microtubular proteolysis inf ocal cerebral ischemia[J]. J Cereb Blood Flow Metab,1996,16(6):1189-202.
    22. Cheng Y, Deshmukh M, D'Costa A, et al. Caspase inhibitor affords neuroprot- ection with delayed administration in a rat model of neonatal hypoxic-ischemic brain injury. J Clin Invest. 1998 , 101(9):1992-9.
    23. Katsuki S. Effects of sodium nitroprusside ,nitroglycerin and sodiumoxide on level of cyclie nucleotides and mechanical activityof various tissue. J Cyclic Nucleotide Res ,1997 ,3 :239
    24.Huang Z,Huang PL, Panahian N,et a1.Efects of cerebral ischemia in mice deficient in neuronal nitric oxide synthase [J]. Science,1994, 265(5180):1883- 1885.
    25.Iadecola C,Zhang F, Casey R, et a1.Knockoutmice lacking the inducible nitricoxide synthase gene are resistant to cerebral ischemia[J].Soc Neurosci,1996,22: 1693.
    26. Huang Z, Huang PL, Ma J, et a1. Enlarged infarcts in endothelial nitric oxide synthase knockout mice are attenuated by nitro-L-arginine. J Cereb Blood Flow Metab. 1996, 16(5):981-7.
    27. 张建新 ,张会欣 ,李兰芳,等. L-精氨酸对大鼠局灶性脑缺血损伤的影响 中华麻醉学杂志 2002,22(3):161-164
    28. Mason RB, Pluta RM, Walbridge S et al. Production of reactive oxygen species after reperfusion in vitro and in vivo: protective effect of nitric oxide. J Neurosurg. 2000 , 93:99-107.
    29 Pluta RM, Rak R, Wink DA, et al. Effect of nitric oxide on reactive oxygen species p roduction and infarction size after brain reperfusion injury[J]. Neurosurg,2001,48(4):884-893.
    1.Furchgott RF,Zawadzki JV.The obligatory role of endothelial cells in the relaxation of arterial smooth muscle by acetylcholine[J].Nature,1980;288:373-6
    2. Palmer RM, Ferrige AG, Moncada S. Nitric oxide release accounts for the biological activity of endothelium-derived relaxing factor.Nature. 1987;327(6122):524-6.
    3. Dawson TM, Snyder SH. Gases as biological messengers: nitric oxide and carbon monoxide in the brain.J Neurosci. 1994; 14:5147-59.
    4.Chartrain NA, Geller DA, Koty PP, Molecular cloning, structure, and chromosomal localization of the human inducible nitric oxide synthase gene. J Biol Chem. 1994 Mar 4;269(9):6765-72.
    5. Dawson TM,Snyder SH. Gases as biological mesengers:nitric oxide and carbon monxide in the brain . J Neurosci,1994,14(9):5147
    6. Forstermann U, Closs EI, Pollock JS,et al. Nitric oxide synthase isozymes.Char- acte-rization, purification, molecular cloning, and functions. Hypertension.1994; 23:1121-31. 。
    7.Iadecola-C,Zhang F,Xu S,et, al. Inducible Nitric Oxide systhase gene expession in vascular cells aftet transient focal cerebral ischemia. Stroke, 1996, 8(27):1373
    8. Zhang F,White JG,Iadecola C. Nitiac oxide Donois increase blood flow and reduce brain damage in focal ischemia:edidence that nitric oxide is beneficial in the early stages or cerebral ischemia. J Cereb Blood Flow Metab, 1994;14(2):217
    9. Iadecola C,Zhang F. Inducible nitric oxide synthase gene expression in vascular cells after transient focal cerebral ischemia.Stroke. 1996; 27(8):1373-80
    10. Haga KK, Gregory LJ, Hicks CA, et a1.The neuronal nitric oxide synthase inhibitor, TRIM, as a neuroprotective agent: effects in models of cerebral ischaemia using histological and magnetic resonance imaging techniques.Brain Res. 2003; 993(1-2):42-53.
    11. Huang PL. Neuronal and endothelial nitric oxide synthase gene knockout mice. Braz J Med Biol Res. 1999; 32(11):1353-9
    12. Zhu DY, Deng Q, Yao HH,et a1.Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice. Life Sci. 2002 Sep 13;71(17):1985-96.
    13. Sugimoto K, Iadecola C..Effects of aminoguanidine on cerebral ischemia in mice: comparison between mice with and without inducible nitric oxide synthase gene.Neurosci Lett. 2002 ; 331(1):25-8.
    14. Huang PL. Neuronal and endothelial nitric oxide synthase gene knockout mice.Braz J Med Biol Res. 1999 Nov; 32(11):1353-9
    15. Jiang MH, Kaku T, Hada J, et a1.Different effects of eNOS and nNOS inhibition on transient forebrain ischemia.Brain Res. 2002 Aug 9;946(1):139-47.
    16. Hashiguchi A, Yano S, Morioka M, et a1. Up-regulation of endothelial nitric oxide synthase via phosphatidylinositol 3-kinase pathway contributes to ischemic tolerance in the CA1 subfield of gerbil hippocampus.J Cereb Blood Flow Metab. 2004;24(3):271-9.
    17. Batteur-Parmentier S, Margaill I, Plotkine M. Modulation by nitric oxide of cerebral neutrophil accumulation after transient focal ischemia in rats.J Cereb Blood Flow Metab. 2000;20(5):812-9.
    18. Scorziello A, Pellegrini C, Secondo A ,et a1.Neuronal NOS activation during oxygen and glucose deprivation triggers cerebellar granule celldeath in the later reoxygenation phase.J Neurosci Res,2004;76(6) :812-21
    19. Ding-Zhou L, Marchand, Verrecchia C, Croci N et a1. L-NAME reduces infarction, neurological deficit and blood brain barrier disruption following cerebral ischemia in mice. Eur J Pharmacol,2002;457:137-46
    20. Batteur P S,Margaill J,Plotkine M et a1.Modulation by nitric oxide of Cerebral neutrophil accumulation aftertranslent focal ischemia in rats. J Cereb Blood Flow Metab, 2000; 20:812-19
    21. Coert BA, Anderson RE, Meyer FB. Is neuroprotective efficacy of nNOS inhibitor 7-NI dependent on ischemic intracellular pH? Am J Physiol Heart Circ Physiol. 2003;284(1): H151-9.
    22. Bemeur C, Ste-Marie L, Desjardins P,et al. Expression of superoxide dismutase in hyperglycemic focal cerebral ischemia in the rat. Neurochem Int. 2004;45(8): 1167-74.
    23.Zhu DY, Deng Q, Yao HH,et al. Inducible nitric oxide synthase expression in the ischemic core and penumbra after transient focal cerebral ischemia in mice.Life Sci. 2002 Sep 13;71(17):1985-96.
    24. Tamarat R, Silvestre JS, Huijberts M, et al. Blockade of advanced glycation end-product formation restores ischemia-induced angiogenesis in diabetic mice. Proc Natl Acad Sci U S A. 2003;100(14):8555-60.
    25.Faraci FM, Brian JE. Nitric oxide and the cerebral circulation.Stroke,1994,25(3):692
    26. Choi DW.Nitric oxide:foe or friend to the injured brain? Proc Natl Acad SciUSA, 1993,90(21):9741
    27.Lipton SA, Choi YB, Pan ZH, et a1 . A redox-based mechanism for the neuroprotective and neurodestructive effects of nitric oxide and related nitroso- compounds. Nature. 1993; 364 :626-32.
    28. Woszczyk A, Deinsberger W, Boker DK. Nitric oxide metabolites in cisternal CSF correlate with cerebral vasospasm in patients with a subarachnoid haemorrhage. Acta Neurochir (Wien). 2003 ,145(4):257-63; discussion 263-64.
    29.Zhang R, Wang L, Zhang L, Nitric oxide enhances angiogenesis via the synthesis of vascular endothelial growth factor and cGMP after stroke in the rat.Circ Res. 2003 Feb 21;92(3):308-13.
    30. Haley JE, Wilcox GL, Chapman PF. The role of nitric oxide in hippocampal long-term potentiation. Neuron. 1992 Feb;8(2):211-6.
    31. Bliss TV, Collingridge GL. A synaptic model of memory: long-term potentiation in the hippocampus.Nature. 1993 Jan 7;361(6407):31-9. Review.
    32. Schuman EM, Madison DV. Nitric oxide and synaptic function. Annu Rev Neurosci. 1994; 17:153-83.
    33. Bolanos JP, Almeida A, Stewart V, Nitric oxide-mediated mitochondrial damage in the brain: mechanisms and implications for neurodegenerative diseases.JNeuro- chem. 1997; 68(6):2227-40.
    34. Ischiropoulos H, Zhu L, Chen J, Peroxynitrite-mediated tyrosine nitration catalyzed by superoxide dismutase. Arch Biochem Biophys. 1992; 298(2):431-7.
    35. Szabo C, Salzman AL. Endogenous peroxynitrite is involved in the inhibition of mitochondrial respiration in immuno-stimulated J774.2 macrophages.Biochem Biophys Res Commun. 1995; 209(2):739-43.
    36. Brown GC. Nitric oxide regulates mitochondrial respiration and cell functions by inhibiting cytochrome oxidase. FEBS Lett. 1995 Aug 7;369(2-3):136-9.
    37. Cerruti C, Sheng P, Ladenheim B,et al. Involvement of oxidative and L-arginine- NO pathways in the neurotoxicity of drugs of abuse in vitro. Clin Exp Pharmacol Physiol. 1995; 22(5):381-2.
    38. Inoue S, Kawanishi S. Oxidative DNA damage induced by simultaneous generation of nitric oxide and superoxide. FEBS Lett. 1995; 371(1):86-8.
    39. Liu RH, Hotchkiss JH. Potential genotoxicity of chronically elevated nitric oxide:a review. Mutat Res. 1995; 339(2):73-89.
    40. Di Girolamo G, Farina M, Riberio ML, et al. Effects of cyclooxygenase inhibitor pretreatment on nitric oxide production, nNOS and iNOS expression in rat cerebellum. Br J Pharmacol. 2003 Jul; 139(6):1164-70. Erratum in: Br J Pharmacol. 2004; 141(7):1234
    41.Malinski T ,Bailey F, Zhang ZG,et al. Nitric oxide measured by a porphyinic microsenser in rat brain after transient middle cerebal artery occlusion. J Cereb Blood Flow Metab, 1993, 13(3):355
    42. Kawson,Griffin,Mark,et al. Nitric oxide synthase in schizophrenia, Mol.Chen Neuyopathol. 1996, 27:275-284
    43. IadecloaC.Bright and dark sides of nitric oxide in ischemic brain injury .Trends Neuropathol ,1996,27:275-284

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700