丝瓜瓤固定白腐菌降解2,4-二氯酚的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
氯酚类化合物(CPs)被广泛用作木材防腐剂、防锈剂、杀菌剂和除草剂等,是毒性很高的物质,被美国EPA列入优先控制污染物的黑名单。氯酚类化合物的大量使用,使得大量的CPs污染物进入了环境,给自然环境造成很大的危害。含氯酚类废水的治理也受到越来越多的重视。微生物固定化技术因无二次污染、降解高效性和经济实用等优点而备受关注。可选择合适的载体来固定对CPs有降解作用的菌体,构成一种高效、快速、能连续处理的废水处理系统,可以有效地减少二次污染,处理含氯酚废水时效果良好,且已表现出了巨大的潜力,成为近年来国内外学者研究的热点。
     本研究采用新型生物载体丝瓜瓤作为固定载体,固定白腐菌中的一种黄孢原毛平革菌(Phanerochaete chrysosporium),控制条件使其在丝瓜瓤上生长,研究中发现其生长速度快,菌丝与载体结合紧密,单位面积菌体数量多。用此固定菌来降解废水中的2,4-二氯酚,探讨了两种固定化方法的可行性,绘制了固定化细胞和游离态细胞的生长曲线,研究了胞外酶和吸附在对2,4-二氯酚的去除中的作用,探讨了pH、温度、摇床转速、初始2,4-二氯酚对2,4-二氯酚降解的影响,并进行了固定化细胞流化床的研究,考察了不同水力停留时间(稀释率)和气体流量对处理效果的影响,并进行了动力学分析。
     结果表明,通过细胞培养过程中同时加入载体,使菌体附着在载体上生长方式实现了黄孢原毛平革菌的固定化,最大生物固定量为0.791g细胞/ g丝瓜瓤;固定化细胞生长速率和生长量均优于悬浮生长;含有胞外酶的培养基对2,4-二氯酚没有明显的降解作用;固定化细胞的最佳降解条件为温度35℃,pH为6,摇床转速为125/min。对于低浓度2,4-二氯酚,固定化细胞和游离细胞的降解速度相当;对于高浓度2,4-二氯酚,固定化细胞具有明显优势,不仅可以耐受更高浓度的2,4-二氯酚,其降解速率也高于游离细胞,最大降解速率是13.95mg/(L·d),是游离细胞的2倍。不同的水力停留时间(稀释率)和气体流量对固定化细胞流化床反应器连续处理2,4-二氯酚的降解效率有很大影响,固定化细胞对2,4-二氯酚降解过程遵循Monod方程,最大反应速率为7.002mg/(L·h),饱和常数为26.045 mg/L。
Chlorophenols(CPs), extensively used as wood preservatives, rust inhibitors, fungicides and herbicides, is rated as a priority pollutant by the US Environmental Protection Agency because of this great ubiquity. The treatment of CPs polluted waste waters has attracted more and more attention. The commonly used procedures for removing CPs from wastewater include flocculation, adsorption, filtration, oxidation and biological treatments, among which biological methods using microorganisms are preferable because of their low cost, effectiveness and the low production of byproducts. The proper carrier could be employed to immobilze efficient microorganisms to form an effective and coutinous waste water treatment system, which has shown great potential and becomes a hotspot of research.
     Phanerochaete chrysosporium, one kind of whit rot fungi, was immobilized on loofa sponge, and was used to remove 2,4-DCP from the aqueous system. The feasibility of two immobilization methods was investigated. The growth curves of immobilized cell and the suspended cell were made. The role of extracellular enzymes in the 2,4-DCP removal was studied. The effects of pH, temperature and rotation speed on the biodegradation were discussed. The effects of residence time and gas flow rate on the biodegradation efficiency by immobilized cell fluid bed ractor were investigated. The kinetics of the immobilized fungus biodegradation on 2,4-DCP was analyzed.
     The results showed that the immobilization could be realized through the growth of the cell on loofa sponge and the biomass could reach 0.791g dry weight/(g sponge discs). The growth rate and the biomass of immobilized fungus were both better than that of suspended cells. The extracellular fluid showed negligible biodegradation of 2,4-DCP, which indicated that the extracellular enzymes were not directly involved in the biodegradation process. The optimum temperature, pH and rotation rate of shaking table for biodegradation by immobilized fungus were 35℃, 6.0 and 125r/min respectively. In sequential batch experiment, the bioactivity of immobilized cells was recovered and improved during the culture and the maximum degradation rate constant of 13.95 mg/(L·d) was reached in run 5. In continuous bioreactor test, the residence time and flow rate affected greatly on the behavior of fluidized bed reactor and the kinetic behavior of the loofa immobilized on loofa sponge was found to follow the Monod equation. The maximum reaction rate was 7.002mg/(L·h), and the saturation constant was 26.045 mg/L.
引文
[1] Fava F,Armenante P M,Kafkewilz D.Aerobic degradation and dechlorination of 2-chlorophenol,3-chlorophenol,and 4-chlorophenol by a Pseudomonas picketii strain. Applied Microbiology,1995,21(5):307-312
    [2] 许士奋,蒋新,谭永睿等. 长江沉积物中痕量氯酚类化合物的测定. 环境化学,2000,19(2):154-158
    [3] 张兵,郑明辉,刘凡岩等. 五氧酚在洞庭湖环境介质中的分布. 中国环境科学,2001,21(2):165-167
    [4] Vallecillo A,Garcia-Encina P A,Pfia M. Anaerobic biodegrade ability and toxicity of chloro phenols. Water Science and Technology,1999,40(8):161-168
    [5] Miyazaki A,Amano T,Saito H, et al. Acute toxicity of chlorophenols to earthworms using a simple paper contact method and comparison with toxicities to fresh water organisms. Chemosphere,2002,47(1):65-69
    [6] Dinesh K,Shi J,Michael H G. Degradation of 2,4,5-trichlorophenol by the lignis -degrading basidiomycete Phanerobhaete chysosporiom. Applied and Environment Microbiology, 1993,59(6):1779-1785
    [7] Zhang X,Wiegel J. Sequential anaerobic degradation of 2,4-dichlorophenol in Fresh waterse diments. Applied and Environment Microbiology,1990,56(4):1119-1127
    [8] Bea-ven Chang,Kao-tzung Liao,Tzu-miang Panetal. Biotransformations of Chlorophenols in riverse diments. Chmistry and Ecology,1995,10(1):105-114
    [9] Spain J C,Zylstra G J,Blake C K. Monohydroxylation of phenol and 2,5 –dichlorophenol by toluened ioxygenase in Pseudomonas putida Pl. Applied and Environment Microbiology,1989,55(10):2648-2652
    [10] 施汉昌,王颖哲,韩英健等. 补充碳源对厌氧生物处理 2,4,6-三氯代酚的影响. 环境科学,1999,20(5):11-15
    [11] Conner M A. Materials Recovery and Energy Production form Solid Wastes. Advanced and Applied Microbial,1976,28(8):878-885
    [12] Scott C D. Immobilized cells: A review of recent literature. Enzyme and Microbial Technology,1987,9(2):66-73
    [13] 韩静淑,赵振英,周礼恺,等. 生物细胞的固定化技术及其应用. 北京:科学出版社,1993
    [14] 范 L-S. 气液固流态化工程. 北京:中国石化出版社,1993,213-214
    [15] Leon R P,Pinheiro H M,Cabral J M. Whole-cell Biocatalysis In Organic Media. Enzyme and Microbial Technology,1998,23(15):483-500
    [16] Scott C D,Arepalli S,Nikolaev,P,et al. Growth mechanism for sigle-wall carbon nanotubes in a laserablation process. Materials Science and Processiong,2001,72(5):573-580
    [17] Nunez M J,Lema J M. Enzymatic pretreatment to enhance oil extraction form fruits and oilseeds. Enzyme and Microbial Technology,1987,9(6):942-951
    [18] Bimbaum S,Larsson P O,Nisbach K. In Process Engineering Aspects Of Immobilized Cells System. Elmsford, New York:Perganlon Press,1986,45-47
    [19] 许苏癸. 固定化细胞发酵酒精的菌株选育及其新工艺的研究:[博士学位论文] . 中国科学院沈阳应用生态研究所,1998
    [20] Cabral J M S. Cell Partitioning in Aqueous Two-Phase Polymer Systems. Annals of the New York Academy of Sciences,1994,434(9):483-486
    [21] Gainer J L,Kirwan D J. Immobilization of microorganism. Annals of the New York Academy of Sciences,1984,434(5):465-467
    [22] Okita W B,Bonham B,Gainer J L. Covalent coupling of microoraganisms to a cellulosic support. Biotechnology and Bioengineering,1985,27(5):632-637
    [23] Willians D,Munnecke D M. The production of ethanol by immobilized yeast cells. Biotechnology and Bioengineering,1981,23(8):1813-1825
    [24] Kinner N E,Eighmy T T. Biological fixed-film systems. Federal Water Pollution Control Act,1985,57(3):526-531
    [25] 施翔,任谦树. 脂吸附法处理对硝基苯酚废水的研究. 南京工业职业技术学院学报,2004,4(2):34-35
    [26] 张秋香,华志明,赵培,等. 活性炭吸附法处理对氨基苯酚生产的废水. 华东理工大学学报,2004,3(3):245-249
    [27] Sahasrabudhe A,Pande A,Modi Vinod. Dehalogenation of a mixture of chloroaromatics by immobilized Pseudomonas sp. USI ex cells. Applied Microbiology and Biotechnology,1991,35(6):830-832
    [28] Ferschl A , Loidl M , Ditzelmuller G , et al. Continuous degradation of 3-chloroaniline by calcium alginate-entrapped cells of Pseudomonas acidovorus CA 28 : influence of additional sustrates. Apllied Microbiology and Biotechnology,1991,35(4):544-550
    [29] Wiesel I, Wubker S M, Rehm H J. Degradation of polycyclic aromatic hydrocarbons by an immobilized mixed bacterial culture. Applied Microbiology and Biotechnology,1993,39(1):110-116
    [30] Wagner K , Hempel D C. Biodegradation by immobilized bacteria in an airlift-loop reactor-Influence of biofilm diffusion limitation. Biotechnology and Bioengineering,1988,31(6): 559-566
    [31] Lee S T,Rhee S K,Lee G M. Biodegradation of pyridine by freely and suspended immobilized Pimelobacter sp. Applied Microbiology and Biotechnology,1994,41(6):652-657
    [32] Park J H,Zhao X,Voice T C. Comparison of biodegradation kinetic parameters for naphthalene in batch and sand column systems by Pseudomonas putida. Environmental Program,2001,20(2):93-102
    [33] Ortega-Calvo J J , Fesch C , Harms H. Biodegradation of sorbed 2,4-dinitrotoluene in a clay-rich, aggregated porous medium. Environmengal Science and Technology,1999,33(21):3737-3742
    [34] Pettigrew C A,Haigler B E,Spain J C. Simultaneous biodegradation of chlorobenzene and toluene by a Pseudomonas strain. Applied and Environmental Microbiology, 1991,57(1):157-162
    [35] Tros M E,Schraa G,Zehnder AJB. Transformation of low concentrations of 3-chlorobenzoate by Pseudomonas sp. Strain B13 : Kinetics and residual concentrations. Applied and Environmental Microbiology,1996,62(2):437-442
    [36] Zhao J S , Singh A , Huang X D , et al. Biotransformation of hydroxylaminobenzene and aminoprenol by Pseudomonas putda 2NP8 cells grown in the presence of 3-nitrophenol. Applied and Environmental Microbiology,2000, 66(6):2336-2342
    [37] Armenante P M,Kafkewitzd,Lewandowski G A,et al. Anaerobic-aerobic treatment of halogenated phenolic compounds. Water Research,1999,33(3):681-692
    [38] Sheih W K,Puhakka J A,Melin E,et al. Immobilized-cell degradation of chlorophenols. Journal of Environmental and Engineering,1990,116(4):683-697
    [39] Lewandowaki G A,Armenante P M,Pak D,et al. Reactor design for hazardous waste treatment using a white rot fungus. Water Research,1990,24(1):75-82
    [40] Anselmo A M,Novais J M. Degradation of phenol by immobilized mycelium of Fusarium flocciform in continuous culture. Water Science and Technology,1992,25(1):1671-1681
    [41] Menke B,Rehm H J. Degradation of mixtures of monochlorophenols and phenol as Substrates for free and immobilized cells of Acaligenes sp A7-2. Applied Microbiology and Biotechnology,1992,37(5):655-661
    [42] Durham D R,Marshall L C,Miller J G,et al. Characterization of inorganic bioreaction that moderate system upsets during fixed-film biotreatment processes.Applied and Environmental Microbiology,1994,60(9):3329-3335
    [43] Livingston A G. A novel membrane bioreactor for detoxifying industrial wastewater:Biodegradation of phenol in synthetically concocted waste water. Biotechnology and Bioengineering,1993,41(10):915-926
    [44] Pai S I,Hsu Y L,Chong N M,et al. Continuous degradation of phenol by Rhodocuss sp. immobilized on granular activated carbon and in caccium alginate. Bioresource Technology,1995,51(1):37- 42
    [45] 桥 本 奖 . 包 括 固 定 化 微 生 物 担 体 を 用 い た 高 度 处 理 技 术 . 用 水 与 废水,1987,29:3-12
    [46] Puhakka J A. Aerobic fluidized-bed treatment of polychlorinated phenolic wood preservative constitutents. Water Research,1992,26(6):765-770
    [47] Sheih W K,Li C T. Performance and kinetics of aerated fluidized bed biofilm reactor. Journal of Environmental Engineering,1990,115(1):65-79
    [48] Siddique M H, Stpierre C C,Biswas N,et al. Immobilized enzyme catalyzed removal of 4-chlorophenol from aqueous solution. Water Research,1993, 27(5):883-890
    [49] Lin J R,Attaway H. Use of co-immobilized biological system to degrade toxic organic compounds. Biotechnology and Bioengineering,1991,38(2):273-279
    [50] Sofer S S. Degradation of 2-chlorophenol by immobilized cell. Federal Water Pollution Control,1990,62(1):73-80
    [51] O’Reilly K T , Crawford R L. Degradation of penta chlorophenol by polyurethane-immobilized Flavobacterium cells. Applied and Environmental Microbiology,1989,55(9):2113-2118
    [52] Crecchio C,Ruggiero P,Pizzigallom D R. Polyphenoloxidases immobilized in organic gels:Properties and Applications in the detoxification of aromatic compounds. Biotechnology and Bioengineering,1995,48(6):585 -591
    [53] Hu Z. Absorption and Biodegration of pentachlorophenols by polyurethane immobilized Flavo bacterium. Environmental Science and Technology,1994,28(2):491
    [54] Wu K,Wisecarver K. Cell immobilization using PVA crosslinked with boric acid. Biotechnology and Bioengineering,1992,39(4):447-449
    [55] Luke A K,Burton S G. A novel application for Neurospora crassa: Progress from batch culture to a membrane bioreactor for the bioremediation of phenols.Enzyme and Microbial Technology,2001,29(6):248-356
    [56] Wang C C,Lee C M,Kuan C H. Removal of 2,4-dichlorophenol by suspended and Immobilized Bacillus insolitus. Chemosphere,2000,41(3):447-452
    [57] Wang J,Qian Y. Microbial degradation of 4-chlorophenol by microorganisms Entrapped in carrageenan-chitosan gels. Chemospere,1999,38(13):3109-3117
    [58] 周定,侯文华. 固定化微生物法处理含酚废水的研究. 环境科学,1990,11(1):2-5
    [59] 王翠红,徐建红,辛晓芸等. 固定化藻菌系统处理含酚废水. 水处理技术,2000,26(4):236-239
    [60] 李小明,杨朝辉,李海英等. 固定化厌氧微生物处理含五氯酚废水. 湖南大学学报,2001,28(2):95
    [61] 李望. 对污染有独特降解作用的白腐真菌. 环境导报,1997,6(1):42-43
    [62] 李慧蓉. 白腐真菌及其技术的潜在工业应用. 工业微生物,1996,26(2):35-39
    [63] 赵继鼎. 中国真菌志-多孔菌科. 北京:科学出版社,1998,43-49
    [64] 黄年来. 中国食用菌百科. 北京:农业出版社,1993,133-138
    [65] 裘维藩. 菌物学大全. 北京:科学出版社,1998,317-385
    [66] Chen C L, Chang H. Abstract Cellulose, Paper and Textile Division. In: ACS/CSJ Chenmical Congress. Honolulu,1979,132
    [67] Kirk T K,Schultz E,Conmnors W J,et al. Influence of culture parameters on lignin metabolism by Phanerochaete chrysosporium. Archives of Microbiology,1978,117(3):277-285
    [68] Leisola M S A, Ulmer D C,Fiechter A. Factors affecting lignin degradation in lignocellulose by Phanerochaete chrysosporium. Archives of Microbiology,1983,137(2):171-175
    [69] Faison B D,Kirk T K. Relationship Between Lignin Degradation and Production of Reduced Oxygen Speicies by Phanerochaete chrysosporium. Applied and Environmental Microbiology,1983,46(5):1140-1145.
    [70] Faison B D,Kirk T K. Factors Involved in the Regulation of a Ligninase Activity in Phanerochaete chrysosporium. Applied and Evironmental Microbiology,1985,49(2):299-304
    [71] 余惠生,黄秀瑜.稻草木素生物降解的研究. 纤维素科学与技术,1993,1(1):12-22
    [72] Hiroi T,Eriksson K E. Microbiological Degradation of Lignin,Part 1. Influence of Cellulose on the Degradation of Lignins by the White-rot Rungus Pleurotusostreatus. Svensk Papperstidning,1976,79(5):157-161
    [73] Hiro T, Eriksson K E. Microbiological Degradation of Lignin,Part 2. Influence of Cellulose upon the Degradation of Calcium Lignosulfonate of Various Molecular Sizes by the White-rot Fungus Pleurotus ostreatus. Svensk Pappperstidning,1976,79(5):162-166
    [74] Kirk T K,Connors W J,Zeikus J G. Microbial decomposition of synthetic 14C labeled lignins in nature:Lignin biodegradation in a variety of natural materials. Applied and Environmental Microbiology,1977,33(3):43-51
    [75] Drew S W,K L Kadam. Lignin metabolism by Aspergillus fumigatus and. white-rot fungi. Development in Industrial Microbiology,1979,20,153-161
    [76] 铺跃武,甄浩铭,冯书庭等. 白腐菌产锰过氧化物酶条件的研究. 菌务系统,1998,17(3):251-255
    [77] 林鹿,邓耀杰,胡健等. 富 N 条件下白腐菌对联苯的降解. 应用与环境生物学报,1999,5(3):320-324
    [78] 李慧荣,陈建海. 黄孢原毛平革菌对五氯酚生物降解研究. 江苏石油化工学院学报,1999,11(2):24-28
    [79] 余慧生. 白腐菌对稻草的生物降解规律及在生物制浆上的潜在应用. 中国造纸,1989,8(1):16-20
    [80] Jeferies T W , Choi S , Kirk I K. Nutritional Regulation of Lignin Degradation by Phanerochaete chrysosporium. Applied and Environmental Microbiology,1981,42(2):290-296
    [81] Reid I D. Effects of nitrogen sources on cellulose and synthetic lignin microbiology degradation by Phanerochaete chrysosporium. Appied and Environmental Microbiology,1983,45(3):838-842.
    [82] Reid I D. Effects of nitrigen supplements on degradation of aspen wood lignin and carbohydrate components by Phanerochaete chrysosporium. Applied and Environmental Microbiology,1983,45(3):830-837
    [83] Harazono K,Kondo R,Sakai K. Bleaching of hardwood kraft pulp with manganese peroxidase from Phanerochaete sordida YK-624 without addition of MnSO4. Applied and Envrionmental Microbiology, 1996,62(3):913-917.
    [84] Paice M G,Reid I D,Bhourbonnais R,et al. Manganese peroxidase, produced by Trametes versicolor during pulp bleaching, demethylates and delignifies kraft pulp. Applied and Environmental Microbiology,1994,59(1):260-265.
    [85] Perie F H , Gold M H. Manganese Regulation of Manganese Peroxidase Expression and Lignin Degradation by the White Rot Fungus DichomitusSqualens. Applied and environmental Microbiology,1991,57(8):2240-2245
    [86] Frederick S Archibald. Lignin peroxidase activity is not important in biological bleaching and delignification of unbleached kraft pulp by trametes versicolor. Applied and Environmental Microbiology,1992,58(9):3101-3109
    [87] Iqbal M, Edyvean R G J. Biosorption of lead, copper and zinc ions on loofa sponge immobilized biomass of Phanerochaete chrysosporium. Minerals Engineering,2004,17(2):217-223
    [88] Tien M , Kirk T K. Lignin peroxidase of Phanerochaete Chrysosporium. Methods in Enzymology,1988,161(2):238-249
    [89] Hofrichter M,Fritsche W. Depolymerization of low-rank coal by extracellular fungal enzyme systems. Part 2. The ligninolytic enzymes of the coal-humic-acid-depolymerizing fungus Nematoloma frowardii b19. Applied Microbiology and Biotechnology,1997,47(4):419-424
    [90] Hiroyuki W,Khadar V,Michael H G. Manganese (Ⅱ) oxidation by manganese peroxidase from the basidiomycete phanerochaete chrysosporium. The Journal of Biological Chemistry,1992,267(33):23688-23694
    [91] Valli K,Gold M H. Degradation of 2, 4-dichlorophenol by lignin degrading fungus Phanerochaete chrysosporium. Journal of Bacterium,1991,173(1) :345-352
    [92] Pallerla S , Chambers R P. Reactor development for biodegradation of pentachlorophenol. Catalysis Today,1998,40(1):103-111
    [93] 刘幽燕,何玉财,李青云,等. 沸石固定化细胞降解氰化物的实验研究. 高校化学工程学报,2005,19(4):532-535
    [94] 董新姣,徐文垚. 丝瓜瓤固定无花果曲霉吸附活性艳蓝 KN-R 的脱色研究. 环境科学学报,2006,26(2):202-207
    [95] Wu J,Yu H Q. Biosorption of 2,4-dichlorophenol by immobilized white-rot fungus Phanerochaete chrysosporium from aqueous solutions. Bioresource Technology,2007,98(2):253-259
    [96] Sato T,Uehara T,Yoshida H,et al. Bioreactor carrier, process for producing the carrier and method for using the same. USA Patent. 6565751,2003-05-20
    [97] Pruden A,Sedran M,Suidan M,et al. Biodegradation of MTBE and BTEX in an aerobic fludized bed reactor. Water Science and Technology. 2003,47(9):123-128
    [98] Jian P W,Lei H W P,Li P D,et al. The denitrification of nitrate contained wastewater in a gas-liquid-solid three-phase flow airlift loop bioreactor. Biochemical Engineering Journal,2003,15(2):153-157
    [99] Simoel I S, Gregory D B, Barnaby J W, et al. Factor influencing the nitrification-efficiency of fluidized bed filter with a plastic bead medium. Aquacultural Engineering,2002,26(1):41-59
    [100] Tsuneda S,Auresenia J,Morise T,et al. Dynamic modeling and simulation of a three-phase fluidized bed batch process for wastewatert reatment. Process Biochemistry,2002,38(4):599- 604
    [101] Melin E S,Jarvinen K T,Puhakka J A. Effects of temperature on chlorophenol biodegration kinetics in fluidized-bed reactors with different biomass carriers. Water Research,1998,32(1):81-90
    [102] Wang T,Wang J,Yang W,et al. Experimental study on bubble behavior in gas-liquid-solid three-phase circulating fluidized beds. Powder Technology. 2003,137(1):83-90
    [103] Yang W G,Wang J F,Wang T F,et al. Experimental study on gas-liquid interfacial area and mass transfercoeficientin three-phasec irculating fluidized beds. Chemical Engineering Journal,2001,84(3):485-490
    [104] Chen W,Yang W G,Wang J F,et al. Characterization of axial and radial liquid mixing in a liquid-solid circulating fluidized bed. Industrial & Engineering Chemistry Research,2001,40(23):5431-5435
    [105] Knesebeck A,Guardani R. Particle distribution in a three-phase fluidized bed under low-to-intermediate Reynolds conditions. Powder Technology, 2004,140(12):30-39
    [106] Abanades J C,Grasa G S. Modeling the Axial and Lateral Mixing of Solids in Fluidized beds. Industrial & Engineering Chemistry Research,2001,40(23):5656-5665
    [107] Deckwer W D,Becker F U,Ledakowicz I W, et al. Microbial removal of ionic mercury in a three-phase fluidized bed reactor. Environmental Science and Technology,20 04,38(6):1858-1865
    [108] Puhakka J A,Jirvinen. Aerobic fluidized bed treatment of polychlorinated phenolic wood reservative constituents. Water Research,1992,26(6):765-770
    [109] 郑礼胜,施汉昌,钱易. 内循环三相生物流化床处理生活污水. 中国环境科学,1999,19(1):51-55
    [110] 黄延林. 生物流化床去除水中 DBPs 先质的实验研究. 环境工程,1998,16(4):28-32
    [111] 张金利,李韦华,袁兵,等. 生物流化床法处理高浓度含酚废水的研究. 化学反应与工艺,2001,17(2):148-152
    [112] 周平,汪诚文,吴晓磊,等. 内循环生物流化床处理石化废水的中试研究.环境科学,1997,18(1):26-29

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700