Lis1/Dynein通路上中心体相关蛋白NudCL和Twa1的功能研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
细胞质Dynein是一类能与微管结合马达蛋白,是细胞内物质运输的主要驱动力之一。目前有证据显示无脑回综合症致病基因Lis1 (Lissencephaly 1)可能参与了Dynein运动能力的调节。在曲霉菌中,细胞核分布基因nudC nuclear distribution gene C)可能是Lis1的同源基因nudF (nuclear distribution gene F)的上游基因,nudC突变将极大降低NudF的蛋白水平。这样,NudC、Lis1和Dynein(其重链是细胞核分布基因nudA的同源基因)等组成了一条从曲霉菌到哺乳类进化上非常保守的调节通路。
     在哺乳动物中,Lis1/Dynein通路更加复杂化和网络化。NudC和Lis1各自存在其同源物,协同这两个蛋白共同发挥作用。这些蛋白和Dynein形成巨大的复合物,共同参与细胞内物质运输、细胞周期和细胞迁移的调控。同时,这条通路上的蛋白大都定位于中心体或沿着微管分布。而中心体作为微管组织中心影响了细胞内绝大多数与微管相关的过程,包括细胞有丝分裂、胞质分裂、细胞内物质转运和细胞迁移。因此,Lis1/Dynein通路的重要性越来越被人们所广泛认识。但是,目前在这条通路中还有一些成员没有被发现,而且已发现的蛋白之间的相互作用的具体机制也并不完全清楚。近年来我们实验室一直从事这条通路上新成员的鉴定以及相互调控机制的研究。在这里我们重点研究了Lis1/Dynein通路中的两个新成员:NudC同源蛋白NudCL (Nuclear distribution gene C Like)和Lis1相关蛋白Twal (Two hybrid associated protein No.1 with RanBPM),并首次观察到了这两个蛋白都定位于中心体上。为了进一步明确NudCL和Twa1的生物学功能,阐明Lis1/Dynein通路的分子调控机制,我们从细胞水平和模式动物胚胎发育的角度来系统研究这两个蛋白的功能。
     第一部分中心体相关蛋白NudCL在细胞胞质分裂及细胞增殖中的作用
     我们实验室先前的工作发现NudCL在高尔基体上有定位,并能通过调节Dynein中间链(Dynein Intermediate Chain, DIC)的稳定性影响细胞有丝分裂的正常进行。这里,我们通过免疫荧光实验发现NudCL蛋白在细胞间期定位于中心体上,在有丝分裂中期富集在纺锤体的双极(spindle poles),在胞质分裂期则集中到中体部位(midbody)。细胞计数和MTT实验显示在哺乳类细胞中过量表达NudCL可以抑制细胞增殖。免疫荧光实验发现NudCL过量表达会导致细胞出现多核现象。实时显微摄影技术结合免疫荧光技术显示,过量表达NudCL后大部分多核细胞的胞质分裂出现异常,主要表现为中体处微管结构的紊乱或中体环的消失。此外,NudCL过量表达还能引起细胞有丝分裂期时间延长,多极纺锤体的出现和染色体分向两极的滞后等一些有丝分裂过程中的异常现象。通过RNAi实验降低NudCL的表达水平我们还发现除了之前已经报道的导致有丝分裂中期染色体排列异常、出现哑铃形细胞核、导致细胞死亡等一些现象以外,在一些越过M期阻滞的细胞中也出现胞质分裂的异常。这些结果提示NudCL可能除了前期发现的在有丝分裂中期的作用外,在胞质分裂期对中体结构的正确形成和两个子代细胞之间连接的剪断可能都有重要的意义。
     第二部分中心体相关蛋白Twa1在细胞迁移和胚胎发育中的作用
     无脑回综合症致病基因Lis1是一个在神经细胞迁移、细胞增殖和存活等过程中扮演重要角色的基因。在小鼠中剔除Lis1基因,小鼠在胚胎发育早期即死亡。人类的Lisl基因突变会导致Ⅰ型无脑回综合症(Lissencephaly),患者大脑皮层平滑,智力低下,寿命短,常有癫痫发作。然而,至今为止尚无LIS1家族成员的报道。我们通过生物信息学分析,发现了在进化上高度保守的Twa1是一个具有Lis1同源结构域(LisH结构域)和LisH羧基端结构域(CTLH结构域)蛋白质。已有报道表明Twa1在细胞核中有定位,并能和RanBPM (Ran-binding protein M)釉Muskelin相互作用,但其功能一直不明。我们的研究发现Twa1除了定位于细胞核里外,在中心体上也有明显定位,能在体内与Lis1/Dynein相结合。愈伤实验和Transwell实验显示,在细胞中降低Twal的蛋白水平会导致细胞迁移受阻。进一步研究发现Twal被降调的细胞在了leading edge处的Dynein分布缺失。此外过量表达缺失LisH功能结构域的Twal突变体也会导致细胞迁移受阻。RT-PCR半定量分析和原位杂交显示,在爪蟾胚胎发育过程中Twal在原肠形成时期(第10-13期)和器官形成时期(第19-30期)表达量较高;并且其表达主要集中在胚胎头部,特别是眼部和脑部。在爪蟾胚胎中显微注射缺失LisH功能结构域的Twal突变体质粒会导致胚胎头部发育严重畸形,严重时会导致死亡。这些结果提示Twal可能与Lis1有部分类似的功能,能参与细胞迁移过程,并在胚胎早期发育,特别是脑和眼部发育中起重要作用。
     以上研究表明,Lis1/Dynein通路中NudCL在细胞胞质分裂中发挥重要作用,Twal则能通过影响细胞迁移进而影响胚胎早期发育过程。通过对这两个新成员的研究,使我们对Lis1/Dynein通路有了更加广泛和深入的了解,也为我们进一步了解中心体蛋白在细胞生命活动的各个方面发挥的功能提供了新的线索。
Cytoplasmic dynein is a major motor protein associated with microtubule in eukaryotic cells, and its major function is transporting cargos along microtubules. Dynein appears to be regulated by Lisl (Lissencephaly 1), a causative gene for classic lissencephaly, wich is required for neuronal migration, cell proliferation and survival. In the filamitous fungus A. nidulans, nudF(nuclear distribution gene F), the homology of Lisl is regulated by nudC(Nuclear distribution gene C), which mutation greatly reduces the protein level of NudF. Thus, NudC, Lisl and dynein form a conserved signaling pathway from fungi to human.
     However, in mammalian cells the Lisl/Dynein pathway is much more complicated. Both NudC and Lisl have their own paralogues. Together with dynein complex, the proteins in this pathway always form a complex and take part in cell cycle regulation and cell migration. Most of them are localized at centosome or along with the microtubule. As a microtubule organizing center (MTOC), centrosome is involved in all microtubule-dependent processes and contributes to bipolar spindle formation, spindle positioning, cytokinesis, cell organelles transporting and cell migration. Therefore, the importance of Lisl/Dynein pathway is widely recognized. However, many proteins in this pathway have not been found and the regulation among these proteins is still not very clear. In the last few years our lab has been engaged in this pathway to identify new members and their functions. Here we focus on two new members of Lisl/Dynein pathway:NudCL (NudC-Like protein) and Twal (Two hybrid associated protein No.1 with RanBPM, Lisl homologue). It is the frist time that both of these two proteins were found to be localized to centrosome. To further explore the Lisl/Dynein pathway, we investigated the functions of NudCL and Twal in mammalian cells as well as in Xenopus embryos.
     Part I:Roles of a centrosome associated protein NudCL in cytokinesis and cell proliferation
     Our previous work demonstrated that NudCL localizes to Golgi and it maintains a normal mitosis by keeping the Dynein intermediate chain (DIC) stable. In this work, we found that NudCL was associated with the centrosome in inerphase and spindle poles at metaphase. During cytokinesis, NudCL was accumulated at the midbody. Cell number counting and MTT assays showed that overexpression of NudCL significantly inhibited cell proliferation. Immunofluorescence and time-lapse microscopy technology showed a significant increase in multinucleated cells in cells overexpressing NudCL. These multinucleated cells are always caused by the failure of cytokinesis. Most of NudCL-overexpressing cells had an abnormal structure of microbubule bundles at the midbody or with a flemming body formation failure. Furthermore, overexpression of NudCL also induced the mitotic delay, formation of multipolar spindle or chromosomes lagging. Depleted endogenous NudCL also induced cytokinesis defects besides multiple mitotic defects. These data suggest that besides the functions in mitosis, NudCL also plays an important role in cytokinesis.
     PartⅡ:Roles of a centrosome associated protein Twal in cell migration and embryonic development
     Lisl has been reported to be required for neuronal migration, cell proliferation and survival. Depletion of Lisl in mice results to embryonic lethal. Mutant of Lisl induces type-1 Lissencephaly in human, and the patients always with smoth brain, mental retardation, and short life. However, no Lis1 homologue has been identified yet. Using gene and protein database, we found a Lisl homologue Twal, which has been reported to be localized to the nuclei and interact with RanBPM (Ran-binding protein M) and Muskelin. By bioinformatics analysis we found that this protein is highly conserved in evolution. Twal contains a Lis homologue domain (LisH domain) and a CTLH domain (C-terminal to LisH domain). Immunofluorescence data showed that besides the nuclear location, Twal also locates at centrosome and midbody. Moreover, Twa1 interacts with Lis1 and Dynein in vivo. Cell wound assay and transwell assay showed that mammalian cells with Twal RNAi suffered migration defects. Futher investigation revealed that compaired with control cells the distrubusion of Dynein in the leading edge was disappeared in Twal RNAi cells. Interestingly, overexpression of Twal-△LisH also leads to cell migration defects. RT-PCR and in situ hybridization analysis in Xenopus embryos showed that Twal highly expresses at gastrulation (st. 10-13) and organogenesis (st.19-30) stages and predominantly expresses in eyes and brain. Microinjection of Twal-ALisH in Xenopus embryos induces loss of head structures and sometimes results to embryonic lethal. These results indicated that Twa1 may be involved in cell migration and is important for embryonic development.
     Taking together, these two centrosome associated proteins, NudCL and Twal in Lis1/Dynein pathway play crucial roles in cells. NudCL is essential for cytokinese, while, Twal is required for embryonic development by regulating cell migration. The study of these two centrosomal proteins gives us an extensive and in-depth understanding of the Lis1/Dynein pathway and provides a new approach for the centrosome function investigation.
引文
[1]Schatten H. The mammalian centrosome and its functional significance. Histochem Cell Biol 2008,129(6):667-686.
    [2]Doxsey S, McCollum D, Theurkauf W. Centrosomes in cellular regulation. Annu Rev Cell Dev Biol 2005,21:411-434.
    [3]Doxsey S. Re-evaluating centrosome function. Nat Rev Mol Cell Biol 2001,2(9):688-698.
    [4]Ou Y, Rattner JB. The centrosome in higher organisms:structure, composition, and duplication. Int Rev Cytol 2004,238:119-182.
    [5]Bornens M. Centrosome composition and microtubule anchoring mechanisms. Curr Opin Cell Biol 2002,14(1):25-34.
    [6]Doxsey S, Zimmerman W, Mikule K. Centrosome control of the cell cycle. Trends Cell Biol 2005,15(6):303-311.
    [7]Kawamura K. Studies on cytokinesis in neuroblasts of the grasshopper, Chortophaga viridifasciata (De Geer). I. Formation and behavior of the mitotic apparatus. Exp Cell Res 1960,21:1-18.
    [8]Khodjakov A, Rieder CL. Centrosomes enhance the fidelity of cytokinesis in vertebrates and are required for cell cycle progression. J Cell Biol 2001,153(1):237-242.
    [9]Piel M, Nordberg J, Euteneuer U, et al. Centrosome-dependent exit of cytokinesis in animal cells. Science 2001,291(5508):1550-1553.
    [10]Chiu YH, Xiang X, Dawe AL, et al. Deletion of nudC, a nuclear migration gene of Aspergillus nidulans, causes morphological and cell wall abnormalities and is lethal. Mol Biol Cell 1997,8(9):1735-1749.
    [11]Dobyns WB, Reiner O, Carrozzo R, et al. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. Jama 1993,270(23):2838-2842.
    [12]Chiu YH, Morris NR. Extragenic suppressors of nudC3, a mutation that blocks nuclear migration in Aspergillus nidulans. Genetics 1995,141(2):453-464.
    [13]Zhou T, Zimmerman W, Liu X, et al. A mammalian NudC-like protein essential for dynein stability and cell viability. Proc Natl Acad Sci U S A 2006,103(24):9039-9044.
    [14]Lin SH, Nishino M, Luo W, et al. Inhibition of prostate tumor growth by overexpression of NudC, a microtubule motor-associated protein. Oncogene 2004,23(14):2499-2506.
    [15]Aumais JP, Williams SN, Luo W, et al. Role for NudC, a dynein-associated nuclear movement protein, in mitosis and cytokinesis.J Cell Sci 2003,116(Pt 10):1991-2003.
    [16]Zhou T, Aumais JP, Liu X, et al. A role for Plkl phosphorylation of NudC in cytokinesis. Dev Cell 2003,5(1):127-138.
    [17]Nishino M, Kurasawa Y, Evans R, et al. NudC is required for Plkl targeting to the kinetochore and chromosome congression. Curr Biol 2006,16(14):1414-1421.
    [18]Glotzer M. Animal cell cytokinesis. Annu Rev Cell Dev Biol 2001,17:351-386.
    [19]Krapp A, Gulli MP, Simanis V. SIN and the art of splitting the fission yeast cell. Curr Biol 2004,14(17):R722-730.
    [20]Skop AR, Liu H, Yates J,3rd, et al. Dissection of the mammalian midbody proteome reveals conserved cytokinesis mechanisms. Science 2004,305(5680):61-66.
    [21]Gromley A, Yeaman C, Rosa J, et al. Centriolin anchoring of exocyst and SNARE complexes at the midbody is required for secretory-vesicle-mediated abscission. Cell 2005,123(1):75-87.
    [22]Guertin DA, Chang L, Irshad F, et al. The role of the sidlp kinase and cdcl4p in regulating the onset of cytokinesis in fission yeast. Embo J 2000,19(8):1803-1815.
    [23]Nigg EA. Polo-like kinases:positive regulators of cell division from start to finish. Curr Opin Cell Biol 1998,10(6):776-783.
    [24]Guertin DA, Trautmann S, McCollum D. Cytokinesis in eukaryotes. Microbiol Mol Biol Rev 2002,66(2):155-178.
    [25]Zhao WM, Seki A, Fang G. Cep55, a microtubule-bundling protein, associates with centralspindlin to control the midbody integrity and cell abscission during cytokinesis. Mol Biol Cell 2006,17(9):3881-3896.
    [26]Bischoff JR, Plowman GD. The Aurora/Ipllp kinase family:regulators of chromosome segregation and cytokinesis. Trends Cell Biol 1999,9(11):454-459.
    [27]Ridley AJ, Schwartz MA, Burridge K, et al. Cell migration:integrating signals from front to back. Science 2003,302(5651):1704-1709.
    [28]Beltman JB, Maree AF, de Boer RJ. Analysing immune cell migration. Nat Rev Immunol 2009,9(11):789-798.
    [29]Pollard TD, Cooper JA. Actin, a central player in cell shape and movement. Science 2009,326(5957):1208-1212.
    [30]Vicente-Manzanares M, Ma X, Adelstein RS, et al. Non-muscle myosin Ⅱ takes centre stage in cell adhesion and migration. Nat Rev Mol Cell Biol 2009,10(11):778-790.
    [31]Vicente-Manzanares M, Webb DJ, Horwitz AR. Cell migration at a glance. J Cell Sci 2005,118(Pt 21):4917-4919.
    [32]Heisenberg CP, Solnica-Krezel L. Back and forth between cell fate specification and movement during vertebrate gastrulation. Curr Opin Genet Dev 2008,18(4):311-316.
    [33]Gomes ER, Jani S, Gundersen GG. Nuclear movement regulated by Cdc42, MRCK, myosin, and actin flow establishes MTOC polarization in migrating cells. Cell 2005,121(3):451-463.
    [34]Burke B, Roux KJ. Nuclei take a position:managing nuclear location. Dev Cell 2009,17(5):587-597.
    [35]Umeda M, Nishitani H, Nishimoto T. A novel nuclear protein, Twal, and Muskelin comprise a complex with RanBPM. Gene 2003,303:47-54.
    [36]Bai J, Ramos RL, Paramasivam M, et al. The role of DCX and LIS1 in migration through the lateral cortical stream of developing forebrain. Dev Neurosci 2008,30(1-3):144-156.
    [37]Schwamborn JC, Knoblich JA. LIS1 and spindle orientation in neuroepithelial cells. Cell Stem Cell 2008,2(3):193-194.
    [38]Shu T, Ayala R, Nguyen MD, et al. Ndell operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 2004,44(2):263-277.
    [39]Kobayashi N, Yang J, Ueda A, et al. RanBPM, Muskelin, p48EMLP, p44CTLH, and the armadillo-repeat proteins ARMC8alpha and ARMC8beta are components of the CTLH complex. Gene 2007,396(2):236-247.
    [40]Gerlitz G, Darhin E, Giorgio G, et al. Novel functional features of the Lis-H domain:role in protein dimerization, half-life and cellular localization. Cell Cycle 2005,4(11):1632-1640.
    [41]Reiner O, Carrozzo R, Shen Y, et al. Isolation of a Miller-Dieker lissencephaly gene containing G protein beta-subunit-like repeats. Nature 1993,364(6439):717-721.
    [42]Gupta A, Tsai LH, Wynshaw-Boris A. Life is a journey:a genetic look at neocortical development. Nat Rev Genet 2002,3(5):342-355.
    [43]Wang X, Tsai JW, Imai JH, et al. Asymmetric centrosome inheritance maintains neural progenitors in the neocortex. Nature 2009,461 (7266):947-955.
    [44]Sun C, Xu M, Xing Z, et al. Expression and function on embryonic development of lissencephaly-1 genes in zebrafish. Acta Biochim Biophys Sin (Shanghai) 2009,41(8):677-688.
    [45]Feng Y, Olson EC, Stukenberg PT, et al. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 2000,28(3):665-679.
    [1]Paschal BM, Vallee RB. Retrograde transport by the microtubule-associated protein MAP 1C. Nature 1987,330(6144):181-183.
    [2]Hirokawa N, Noda Y, Okada Y. Kinesin and dynein superfamily proteins in organelle transport and cell division. Curr Opin Cell Biol 1998,10(1):60-73.
    [3]Gill SR, Schroer TA, Szilak I, et al. Dynactin, a conserved, ubiquitously expressed component of an activator of vesicle motility mediated by cytoplasmic dynein. J Cell Biol 1991,115(6):1639-1650.
    [4]Salina D, Bodoor K, Eckley DM, et al. Cytoplasmic dynein as a facilitator of nuclear envelope breakdown. Cell 2002,108(1):97-107.
    [5]Busson S, Dujardin D, Moreau A, et al. Dynein and dynactin are localized to astral microtubules and at cortical sites in mitotic epithelial cells. Curr Biol 1998,8(9):541-544.
    [6]Howell BJ, McEwen BF, Canman JC, et al. Cytoplasmic dynein/dynactin drives kinetochore protein transport to the spindle poles and has a role in mitotic spindle checkpoint inactivation. J Cell Biol 2001,155(7):1159-1172.
    [7]Burkhardt JK. The role of microtubule-based motor proteins in maintaining the structure and function of the Golgi complex. Biochim Biophys Acta 1998,1404(1-2):113-126.
    [8]Karki S, Holzbaur EL. Cytoplasmic dynein and dynactin in cell division and intracellular transport. Curr Opin Cell Biol 1999,11(1):45-53.
    [9]Gepner J, Li M, Ludmann S, et al. Cytoplasmic dynein function is essential in Drosophila melanogaster. Genetics 1996,142(3):865-878.
    [10]Mallik R, Gross SP. Molecular motors:strategies to get along. Curr Biol 2004,14(22):R971-982.
    [11]Morris NR. Mitotic mutants of Aspergillus nidulans. Genetial research 1915,26:26:237-254.
    [12]Beckwith SM, Roghi CH, Liu B, et al. The "8-kD" cytoplasmic dynein light chain is required for nuclear migration and for dynein heavy chain localization in Aspergillus nidulans. J Cell Biol 1998,143(5):1239-1247.
    [13]Xiang X, Beckwith SM, Morris NR. Cytoplasmic dynein is involved in nuclear migration in Aspergillus nidulans. Proc Natl Acad Sci U S A 1994,91(6):2100-2104.
    [14]Morris NR. Nuclear migration. From fungi to the mammalian brain. J Cell Biol 2000,148(6):1097-1101.
    [15]Willins DA, Liu B, Xiang X, et al. Mutations in the heavy chain of cytoplasmic dynein suppress the nudF nuclear migration mutation of Aspergillus nidulans. Mol Gen Genet 1997,255(2):194-200.
    [16]Dobyns WB, Reiner O, Carrozzo R, et al. Lissencephaly. A human brain malformation associated with deletion of the LIS1 gene located at chromosome 17p13. Jama 1993,270(23):2838-2842.
    [17]Hirotsune S, Fleck MW, Gambello MJ, et al. Graded reduction of Pafahlbl (Lisl) activity results in neuronal migration defects and early embryonic lethality. Nat Genet 1998,19(4):333-339.
    [18]Mesngon MT, Tarricone C, Hebbar S, et al. Regulation of cytoplasmic dynein ATPase by Lisl. J Neurosci 2006,26(7):2132-2139.
    [19]Yamada M, Toba S, Yoshida Y, et al. LIS1 and NDEL1 coordinate the plus-end-directed transport of cytoplasmic dynein. Embo J 2008,27(19):2471-2483.
    [20]Efimo v VP, Morris NR. The LIS1-related NUDF protein of Aspergillus nidulans interacts with the coiled-coil domain of the NUDE/RO11 protein. J Cell Biol 2000,150(3):681-688.
    [21]Feng Y, Olson EC, Stukenberg PT, et al. LIS1 regulates CNS lamination by interacting with mNudE, a central component of the centrosome. Neuron 2000,28(3):665-679.
    [22]Feng Y, Walsh CA. Mitotic spindle regulation by Ndel controls cerebral cortical size. Neuron 2004,44(2):279-293.
    [23]Niethammer M, Smith DS, Ayala R, et al. NUDEL is a novel Cdk5 substrate that associates with LIS1 and cytoplasmic dynein. Neuron 2000,28(3):697-711.
    [24]Liang Y, Yu W, Li Y, et al. Nudel functions in membrane traffic mainly through association with Lisl and cytoplasmic dynein. J Cell Biol 2004,164(4):557-566.
    [25]Shu T, Ayala R, Nguyen MD, et al. Ndell operates in a common pathway with LIS1 and cytoplasmic dynein to regulate cortical neuronal positioning. Neuron 2004,44(2):263-277.
    [26]Sasaki S, Shionoya A, Ishida M, et al. A LIS1/NUDEL/cytoplasmic dynein heavy chain complex in the developing and adult nervous system. Neuron 2000,28(3):681-696.
    [27]Stehman SA, Chen Y, McKenney RJ, et al. NudE and NudEL are required for mitotic progression and are involved in dynein recruitment to kinetochores. J Cell Biol 2007,178(4):583-594.
    [28]Ma L, Tsai MY, Wang S, et al. Requirement for Nudel and dynein for assembly of the lamin B spindle matrix. Nat Cell Biol 2009,11(3):247-256.
    [29]Chiu YH, Xiang X, Dawe AL, et al. Deletion of nudC, a nuclear migration gene of Aspergillus nidulans, causes morphological and cell wall abnormalities and is lethal. Mol Biol Cell 1997,8(9):1735-1749.
    [30]Osmani AH, Osmani SA, Morris NR. The molecular cloning and identification of a gene product specifically required for nuclear movement in Aspergillus nidulans. J Cell Biol 1990,111(2):543-551.
    [31]Chiu YH, Morris NR. Genetic and molecular analysis of a tRNA(Leu) missense suppressor of nudC3, a mutation that blocks nuclear migration in Aspergillus nidulans. Genetics 1997,145(3):707-714.
    [32]Chiu YH, Morris NR. Extragenic suppressors of nudC3, a mutation that blocks nuclear migration in Aspergillus nidulans. Genetics 1995,141 (2):453-464.
    [33]Xiang X, Osmani AH, Osmani SA, et al. NudF, a nuclear migration gene in Aspergillus nidulans, is similar to the human LIS-1 gene required for neuronal migration. Mol Biol Cell 1995,6(3):297-310.
    [34]Gocke CD, Osmani SA, Miller BA. The human homologue of the Aspergillus nuclear migration gene nudC is preferentially expressed in dividing cells and ciliated epithelia. Histochem Cell Biol 2000,114(4):293-301.
    [35]Morris SM, Yu-Lee LY. Expression of RNUDC, a potential nuclear movement protein, in mammalian cells:localization to the Golgi apparatus. Exp Cell Res 1998,238(1):23-32.
    [36]Zhou T, Aumais JP, Liu X, et al. A role for Plkl phosphorylation of NudC in cytokinesis. Dev Cell 2003,5(1):127-138.
    [37]Nishino M, Kurasawa Y, Evans R, et al. NudC is required for Plkl targeting to the kinetochore and chromosome congression. Curr Biol 2006,16(14):1414-1421.
    [38]Aumais JP, Williams SN, Luo W, et al. Role for NudC, a dynein-associated nuclear movement protein, in mitosis and cytokinesis. J Cell Sci 2003,116(Pt 10):1991-2003.
    [39]Morris SM, Albrecht U, Reiner O, et al. The lissencephaly gene product Lisl, a protein involved in neuronal migration, interacts with a nuclear movement protein, NudC. Curr Biol 1998,8(10):603-606.
    [40]Aumais JP, Tunstead JR, McNeil RS, et al. NudC associates with Lisl and the dynein motor at the leading pole of neurons. JNeurosci 2001,21(24):RC187.
    [41]Gocke CD, Reaman GH, Stine C, et al. The nuclear migration gene NudC and human hematopoiesis. Leuk Lymphoma 2000,39(5-6):447-454.
    [42]Pan RM, Yang Y, Wei MX, et al. A microtubule associated protein (hNUDC) binds to the extracellular domain of thrombopoietin receptor (Mpl). J Cell Biochem 2005,96(4):741-750.
    [43]Wei MX, Yang Y, Ge YC, et al. Functional characterization of hNUDC as a novel accumulator that specifically acts on in vitro megakaryocytopoiesis and in vivo platelet production. J Cell Biochem 2006,98(2):429-439.
    [44]Zhang YP, Tang YS, Chen XS, et al. Regulation of cell differentiation by hNUDC via a Mpl-dependent mechanism in NIH 3T3 cells. Exp Cell Res 2007,313(15):3210-3221.
    [45]Lin SH, Nishino M, Luo W, et al. Inhibition of prostate tumor growth by overexpression of NudC, a microtubule motor-associated protein. Oncogene 2004,23(14):2499-2506.
    [46]Chen YQ, Li TY, Qu SH, et al. [Expression and effects of nuclear distribution C (NUDC) protein in nasopharyngeal carcinoma cell lines]. Ai Zheng 2006,25(6):708-712.
    [47]Zhou T, Zimmerman W, Liu X, et al. A mammalian NudC-like protein essential for dynein stability and cell viability. Proc Natl Acad Sci U S A 2006,103(24):9039-9044.
    [48]Garcia-Ranea JA, Mirey G, Camonis J, et al. p23 and HSP20/alpha-crystallin proteins define a conserved sequence domain present in other eukaryotic protein families. FEBS Lett 2002,529(2-3):162-167.
    [49]Cai Y, Yang Y, Shen M, et al. Inhibition of cytokinesis by overexpression of NudCL that is localized to the centrosome and midbody. Cell Res 2009,19(11):1305-1308.
    [50]Liang Y, Yu W, Li Y, et al. Nudel modulates kinetochore association and function of cytoplasmic dynein in M phase. Mol Biol Cell 2007,18(7):2656-2666.
    [51]Yamada M, Toba S, Takitoh T, et al. mNUDC is required for plus-end-directed transport of cytoplasmic dynein and dynactins by kinesin-1. Embo J,29(3):517-531.
    [52]Faircloth LM, Churchill PF, Caldwell GA, et al. The microtubule-associated protein, NUD-1, exhibits chaperone activity in vitro. Cell Stress Chaperones 2009,14(1):95-103.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700