玉米醇溶蛋白改性、界面特性及成膜性研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
玉米醇溶蛋白(zein)疏水性好、易成膜,但纯玉米醇溶蛋白膜脆而易碎,延伸率差,工业化应用难,可用化学方法改变zein成膜性。本文利用玉米淀粉生产的副产物玉米蛋白粉(CGM)为原料提取玉米醇溶蛋白(zein),研究磷酸化改性对zein的物理性质及结构的变化;用界面吸附动力学和界面流变学研究SDS-磷酸化zein复合物的界面吸附和流变特性,模型分析磷酸化zein的吸附特点,推断磷酸化对zein结构的影响。研究塑化剂和磷酸化改性对zein蛋白膜表面和机械性质的影响,用静态和动态接触角分析zein蛋白膜表面亲水/疏水性质及动态润湿变化。
     从玉米蛋白粉中提取玉米醇溶蛋白(zein),用SDS-PAGE电泳、zata电位仪、差异扫描量热法(DSC)和圆二色谱仪(CD)研究zein的性质,结果表明该提取物主要成分为α-zein,等电点pH5.97,Tg为165.42℃;磷酸化后zein蛋白黏度升高,电负性增强,等电点向酸性偏移,二级结构发生变化,结构松散,α-螺旋降低,玻璃态转化温度Tg升高;O-磷酸键和N-磷酸键都存在于磷酸化zein蛋白中,pH5.0、7.0和9.0时磷酸化程度分别为3.31、6.68和5.85mol P/mol zein。
     磷酸化前后zein与不同浓度SDS混合溶液在空气-水界面、油(正己烷)-水界面上的表(界)面压力变化和吸附动力学不同;溶液的表(界)面压力都随吸附时间的增加而增大,各体系的溶质吸附到表(界)面,既有单溶质体系的吸附、渗透和重排,也有多溶质体系的竞争吸附、复合物吸附,甚至不相容吸附;根据Ward和Tordai吸附动力学模型公式得到各蛋白溶液界面上的扩散-控制吸附常数kdiff,判断各体系溶质吸附过程属于扩散-控制吸附,磷酸化提高zein蛋白的界面活性;用半经验公式得到蛋白溶液界面上的渗透速率常数和重排速率常数,分析得知,在研究的吸附时间内,各溶液体系在空气-水表面既有渗透吸附,又有重排现象,油-水界面上则只有强的渗透吸附。
     振动频率增加,空气-水界面或油(正己烷)-水界面上吸附的蛋白溶质(zein蛋白、磷酸化zein蛋白、SDS分子或蛋白与SDS混合)膜的弹性模量( E_d )增加,黏性模量( E_v )降低,且E_d大于E_v,各溶质形成弹性界面膜;随吸附时间延长,各溶液形成的界面膜的E_d和E_v都增加,界面膜的E_d、E_v与吸附在界面上的zein蛋白结构相关;磷酸化程度越高,在空气-水界面上形成的蛋白膜E_v越大,油-水界面上的油相溶剂化作用减弱了界面相内疏水力作用强的zein蛋白分子间的作用力,影响界面蛋白膜的E_d、E_v值。
     亲水/疏水性不同的甘油、油酸和聚乙二醇塑化剂按不同比例加入zein蛋白膜,改变蛋白膜的表面性质和机械性质,各蛋白膜中的水分含量、表面微结构、粗糙度Z值都不相同;甘油含量增加,甘油zein膜的表观接触角下降,而含油酸和聚乙二醇的zein膜的表观接触角却随着塑化剂含量的增加而增大;塑化剂膜表面动态接触角变化速率可用指数方程y = A1×exp (-x/t1) + y0拟合;随着塑化剂含量增加,zein蛋白膜的抗拉强度TS减小,延伸率EB增加。
     磷酸化也改变zein蛋白膜的表面和机械性能,改变效果跟磷酸化程度、添加塑化剂的种类有关;磷酸化增加zein蛋白膜的临界表面张力γc,膜表面疏水性降低;动态接触角变化速率增大,变化幅度与表面微结构和塑化剂种类有关,也可用指数方程y = A1×exp(-x/t1) + y0拟合;磷酸化使zein蛋白膜表面粗糙度Z值增大,但结构紧密,膜的机械性质如延伸率与塑化剂改善的蛋白膜相比提高3~4倍。
     磷酸化后,zein蛋白引入了磷酸根基团,蛋白质的物理性质、界面性质及所成膜的性质都发生改变。磷酸化提高zein蛋白的界面活性,磷酸化程度越高,界面蛋白膜的E_v越大,zein膜的延伸率也显著提高,膜柔韧性效果越好。因此,用磷酸化法改善zein膜的柔韧性有效、可行,适合工业化应用。
Zein, a hydrophobic protein from corn, is often used as food and non-food packaging materials for its good film forming. But pure zein film has poor elongation, and too brittle and fragile to industrial application. This problem may be solved by chemical methods. In this paper, zein was extracted from corn gluten meal (CGM), a by-product of corn starch production, and was phosphorylated by POCl_3. The physical properties of modified zein were determined. In order to evaluate the effective of phosphorylation to zein, the air-water or hexane/water interface properties of modified or un-modified zein with SDS complex solutions were studied by the methods of adsorption kinetics and interfacial rheology. For estimation the structure of phosphorylated zein, the adsorption characteristics were analyzed by a model. Variations in surface and mechanical properties of zein films with plasticizer or phosphorylated zein were also studied. Surface hydrophilic/hydrophilic of zein films and dynamic wetting changes on its surface were evaluated by static and dynamic contact angle. The more details are as follows:
     Properties of zein were determinated by SDS-PAGE electrophoresis, zeta potential instrument, differential scanning calorimetry (DSC), circular dichroism instrument (CD). The data showed thatα-zein was the major components in the extraction, and its physical properties are as follows: Isoelectric point pH5.97, Glass transition temperature (Tg) 165.42℃. After phosphorylation, zein solution possessed higher viscosity and negativity, loosed structure and lower isoelectric point. The far-UV CD data indicated that secondary structures of zein have changed and theα-helix reduced. DSC data showed that the glass transition temperature Tg was increased. Both O-phosphate bond and the N - phosphate bond are present in phosphorylated zein and the degree of phosphorylation at pH5.0, 7.0 and 9.0 was 3.31, 6.68 and 5.85 mol P/mol zein respectively.
     There is variation in surface pressure and absorption kinetics of air-water or oil (hexane)–water interface between zein and modified zein with SDS complex solutions at different concentrations. Surface pressure of all solutions increased with adsorption time. Not only adsorption, penetration and rearrangement in single system, but also competitive, complexation or even incompatibility adsorption in mixed system would be appear during solute adsorbed to interface. The process of adsorption belong to diffusion-controlled adsorption according to the diffusion rate constant kdiff calculated by a formula proposed by Ward and Tordai, and the result of diffusion-determining during adsorption was attained. Interface active of zein was improved after phosphorylation. The rate of penetration and rearrangement of adsorbed zein molecules have also been analyzed by a semi-empirical equation: The data showed that within adsorption time, adsorption at air-water interface has not only penetration but also rearrangement, while only strong penetrations at oil-water interface.
     Another important feature of protein-based films is rheologiy at interface. With frequency increases, more solute of zein, phosphorylated zein, SDS molecules or zein-SDS complex were adsorbed onto interface of air-water or oil-water, resulting in the increase of elastic modulus (E_d) and the decrease of viscosity modulus (E_v). The flexible interfacial protein film was attained and E_d is greater than E_v. E_d and E_v at the two type interfeaces should be very dependant on the different structure of protein in interfacial films and increased with time. The E_v at air-water interface increased with the degree of phosphorylation increased. Effect of oil salvation at oil-water interface reduced the force between the hydrophobic protein molecules, affecting E_d, E_v value.
     Surface properties and mechanical properties of zein protein films, including water content, micro-structure and roughness Z of film surface, were changed by adding different proportions plasticizers, which properties of hydrophilic/hydrophobic are different each other. The apparent contact angle of zein film containing glycerol decreased with plasticizer increased, while the film containing oleic acid or polyethylene glycol plasticizer has the opposite result. A exponential equation y = A1×exp(-x/t1) + y0 can be fitted with the rate changes of dynamic contact angle on zein films. Tensil strength (TS) decreased and elongation (EB) increased by adding more plasticizers. Changes on surface and mechanical properties also happen to the phosphorylated zein films, and be affect by the degree of phosphorylation and type of plasticizer. Phosphorylated zein films possessed higher critical surface tensionγc, lower hydrophobicity and higher dynamic contact angle rate. The magnitude of changes was depended on micro-structure and type of plasticizer. Exponential equation y = A1×exp (-x/t1) + y0 also suit to dynamic contact angle of phosphorylated zein films. Elongation of phosphorylated zein films, possessed compact structure, has 3~4 times than the films with plasticizer only, although its roughness Z is larger than plasticizer films.
     After phosphorylation, phosphoryl group was introduced into zein molecules, resulting in changes on physical properties, interfacial properties and the film forming properties. The elongation of phosphorylated zein films has improved dramatically and the E_v of interfacial films also increased with the degree of phosphorylation increased. Thus, phosphorylation is an effective, feasible method to improve the flexibility of zein films, suitable for industrial applications.
引文
[1]美国农业部:2009年美玉米产量创下历史最高纪录. www://foods1.com/content/ 891101/ 2010.
    [2] Lawton, J. W., Viscoelasticity of zein-starch doughs[J]. Cereal Chemistry. 1992, 69: 351-355.
    [3]王冠禹,陈野,杜悦,玉米蛋白粉研究进展[J].农产品加工. 2008, 142(7): 85-88.
    [4] Watson, S.A., Ramstad, P.E., Corn: chemistry and technology[J]. American Association of Cereal Chemists. 1987, 113-118
    [5] Cheryan, R. S. M., Zein: the industrial protein from corn[J]. Industrial Crops and Products, 2001, 13: 171-192.
    [6]玉米种植及利用史. http://www.chinacrops.org/jxjy/16.htm 2010.
    [7] XU Wei Jie, Yang Yi Qi, An acidic method of zein extraction from DDGS[J]. J. Agric. Food Chem. 2007, 55(15): 6279-6284.
    [8] Kim S., Aggregate formation of zein and its structural inversion in aqueous ethanol[J]. Journal of Cereal Science. 2008, 47: 1-5.
    [9] Mathesis Gunter, Chemical phosphorylation of food proteins: An overview and a Prospectus. J. Agric. Food Chem. 1984, 32: 699-705.
    [10] Tatiana C., Bicudo, R. C. B., Zein secondary structure in solution by circular dichroism. Biopolymers. 2007, 89(3): 175-178.
    [11] Wang Q., Geil P., Padua G., Role of hydrophilic and hydrophobic interactions in structure development of zein films[J]. Journal of Polymers and the Environment. 2004, 12(3): 197-202.
    [12] Martin A., Martinez F., Malfeito J., et al. Zeta potential of membranes as a function of pH -optimization of isoelectric point evaluation[J]. Journal of Membrane Science. 2003, 213 (1-2): 225-230.
    [13] Gillgren T., Stading M.. Mechanical and barrier properties of avenin, kafirin, and zein films[J]. Food Biophysics 2008, 3(3): 287-294.
    [14] Gianzza E., Righeti, P.G., Pioli, F., Size and charge heterogeneity of zein in normal andOpaque-2 maize endosperms[J]. Maydica. 1976, 21: 1-17.
    [15] Mertz E.T., Lloyd N.E., Bressani, R.. Studies on corn proteins II: Electrophoretic analysis of germ endosperm extracts[J]. Cereal Chem. 1958, 35:146-155.
    [16]. Paulis J.W.. Disulfide structures of zein proteins from corn endosperm[J]. Cereal Chem. 1981, 58: 542-546.
    [17] Shukla, R., Cheryan, M., Solvent extraction of zein from dry milled corn[J]. Cereal Chem. 2000, 79: 435-441
    [18] Craine E.M., Freimuth D.V., Boundy F.A. et al. Preparation of purified zein by adsorption-desorption[J]. Cereal Chem. 1961, 38: 399-407.
    [19] Landry J., Guyon P.. Zein of the maize grain: I. Isolation by gel filtration and characterization of monomeric and dimeric species[J]. Biochimie. 1984a, 66: 451-460.
    [20]. Esen A.. Separation of alcohol-soluble proteins(zeins) from maize into fractions by differential solubility[J]. Plant Physiol. 1986, 80: 623-627.
    [21] Guille M.C., Ihlb M., Bifanib A. et al. Edible films made from tuna-fish gelatin with antioxidant extracts of two different murta ecotypes leaves[J]. Food Hydrocolloids. 2007, 21: 1133-1143.
    [22] Argos p., Pedersen K., Marks M.D.M.et al. A structural model for maize zein proteins[J]. J. Biol. Chem. 1982, 257: 9984-9990.
    [23] Cabra V., Arreguin R., Vazquez-Duhalt R. et al. Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics 2006, 1764(6): 1110-1118.
    [24] Danzer L.A., Rees. E.D., Purification of zein on a laboratory scale by charcoal or gel filtration[J]. Cereal Chem. 1971, 48: 118-120.
    [25] Wang, Y., Processing and characterization of extruded and zein-based biodegradable films. doctor's thesis 2004.
    [26] Hamaker B.R., Mohamed A.A., Habben J.E. et al. Efficient procedure for extracting maize and sorghum kernel proteins reveals higher prolamin contents than the conventional method[J]. Cereal Chem. 1995, 72: 583-588.
    [27] Mangavel C., Barbot J., Gueguen J. et al. Molecular determinants of the influence of hydrophilic plasticizers on the mechanical properties of cast wheat gluten films[J]. Journal of Agricultural and Food Chemistry. 2003, 51 (5): 1447-1452.
    [28] Manley R.H., Evans C.D.. Binary solvents for zein[J]. Ind. Eng. Chem.1943, 35: 661-665.
    [29] A.F., P., Zein[J]. Encyclopedia of polymer science and technology. 1971, 15: 125-132.
    [30] Parris N., Coffin D.R., Composition factors affecting the water vapor permeability and tensile properties of hydrophilic zein films[J]. J. Agri. Food Chem. 1997, 45: 1596-1599.
    [31] Augustine M.E., Baianu I.C., Basic studies of corn proteins for improved solubility and future utization: A physiochemical approach[J]. J. Food Sci. 1987, 52: 649-652.
    [32] Yamada K., Noguchi A., Takahashi H., Effects of the solvents on properties of zein[J]. Nippon Shokuhin Kagaku Kogakukaishi 1996, 43,:306-312.
    [33] Zhu Fang Yi., Munir Cher Yan, Fractionation of zein by size exclusion chromatography[J]. Agric. Food Chem. 2007, 55(10): 3843-3849.
    [34] Neumann P.E., Wall J.S., Chemical and physical properties of proteins in wet-milled corn gluten[J]. Cereal Chem. 1984, 61: 353-356.
    [35] Gillgren T., Barker, S. A., Belton, P. S. et al. Plasticization of zein: A thermomechanical, FTIR, and dielectric study[J]. Biomacromolecules 2009, 10(5): 1135-1139.
    [36] Wu Y.V., Sexson K.R., Wall J.S., Protein-rich residue from corn alcohol distillation: fractionation and characterization[J]. Cereal Chem. 1981, 58: 343-347.
    [37] Fu J.X., Wang H.J., Zhou, Y.Q.. Antibacterial activity of ciprofloxacin-loaded zein microsphere films[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems 2009, 29(4): 1161-1166.
    [38] Georget D. M. R. Barker, S. A. Belton, P. S.. A study on maize proteins as a potential new tablet excipient[J]. European Journal of Pharmaceutics and Biopharmaceutics 2008, 69(2): 718-726.
    [39] Takahashi K.; Ogata A.; Yang W. H. et al. Increased hydrophobicity of carboxymethyl starch film by conjugation with zein[J]. Bioscience Biotechnology and Biochemistry. 2002, 66(6):1276-1280.
    [40] Lee J. W., Son S. M., Hong S. I.. Characterization of protein-coated polypropylene films as a novel composite structure for active food packaging application[J]. Journal of Food Engineering 2008, 86(4): 484-493.
    [41] Chen Yao, X. L., Tangying Song, Electrospinning and crosslinking of zein nanofiber mats[J]. Journal of Applied Polymer Science, 2007, 103: 380-385.
    [42] Bromberg L., Zein-Poly(N-isopropylacrylamide) conjugates[J]. J. Phys. Chem. B, 1997, 101(4): 504-507.
    [43] Croston, C.B., Evans, C.D., Smith, A., Zein fibers: preparation by wet spinning[J]. Ind. Eng. Chem. 1945, 42: 482-485.
    [44] Pomes, A.F, Zein[M]. In: Mark, H. (Ed.), Encyclopedia of Polymer Science and Technology, 1971. 15. Wiley, New York, 125-132.
    [45] McGowan, B. A.; Lee, S. Y., Comparison of methods to analyze time-intensity curves in a corn zein chewing gum study[J]. Food Quality and Preference 2006, 17(3-4): 296-306.
    [46] Yang, Y. W., L.; Li, S. Formaldehyde-free zein fiber preparation and investigation[J]. J. Appl. Polym. Sci. 1996, 59(3): 433-441.
    [47] Wu Q. X.; Yoshino T.; Sakabe H. et al. Chemical modification of zein by bifunctional polycaprolactone (PCL)[J]. Polymer 2003, 44(14): 3909-3919.
    [48] Nicholas Parris, L. C. D., Jack L. Wiles, Robert A. et al. Enzymatic hydrolysis, grease permeation, and water barrier properties of zein isolate coated Paper[J]. J. Agric. Food Chem. 2000, 48(3): 890-894.
    [49] Oswaldo Hernández, U. E., Juscelino Tovar, In vitro digestibility of edible films from various starch sources[J]. Carbohydrate Polymers 2007.
    [50] Kris E. Spence, J.-l. J., and Anthony L. Pometto III, dialdehyde starch and zein plastic: mechanical properties and biodegradability[J]. Journal of Environmental Polymer Degradation. 1995, 3(2): 69-74.
    [51] Hershko V., Nussinovitch A., Relationships between hydrocolloid coating and mushroom structure[J]. Journal of Agricultural and Food Chemistry 1998, 46(8): 2988-2997.
    [52] Lai H. M., Padua G. W., Properties and microstructure of plasticized zein films[J]. Cereal Chemistry 1997, 74(6): 771-775.
    [53] Lai H. M., Padua G. W., Wei L. S.. Properties and microstructure of zein sheets plasticized with palmitic and stearic acids[J]. Cereal Chemistry 1997, 74(1): 83-90.
    [54] Byaruhanga Y. B., Erasmus C., Emmambux M. N. et al. Effect of heating cast kafirin films on their functional properties[J]. Journal of the Science of Food and Agriculture 2007, 87(1): 167-175.
    [55] Boundy F.A., Turner F.E., Wall F.S. et al. Influence of commercial processing on composition and properties of corn zein[J]. Cereal Chem. 1967, 44: 281-287.
    [56] Pilar Herna ndez-Munoza, Ricardo Villalobosb, Amparo Chiralt. Effect of thermal treatments on functional properties of edible films made from wheat gluten fractions[J]. Food Hydrocolloids 2004, 18: 647-654.
    [57] Ildiko T., Alternative polymers and processes for coating[J]. 2006.
    [58] Nicholas Parris, Kevin B., Hicks, Encapsulation of essential oils in zein nanospherical Particles[J]. J. Agric. Food Chem. 2005, 53(12): 4788-4792.
    [59] Cagri A., Ustunol Z., Ryser E. T.. Antimicrobial edible films and coatings[J]. Journal of Food Protection 2004, 67(4): 833-848.
    [60] Parris N., Dickey L. C., Cooke P. H. et al. Enzymatic hydrolysis of zein wax coatedpaper[J]. J. Agric. Food Chem. 1998, 46(10): 4056-4059.
    [61] Tang Chuan-He, Wen Qi-Biao , Yang Xiao-Quan, Effect of transglutaminase treatment on the properties of cast films of soy protein isolates[J]. Journal of Biotechnology, 2005, 120: 296-307.
    [62] Zhu Jian Hua, Ijaz Ahmad, Jiang Yue Ming et al. Effect of guar gum on the rheological, thermal and textural properties of soybeanβ-conglycinin gel[J]. International Journal of Food Science & Technology. 2009, 44: 1314-1322.
    [63] Seung Yong Choa, Heather P. Battc, Ronald L. Thomas, Edible films made from membrane processed soy protein concentrates[J]. LWT. 2007, 40: 418-423.
    [64] Hulda Chambi, C. G., Edible films produced with gelatin and casein cross-linked with transglutaminase[J]. Food Research International. 2006, 39: 458-466.
    [65] Gordon W., Selling D. J. S., Debra E.. Effect of water and tri(ethylene) glycol on the rheological properties of zein[J]. Polymer 2004, 45: 4249-4255.
    [66] Jun-Hyun Oh, Perris D., Field Heshmat. Characteristics of edible films made from dairy proteins and zein hydrolysate cross-linked with transglutaminase[J]. International Journal of Food Science and Technology. 2004, 39: 287-294.
    [67] Naina Rangavajhyala, V. G., Milford Hanna, Solubility and molecular properties of heat-cured soy protein films[J]. J. Agric. Food Chem. 1997, 45(11): 4204-4208.
    [68] Maria Rodr?′guez, Khalid Ziani, Juan I. Mate, Combined effect of plasticizers and surfactants on the physical properties of starch based edible films[J]. Food Research International. 2006, 39: 840-846.
    [69] Galdeano M. C., Grossmann M. V. E., Mali S. et al. Effects of production process and plasticizers on stability of films and sheets of oat starch[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems. 2009, 29(2): 492-498.
    [70] Barreto, Crespo J.S., Maciel G.R. Effect of concentration, temperature and plasticizer content on rheological properties of sodium caseinate and sodium caseinate/sorbitol solutions and glass transition of their films[J]. Food Chemistry. 2003, 82: 425-431.
    [71] Lai H. M., Padua G. W.. Water vapor barrier properties of zein films plasticized with oleic acid[J]. Cereal Chemistry. 1998, 75(2): 194-199.
    [72] Santosa F. X. B., Padua G. M.. Thermal behavior of zein sheets plasticized with oleic acid[J]. Cereal Chemistry. 2000, 77(4): 459-462.
    [73] Wang Ying, Water sorption properties of extruded zein films. J. Agric. Food Chem. 2004, 52, (10), 3100~3105.
    [74] Easteal M. T., A. J.. Modification of zein films by incorporation of poly(ethyleneglycol)s[J]. Polymer International 2000, 49: 127-134.
    [75] Gao Chunli, Nikolaus Wellner, Mary L. Parker, et al. Plasticization of a protein-based film by glycerol: A spectroscopic, mechanical, and thermal study[J]. J. Agric. Food Chem. 2006, 54(13): 4611-4616.
    [76] Yoshinoa Tomoyuki, S. I., Takaaki Maekawac. Influence of preparation conditions on the physical properties of zein films[J]. AOCS, 2002, 79(4): 345-349.
    [77] David J., Sessa A. M., Jeffrey Byars. Properties of films from corn zein reacted with glutaraldehyde[J]. Journal of Applied Polymer Science. 2007, 105: 2877-2883.
    [78] Tutas M. A.. Water aorption and water vapour permeability properties of polysaccharide (Locust Bean Gum) based edible films[J].LWT. 2000, 33(1): 63-67.
    [79] Bertuzzi M.A., Armada M., Gottifredi J.C., Water vapor permeability of edible starch based films[J]. Journal of Food Engineering. 2007, 80: 972-978.
    [80] Nazan K., Turhan F. S.. Water vapor permeability, tensile properties and solubility of methylcellulose-based edible films[J]. Journal of Food Engineering 2004, 61: 459-466.
    [81] Mahamadou Elhadji Gounga, Zhang Wang, Whey protein isolate-based edible films as affected by protein concentration, glycerol ratio and pullulan addition in film formation[J]. Journal of Food Engineering 2007, 83: 521-530.
    [82]Rungsinee Sothornvit. Oxygen permeability and mechanical properties of banana films[J]. Food Research International. 2007, 40: 365-370.
    [83] Kasi Visalakshi Sundaresan, R. D. L., Molecular mobility and oxygen permeability in amorphous b-lactoglobulin films[J]. Food Hydrocolloids. 2006.
    [84] Chinnan, Gas and water vapor barrier properties of edible films from protein and cellulosic materials[J]. Journalof Food Engineering. 1995, 25: 497-507.
    [85] Ghanbarzadeh B., Oromiehie A. R., Musavi M. et al. Study of mechanical properties, oxygen permeability and AFM topography of zein films plasticized by polyols[J]. Packaging Technology and Science. 2007, 20(3): 155-163.
    [86]Hernaa Pilar, Perry K.. Development and characterization of biodegradable films made from wheat gluten protein fractions[J]. J. Agric. Food Chem. 2003, 51: 7647-7654.
    [87] Sindhu Mathew, Characterisation of ferulic acid incorporated starch–chitosan blend films[J]. Food Hydrocolloids, 2008, 22: 826-835.
    [88] Torres-Giner S., Lagarona J. M.. Characterization of the morphology and thermal properties of zein prolamine nanostructures obtained by electrospinning[J]. Food Hydrocolloids. 2008, 22: 601-614.
    [89] Wang Ying, Graciela W. Padua, Thermal behavior of zein-based biodegradable films[J].Starch. 2003, 55: 25~29.
    [90] Wanga Hua-Jie, Lina Zhi-Xin, Jian-Xi, In vivo biocompatibility and mechanical properties of porous zein scaffolds[J]. Biomaterials. 2007, 28: 3952-3964.
    [91] Yu Long, Yuan Qiang, Chen Ling, Zhang Ximei, Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters[J]. Journal of Applied Polymer Science. 2007, 103: 812-818.
    [92] Meltem Aydinli, Altan Bozden, Mechanical and light transmittance properties of locust bean gum based edible films[J]. Turk J Chem. 2004, 28: 163~171.
    [93] Ghanbarzadeh B., Oromiehie A., Musavi M. et al.. Effect of polyolic plasticizers on rheological and thermal properties of zein resins[J]. Iranian Polymer Journal. 2006, 15(10): 779-787.
    [94] Ghanbarzadeh B., Oromiehi A. R.. Studies on glass transition temperature of mono and bilayer protein films plasticized by glycerol and olive oil[J]. Journal of Applied Polymer Science. 2008, 109(5): 2848-2854.
    [95] Bugs M. R., Forato L. A., Bortoleto-Bugs R. K. et al.. Spectroscopic characterization and structural modeling of prolamin from maize and pearl millet[J]. European Biophysics Journal with Biophysics Letters. 2004, 33(4): 335-343.
    [96] Dong J., Sun Q. S., Wang J. Y.. Basic study of corn protein, zein, as a biomaterial in tissue engineering, surface morphology and biocompatibility[J]. Biomaterials. 2004, 25(19): 4691-4697.
    [97] Frank A., Momany David J. Sessa, Gordon W.. Structural Characterization of r-Zein[J]. J. Agric. Food Chem. 2006, 54: 543-547.
    [98] Ghanbarzadeha Babak, Mohamad Musavib A.R., Oromiehiec, et al. Effect of plasticizing sugars on water vapor permeability, surface energy and microstructure properties of zein films[J]. LWT 2007, 40: 1191-1197.
    [99] Yamamoto N., Ejiri M., Mizuno S.. Biogenic peptides and their potential use[J]. Current Pharmaceutical Design. 2003, 9(16): 1345-1355.
    [100] Ghanbarzadeh Babak, Mohamad Musavi, Zahra Emam D-Jomeh, et al. Effect of plasticizing sugars on rheological and thermal properties of zein resins and mechanical properties of zein films[J]. Food Research International. 2006, 39: 882-890.
    [101] Petersson M., Loren N., Stading M.. Characterization of phase separation in film forming biopolymer mixtures[J]. Biomacromolecules. 2005, 6(2): 932-941.
    [102] Ruso J. M., Deo N., Somasundaran P.. Complexation between dodecyl sulfate surfactant and zein protein in solution[J]. Langmuir 2004, 20(21): 8988-8991.
    [103] Kim S., Lawton J.W., Characterization of zein modified with a mild cross-linking agent[J]. Industrial Crops and Products. 2004, 20: 291-300.
    [104] Soliman E. A., Eldin M. S. M., Furuta M.. Biodegradable zein-based films: Influence of gamma-irradiation on structural and functional properties[J]. Journal of Agricultural and Food Chemistry. 2009, 57(6): 2529-2535.
    [105] Parris Nicholas, Composition factors affecting the water vapor permeability and tensile properties of hydrophilic zein films[J]. J. Agric. Food Chem. 1997, 45(5): 1596-1599.
    [106] Subramanian S., Sampath S.. Adsorption of zein on surfaces with controlled wettability and thermal stability of adsorbed zein films[J]. Biomacromolecules 2007, 8(7): 2120-2128.
    [107] ODonnell P. B., Wu C. B., Wang J. J., et al. Aqueous pseudolatex of zein for film coating of solid dosage forms[J]. European Journal of Pharmaceutics and Biopharmaceutics. 1997, 43(1): 83-89.
    [108] Claudia A., Romero-Bastida, Martin-Polo. Compositional and moisture content effects on the biodegradability of zein/ethylcellulose films[J]. J. Agric. Food Chem. 2004, 52(8): 2230-2235.
    [109] Thomas Karbowiak, Séverine Rigolet, Luc Delmotte, et al. Diffusion of small molecules in edible films: effect of water and interactions between diffusant and biopolymer[J]. Food Chemistry, 2007, 374-382
    [110] Gordon W., Selling J. L., Scott Bean, Rheological studies utilizing various lots of zein in N,N-dimethylformamide solutions[J]. J. Agric. Food Chem. 2005, 53: 9050-9055.
    [111] Brown C. A., Wang B. W., Oh J. H., Antimicrobial activity of lactoferrin against foodborne pathogenic bacteria incorporated into edible chitosan film[j]. Journal of Food Protection. 2008, 71(2): 319-324.
    [112] ?ifdem Mecitoflu, Gü?bilmez b, Alper Arslanoflu. Antimicrobial and antioxidant activity of edible zein films incorporated with lysozyme, albumin proteins and disodium EDTA[J]. Food Research International. 2007, 40: 80-91.
    [113] Del Nobile M. A., Conte A., Incoronato A. L., et al. Antimicrobial efficacy and release kinetics of thymol from zein films[J]. Journal of Food Engineering. 2008, 89(1): 57-63.
    [114]黄国平.玉米醇溶蛋白的超声波提取、改性和释药性能的研究[D],博士论文,广州,华南理工大学,2005.
    [115]王大为,邵信儒,张艳荣.超临界CO2萃取对玉米醇溶蛋白提取率及水解度影响的研究[J].食品科学,2005,8: 166-120.
    [116]汪学荣,阚建全,彭顺清等.用玉米醇溶蛋白涂膜保鲜牛肉的研究[J].农业工程学报,2005,2: 157-120.
    [117]周柏玲,李蕾,孙秋雁等.玉米醇溶蛋白复合膜包衣对核桃仁酸败抑制效果的研究[J].农业工程学报,2004,3: 180-183.
    [118]赵国华,王光慈,陈宗道等.改性对玉米蛋白质功能性质和结构的影响(Ⅱ)酰化[J].中国粮油学报, 2000,4: 14-17.
    [119]赵国华,陈宗道,王光慈等.改性对玉米蛋白质功能性质和结构的影响(Ⅲ)复合改性[J].中国粮油学报, 2001,3: 42-44.
    [120]刘通讯,李缓.低值鱼蛋白磷酸化改性对酶解影响研究[J].食品工业科技,2006,3: 103-105.
    [121]张坤生,李阳阳,任云霞等.聚磷酸钠对大豆分离蛋白的修饰研究[J].中国食品学报,2006,1: 133-137.
    [122]李阳阳,张坤生,任云霞.磷酸化大豆分离蛋白质功能特性的研究[J].食品研究与开发,2005,4: 3-5.
    [123]青木孝良.食品蛋白质磷酸化改性的研究进展[J].食品科学, 2009, 30(11): 252-255.
    [124]王振宇,景秋菊.磷酸化改性提高松仁分离蛋白乳化性研究[J].食品工业科技,2006,5: 66-68.
    [125]潘秋琴,沈蓓英,程霜,花生蛋白质的磷酸化改性[J].中国油脂1997,22(1): 25-27.
    [126]田龙,刘亚伟.三氯氧磷交联木薯淀粉的研究[J].黑龙江造纸,2005, 4: 42-44.
    [127] Venkataraman R.. Effect of surfactants on the dynamic interfacial characteristics of oil-water interfaces[J]. 2006.
    [128] Valrie Lechevalier, Stphane Pezennec, Catherine Gurin-Dubiard, et al. Ovalbumin, ovotransferrin, lysozyme: Three model proteins for structural modifications at the air-water interface[J]. Journal of Agricultural and Food Chemistry. 2003, 51: 6354-6361.
    [129] Lechevalier V., Pezennec S., Guerin-Dubiard C., et al. Evidence for synergy in the denaturation at the air-water interface of ovalbumin, ovotransferrin and lysozyme in ternary mixture[J]. Food Chemistry 2005, 92: 79-87.
    [130] Benjamins, Cagna, LucassenReynders. Viscoelastic properties of triacylglycerol/water interfaces covered by proteins[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 1996, 114: 245-254.
    [131] Le Floch-Fouere C., Lechevalier V., Nau F., et al. Sequential adsorption of egg-white proteins at the air-water interface suggests a stratified organization of the interfacial film[J].Food Hydrocolloids. 2009, 23: 352-365.
    [132]周春霞,杨晓泉,温其标.大豆11S球蛋白在空气-水界面上的吸附动力学[J].食品与生物技术学报. 2006, 25: 58-63.
    [133]周春霞,洪鹏志,杨晓泉等.大豆球蛋白在空气-水和油-水界面上的比较研究[J].现代食品科技. 2007, 24(6): 539-543.
    [134]周春霞,杨晓泉,温其标.空气/水界面上大豆11S球蛋白吸附膜的膨胀特性[J].华南理工大学学报(自然科学版)2006, 34(3): 101-105.
    [135]周春霞,杨晓泉,温其标.大豆球蛋白吸附在油-水界面上的膨胀流变特性[J].中国粮油学报. 2008, 23(4): 75-80.
    [136]周春霞,杨晓泉,温其标.大豆油/水界面上大豆11S球蛋白吸附膜的膨胀流变特性[J].食品研究与开发. 2005, 26(5): 5-9.
    [1] Zhu Fangyi, Munir Cheryan. Fractionation of zein by size exclusion Chromatography[J]. J. Agric. Food Chem., 2007, 55(10): 3843-3849.
    [2] Kris E., Spence, J. J., Anthony L. Pometto III. Dialdehyde starch and zein plastic: Mechanical properties and biodegradability[J]. Journal of Environmental Polymer Degradation, 1995, 3(2): 69-74.
    [3] Gunter Matheis M. H. P., Robert E. Feeney, John R. Whitake. Phosphorylation of casein and lysozyme by phosphorus oxychloride[J]. J. Agric. Food Chem., 1983, 31(2) 379-387.
    [4] Naomi F., Campbell F. F. S., Wayne E. Marshall. Enzymatic phosphorylation of soy protein isolate for improved functional properties[J]. J. Argric. Food Chem., 1992, 40(3): 403-406.
    [5] Susan L., Thomas Richardson, Chemical phosphorylation of bovine beta-Lactoglobulin. Journal of Agricultural and food chemistry 1983, 30(1), 65-70.
    [6] Weijie Xu, N. R., Yang Yiqi. An acidic method of zein extraction from DDGS[J]. J. Agric. Food Chem., 2007, 55(15): 6279-6284.
    [7] David J. Sessa, A. M., Jeffrey A. Byars, Sharon A. H. Hamaker, Selling, G. W.. Properties of films from corn zein reacted with glutaraldehyde[J]. Journal of Applied Polymer Science, 2007, 105: 2877–2883.
    [8] A.F., P. Zein. Encyclopedia of polymer science and technology[M]. New York: Wiley, 1971, 15: 125~132.
    [9] A. L. Medina, D. M., G. Tainturier, D. Lorient. Chemical phosporylation of bovine casein: realtionships between the reacting mixture and the binding sites of the phosphoryl moiety[J]. Food Chemistry, 1996, 57 (2): 261-265.
    [10] Guo H. X., Heinamaki J., Yliruusi J. Stable aqueous film coating dispersion of zein[J]. Journal of Colloid and Interface Science, 2008, 322(2): 478-484.
    [11] Kima S.. Aggregate formation of zein and its structural inversion in aqueous ethanol[J]. Journal of Cereal Science, 2008, 47: 1-5.
    [12] Sakuno M. M., Matsumoto S., Kawai S., et al. Adsorption and structural change of beta-Lactoglobulin at the diacylglycerol-water interface[M]. Langmuir. 2008, 24(20): 11483-11488.
    [13]姚玉静,崔春,邱礼平.食品蛋白质的化学改性研究进展[J].粮食与食品工业, 2006, 13(4): 21-24.
    [14]吴溪,陈国,阚成友.化学改性大豆蛋白质高分子材料研究进展[J].现代化工, 2009, 29(10): 14-18.
    [15]杨铃.蛋白质磷酸化改性研究进展[J].粮食加工2007, 32(3): 66-68
    [16] Weller, D. F. A. C. L. Rheology of zein solutions in aqueous ethanol[J]. J. Agric. Food Chem. 1999,47: 2103-2108.
    [17] Gordon W. Selling , D. J. S., Sample preparation and testing methods affect the physical properties and evaluation of plasticized zein. Industrial Crops and Products 2007, 25: 266-273.
    [18] Tatiana C. Bicudo, R.R. C. B., Lucimara A. Forato, Leila M. Beltramini,Luiz A. R. Batista, et al. Zein secondary structure in solution by circular dichroism[J]. Biopolymers, 2007, 89(3): 175-178.
    [19] Gunter Mathesis, J. R. W. Chemical phosphorylation of food proteins: An overview and a prospectus[J]. J. Agric. Food Chem., 1984, 32: 699-705
    [20]黄汉昌,姜招峰,朱宏吉.紫外圆二色光谱预测蛋白质结构的研究方法[J].化学通报在线预览版.
    [21]青木孝良.食品蛋白质磷酸化改性的研究进展[J].食品科学, 2009, 30(11): 252-255.
    [22] Cabra V., Arreguin R., Vazquez-Duhalt R., et al. Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein[J]. Biochimica Et Biophysica Acta-Proteins and Proteomics, 2006, 1764 (6): 1110-1118.
    [23] Frank A. Momany David J. Sessa, J. W. L., Girdon W. Selling, Sharon A. H. Hamaker, et al. Structural characterization of r-zein[J]. J. Agric. Food Chem., 2006, 54: 543-547.
    [24] Cabra Vanessa, Rafael Vazquez-duhalt, Ameila Farres, Effect of alkaline deamidation on the structure, surface hydrophobicity, and emulsifying properties of the Z19 r-zein. J. Agric. Food Chem., 2007, 55(2): 439-445.
    [25] Soliman M. F. Influence ofγ-irradiation on mechanical and water barrier properties of corn protein-based films[J]. Radiation Physics and Chemistry, 2009, 78: 651~654.
    [26] Lai H. M., Geil P. H., Padua G. W. X-ray diffraction characterization of the structure of zein-oleic acid films[J]. Journal of Applied Polymer Science, 1999, 71 (8): 1267-1281.
    [27] Easteal M., Modification of zein films by incorporation of poly(ethylene glycol)s[J]. Polymer International, 2000, 49: 127-134.
    [28] Wang Ying, Graciela W. Padua, Thermal behavior of zein-based biodegradable films. starch 2003, 55 : 25-29
    [29] Ghanbarzadeh B., Musavi M., Oromiehie A. R., et al. Effect of plasticizing sugars on water vapor permeability, surface energy and microstructure properties of zein films[J]. Lwt-Food Science and Technology, 2007, 40 (7): 1191-1197.
    [30] Long Yu K. D., Yuan Qiang, Chen Ling, et al. Effect of compatibilizer distribution on the blends of starch/biodegradable polyesters[J]. Journal of Applied Polymer Science, 2007, 103: 812-818.
    [1] Valrie Lechevalier T. C., Stphane Pezennec, Catherine Gurin-Dubiard,et al. Ovalbumin, Ovotransferrin, Lysozyme: Three model proteins for structural modifications at the air-water interface[J]. Journal of Agricultural and Food Chemistry, 2003, 51: 6354~6361.
    [2] V. Lechevalier T. C., S. Pezennec C. Guerin-Dubiard, M. Pasco, F. Nau. Evidence for synergy in the denaturation at the air-water interface of ovalbumin, ovotransferrin andlysozyme in ternary mixture[J]. Food Chemistry, 2005, 92: 79~87.
    [3] Benjamins J., Cagna, LucassenReynders. Viscoelastic properties of triacylglycerol/water interfaces covered by proteins[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 1996, 114: 245-254.
    [4] C. Le Floch-Fouere S. B., V. Lechevalier F. Nau, M. Pezolet A. Renault, et al. Sequential adsorption of egg-white proteins at the air-water interface suggests a stratified organization of the interfacial film[J]. Food Hydrocolloids, 2009, 23: 352-365.
    [5]周春霞,杨晓泉,温其标.大豆11S球蛋白在空气-水界面上的吸附动力学]J].食品与生物技术学报, 2006, 25(6): 58-63.
    [6]周春霞,洪鹏志,杨晓泉,温其标.大豆球蛋白在空气-水和油-水界面上的比较研究[J].现代食品科技, 2007, 24(6): 539-543.
    [7]周春霞,杨晓泉,温其标.空气/水界面上大豆11S球蛋白吸附膜的膨胀特性[J].华南理工大学学报(自然科学版), 2006, 34(3): 101-105.
    [8]周春霞,杨晓泉,温其标.大豆球蛋白吸附在油-水界面上的膨胀流变特性[J].中国粮油学报, 2008, 23(4): 75-80.
    [9]周春霞,杨晓泉,温其标.大豆油/水界面上大豆11S球蛋白吸附膜的膨胀流变特性[J].食品研究与开发, 2005, 26(5): 5-9.
    [10] Ruso J. M., Deo N., Somasundaran P. Complexation between dodecyl sulfate surfactant and zein protein in solution[J]. Langmuir, 2004, 20(21): 8988-8991.
    [11] Liggieri L., Ferrari M., Mondelli D., et al. Surface rheology as a tool for the investigation of processes internal to surfactant adsorption layers[J]. Faraday Discussions, 2005, 129: 125-140.
    [12] Baeza R., Pilosof A. M. R., Sanchez C. C., et al. Adsorption and rheological properties of biopolyrners at the air-water interface[J]. Aiche Journal, 2006, 52(7): 2627-2638.
    [13] He Q., Zhang Y., Lu G., et al. Dynamic adsorption and characterization of phospholipid and mixed phospholipid/protein layers at liquid/liquid interfaces[J]. Advances in Colloid and Interface Science, 2008, 140(2): 67-76.
    [14] Zhu Fang Yi, Munir CherYan, Fractionation of zein by size exclusion chromatography. J. Agric. Food Chem. 2007, 55(10): 3843-3849.
    [15] Moore P. B., Langley K., Wilde P. J., Fillery-Travis A., et al. Effect of emulsifier type on sensory properties of oil-in-water emulsions[J]. Journal of the Science of Food and Agriculture, 1998, 76(3): 469-476.
    [16]段世铎,谭逸玲.界面化学[M].高等教育出版社, 1990.
    [17]张福田.分子界面化学基础[M].第一版.上海:上海科学技术文献出版社, 2006: 203-288.
    [18] Yu S. H., McCormack F. X., Voelker D. R., et al. Interactions of pulmonary surfactant protein SP-A with monolayers of dipalmitoylphosphatidylcholine and cholesterol: roles of SP-A domains[J]. Journal of Lipid Research, 1999, 40(5): 920-929.
    [19] Hernandez E. M., Franses E. I. Adsorption and surface tension of fibrinogen at the air/water interface[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2003, 214(1-3): 249-262.
    [20] Eugster E., Taylor S. E., Puhan Z., Eyer H. Adsorption behaviour of whey proteins measured by two different methods[J]. International Dairy Journal, 1998, 8(2): 79-81.
    [21] Kima S.. Aggregate formation of zein and its structural inversion in aqueous ethanol[J]. Journal of Cereal Science, 2008, 47: 1-5.
    [22] Alahverdjieva V. S., Grigoriev D. O., Fainerman V. B., et al. Competitive adsorption from mixed hen egg-white lysozyme/surfactant solutions at the air-water interface studied by tensiometry, ellipsometry, and surface dilational rheology[J]. Journal of Physical Chemistry B, 2008, 112(7): 2136-2143.
    [23] Cornec M., Kim D. A., Narsimhan G. Adsorption dynamics and interfacial properties of alpha-lactalbumin in native and molten globule state conformation at air-water interface[J]. Food Hydrocolloids, 2001, 15(3): 303-313.
    [24] Gicquaud C., Chauvet J. P., Grenier G., et al. Adsorption of actin at the air-water interface: A monolayer study[J]. Biopolymers, 2003, 70(3): 289-296.
    [25] Makievski A. V., Loglio G., Kragel J., et al. Adsorption of protein layers at the water/air interface as studied by axisymmetric drop and bubble shape analysis[J]. Journal of Physical Chemistry B, 1999, 103(44): 9557-9561.
    [26] Miller R., Fainerman V. B., Makievski A. V., et al. Determination of protein adsorption by comparative drop and bubble profile analysis tensiometry[J]. Colloids and Surfaces B-Biointerfaces, 2004, 36(3-4): 123-126.
    [27] Alahverdjieva V. S., Fainerman V. B., Aksenenko E. V., et al. Adsorption of hen egg-white lysozyme at the air-water interface in presence of sodium dodecyl sulphate[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects, 2008, 317(1-3): 610-617.
    [29] Kragel J., O'Neil M., Makievski A. V., et al. Dynamics of mixed protein-surfactant layers adsorbed at the water/air and water/oil interface[J]. Colloids and Surfaces B-Biointerfaces,2003, 31(1-4): 107-114.
    [30] Miller R., Makievski A. V., Frese C., et al. Adsorption kinetics of surfactant mixtures at the aqueous solution - air interface[J]. Tenside Surfactants Detergents, 2003, 40(5): 256-259.
    [31] Gunter Matheis, M. H. P., Robert E. Feeney, et al. Phosphorylation of casein and lysozyme by phosphorus oxychloride[J]. J. Agric. Food Chem., 1983, 31(2): 379-387.
    [32] Li Can-Peng, Y. H., Hiroshi Shinohara, Hisham R. Ibrahim, et al. Phosphorylation of ovalbumin by dry-heating in the presence of pyrophosphate: effect on protein structure and some properties[J]. J. Agric. Food Chem., 2005, 53(12): 4962-4967.
    [33] Parker K. O., W. T. A., Phosphorylation of phosphoenolpyruvate carboxylase from crassula argentea[J]. J. Agric. Food Chem. 1998, 46(10): 4218-4223.
    [34] Li Can-Peng, A. S. S., Hisham R., Ibrahim, et al. Phosphorylation of egg white proteins by dry-heating in the presence of phosphate[J]. J. Agric. Food Chem., 2003, 51(23): 6808-6815.
    [35]杨铃.蛋白质磷酸化改性研究进展[J].粮食加工, 2007, 32(3): 66-68.
    [36] Gunter Mathesis J. R. W. Chemical phosphorylation of food proteins:An overview and a prospectus[J]. J. Agric. Food Chem., 1984, 32: 699-705.
    [37] Klaus Dieter Schwenke R. M., Steffi Dudek, Eckhard Go¨rnitz. Phosphorylation of the 12S globulin from rapeseed (Brassica napus L.) by phosphorous oxychloride: chemical and conformational aspects[J]. J. Agric. Food Chem., 2000, 48(3): 708-715.
    [38] Kruglyakov P. M., Khaskova T. N. Adsorption accumulation of proteins and dyes in foams of solutions and waste water[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2005, 263(1-3): 400-404.
    [1] Aksenenko E. V., Kovalchuk V. I., Fainerman V. B. et al. Surface dilational rheology of mixed surfactants layers at liquid interfaces[J]. Journal of Physical Chemistry C. 2007, 111(40): 14713-14719.
    [2] Miller R., Fainerman V. B., Makievski A. V., et al. Determination of protein adsorption by comparative drop and bubble profile analysis tensiometry[J]. Colloids and Surfaces B-Biointerfaces 2004, 36(3-4): 123-126.
    [3] Patino J. M. R., Garcia J. M. N., Nino M. R. R., Protein-lipid interactions at the oil-water interface[J]. Colloids and Surfaces B-Biointerfaces. 2001, 21(1-3): 207-216.
    [4] Valrie Lechevalier T. C., Stphane Pezennec, Catherine Gurin-Dubiard, et al. Ovalbumin, ovotransferrin, lysozyme: three model proteins for structural modifications at the air-water interface[J]. Journal of Agricultural and Food Chemistry. 2003, 51: 6354-6361.
    [5]周春霞,杨晓泉,温其标,不同流体界面上大豆11S球蛋白吸附膜膨胀黏弹性的比较研究[J].中国油脂, 2006, 31(3): 45-48.
    [6]周春霞,杨晓泉,温其标,大豆球蛋白吸附在油-水界面上的膨胀流变特性[J].中国粮油学报, 2008, 23(4): 75-80.
    [7] Venkataraman R., Effect of surfactants on the dynamic interfacial characteristics of oil-water interfaces[J] 2006.
    [8] Liggieri L., Ferrari M., Mondelli D., Ravera F., Surface rheology as a tool for the investigation of processes internal to surfactant adsorption layers[J]. Faraday Discussions. 2005, 129: 125-140.
    [9] Rodriguez-Capote K., Nag K., Schurch S., Possmayer F., Surfactant protein interactions with neutral and acidic phospholipid films[J]. American Journal of Physiology-Lung Cellular and Molecular Physiology. 2001, 281(1): L231-L242.
    [10] Nino R. R., Patino J. M. R., Surface tension of protein and insoluble lipids at the air-aqueous phase interface[J]. Journal of the American Oil Chemists Society. 1998, 75(10): 1233-1239.
    [11] Li B., Chen H., Wu J. The structure and dynamic properties of mixed adsorption and penetration layers of alpha-dipalmitoylphosphatidylcholine/beta-lactoglobulin at water/fluid interfaces[J]. Colloids and Surfaces B-Biointerfaces. 1999, 15(3-4): 289-295.
    [12] Carp D. J., Wagner J., Bartholomai G. B., Rheological method for kinetics of drainage and disproportionation of soy proteins foams[J]. Journal of Food Science.1997, 62(6): 1105-1109.
    [13] Ritacco H., Cagna A., Langevin D., Oscillating bubble measurements of the compression viscoelasticity of mixed surfactant-polyelectrolyte surface layers[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2006, 282: 203-209.
    [14] Baeza R., Pilosof A. M. R., Sanchez C. C., et al. Adsorption and rheological properties of biopolyrners at the air-water interface[J]. Aiche Journal. 2006, 52(7): 2627-2638.
    [15] Veldhuizen E. J. A., Batenburg J. J., van Golde L. M. G., et al. The role of surfactant proteins in DPPC enrichment of surface films[J]. Biophysical Journal. 2000, 79(6): 3164-3171.
    [16] Le C., Floch-Fouere S. B., Lechevalier V., et al. Sequential adsorption of egg-white proteins at the air-water interface suggests a stratified organization of the interfacial film[J]. Food Hydrocolloids 2009, 23: 352~365.
    [17] Alahverdjieva V. S., Grigoriev D. O., Fainerman V. B., et al. Competitive adsorption from mixed hen egg-white lysozyme/surfactant solutions at the air-water interface studied by tensiometry, ellipsometry, and surface dilational rheology[J]. Journal of Physical Chemistry B 2008, 112(7): 2136-2143.
    [18] Alahverdjieva V. S., Fainerman V. B., Aksenenko E. V., et al. Adsorption of hen egg-white lysozyme at the air-water interface in presence of sodium dodecyl sulphate[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects. 2008, 317(1-3): 610-617.
    [19] Hernandez E. M., Franses E. I., Adsorption and surface tension of fibrinogen at the air/water interface[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2003, 214(1-3): 249-262.
    [20] Miller R., Makievski A. V., Frese C., et al. Adsorption kinetics of surfactant mixtures atthe aqueous solution - Air interface[J]. Tenside Surfactants Detergents. 2003, 40(5): 256-259.
    [21] Mudgil P., Torres M., Millar T. J., Adsorption of lysozyme to phospholipid and meibomian lipid monolayer films[J]. Colloids and Surfaces B-Biointerfaces 2006, 48(2): 128-137.
    [22] Makievski A. V., Loglio G., Kragel J., et al. Adsorption of protein layers at the water/air interface as studied by axisymmetric drop and bubble shape analysis[J]. Journal of Physical Chemistry B. 1999, 103(44): 9557-9561.
    [23] Patino J. M. R., Nino M. R. R., Sanchez C. C., Dynamic interfacial rheology as a tool for the characterization of whey protein isolates gelation at the oil-water interface[J]. Journal of Agricultural and Food Chemistry. 1999, 47(9): 3640-3648.
    [24] McClellan S. J., Franses E. I., Adsorption of bovine serum albumin at solid/aqueous interfaces[J]. Colloids and Surfaces a-Physicochemical and Engineering Aspects 2005, 260 (1-3): 265-275.
    [25] Patino J. M. R., Sanchez C. C., Nino M. R. R., Analysis of beta-casein-monopalmitin mixed films at the air-water interface[J]. Journal of Agricultural and Food Chemistry. 1999, 47(12): 4998-5008.
    [26] Krause J. P.Dudek S.,Schwenke, K. D., Changes in interfacial behaviour, emulsifying and foaming properties of faba bean legumin after modification with dimethylsuberimidate[J] hrung-Food 2000, 44(6):403-406.
    [27]Tatiana C. Bicudo, R. r. C. B., Lucimara A. Forato, Leila M. Beltramini,Luiz A. R. Batista, Rubens Bernardes Filho, Luiz A. Colnago, Zein Secondary Structure in Solution by Circular Dichroism. Biopolymers 2007, Volume 89 / Number 3, 175-178.
    [28]Cheryan, R. S. M., Zein: the industrial protein from corn[J] Industrial Crops and Products. 2001, 13: 171-192.
    [29] Ruso J. M., Deo N., Somasundaran P., Complexation between dodecyl sulfate surfactant and zein protein in solution[J]. Langmuir. 2004, 20(21): 8988-8991.
    [30]张福田.分子界面化学基础[M]. 2006,第一版, (上海科学技术文献出版社), 203-288.
    [31]Gicquaud C., Chauvet J. P., Grenier G., et al. Adsorption of actin at the air-water interface: A monolayer study[J]. Biopolymers. 2003, 70(3): 289-296.
    [32]Noskov, Loglio, Lin. Dynamic surface elasticity of polyelectrolyte/surfactant adsorption films at the air/water interface: Dodecyltrimethylammonium bromide and copolymer of sodium 2-acrylamido-2-methyl-1-propansulfonate with N-isopropylacrylamide[J]. Journal of Colloid and Interface Science. 2006, 301(2): 386-394.
    [1] Cabra V, Arreguin R, Vazquez-Duhalt R. Effect of temperature and pH on the secondary structure and processes of oligomerization of 19 kDa alpha-zein[J]. Biochimica Et Biophysica Acta, 2006, 6: 1110-1118.
    [2] Ghanbarzadeh B, Musavi M, Oromiehie A R. Effect of plasticizing sugars on water vapor permeability, surface energy and microstructure properties of zein films[J]. LWT-Food science and technology, 2007, 40: 1191–1197.
    [3] Wang Q, Wang J F, Geil P H, Padua G W. Zein adsorption to hydrophilic and hydrophobic surfaces investigated by surface plasmon resonance[J]. Biomacromolecules, 2004, 4: 1356-1361.
    [4]Guo Kuan, Zhao Xiaoyan, Zhang Chao. Research progress on improving mechanical properties of zein films[J]. China Oils and Fat(China) 2009, 34(5) : 25-28.
    [5] Wang Y, Padua G W. Water sorption properties of extruded zein films[J]. Journal of Agricultural and Food Chemistry, 2004, 52: 3100-3105.
    [6] Huang Guoping, Yang Xiaoquan. Study on degradable ability and water vapor permeability of zein films[J]. Food Research and Development, 2006, 27(3): 23-25.
    [7] Tian Shaojun,Yan Jingkun,Yan Jing. Effect of different plasticizeron mechanical properties of zein film. Cereals and oils processing(China), 2006, 8: 88-90.
    [8] Myers D. Surfaces, Interfaces and colloids: Principles and applications[M]. John Wiley & Sons, Inc..Second Edition, 1999, 415-447.
    [9] Gillgren T, Barker S A, Belton P S, Georget D M R, Stading M. Plasticization of zein: A thermomechanical, FTIR, and dielectric study[J]. Biomacromolecules, 2009, 10(5) : 1135-1139.
    [10] Ghanbarzadeh B, Oromiehi A R. Biodegradable biocomposite films based on whey protein and zein: Barrier, mechanical properties and AFM analysis[J]. International Journal of Biological Macromolecules, 2008, 43(2) : 209-215.
    [11] Fu J X, Wang H J, Zhou, Y Q, Wang J Y. Antibacterial activity of ciprofloxacin-loaded zein microsphere films[J]. Materials Science & Engineering C-Biomimetic and Supramolecular Systems, 2009, 29(4): 1161-1166.
    [12] Ghanbarzadeh B, Oromiehi A R. Studies on glass transition temperature of mono and bilayer protein films plasticized by glycerol and olive oil[J]. Journal of Applied Polymer Science, 2008, 109(5): 2848-2854.
    [13] Ghanbarzadeh B, Oromiehie A, Musavi M, Razmi E, Milani J. Effect of polyolic plasticizers on rheological and thermal properties of zein resins[J]. Iranian Polymer Journal, 2006, 15(10) : 779-787.
    [14] Fu D J, Weller C L. Rheology of zein solutions in aqueous ethanol[J]. Journal of Agricultural and Food Chemistry, 1999, 47: 2103-2108.
    [15] Zhang Lin, Lu Diannan, Liu Zheng . Dynamic monte carlo simulation of inhibitingprotein aggregation by polymer[J]. Journal of Chemical Industry and Engineering (China), 2008, 59: 153~159.
    [16] Namita D S J, Nicholas J, Turro, Somasundaran P. Surfactant interactions with zein protein[J]. Langmuir, 2003, 19: 5083-5088.
    [17] Parris N, Coffin D R. Composition factors affecting the water vapor permeability and tensile properties of hydrophilic zein films[J]. Journal of Agricultural and Food Chemistry, 1997, 45: 1596-1599.
    [18] Yin S W, Tang C H, Wen Q B. Properties of cast films from hemp (Cannabis sativa L.) and soy protein isolates: A comparative study[J]. Journal of Agricultural and Food Chemistry, 2007, 55: 7399-7404.
    [19] Hershko V, Nussinovitch A. Relationships between hydrocolloid coating and mushroom structure[J]. Journal of Agricultural and Food Chemistry, 1998, 46: 2988-2997.
    [20] Shao Qing, Lu Xiaohua, Lu Linghong, Jiang Shaoyi, Investigation on interaction of propein molecules and solid surface by molecular simulation[J]. Journal of Chemical Industry and Engineering (China), 2006, 57( 9) : 2006~2012.
    [21] Tillekeratne M, Easteal A J. Modification of zein films by incorporation of poly (ethylene glycol)s[J]. Polymer International, 2000, 49: 127-134.
    [22] Wang Q, Geil P, Padua G. Role of hydrophilic and hydrophobic interactions in structure development of zein films[J]. Journal of Polymers and the Environment, 2004, 12: 197-202.
    [1] Cheryan, R. S. M., Zein: the industrial protein from corn[J]. Industrial Crops and Products. 2001, 13: 171-192.
    [2] Easteal M. T., Modification of zein films by incorporation of poly(ethylene glycol)s[J]. Polymer International. 2000, 49: 127-134.
    [3] Barreto P.L.M., Crespo J.S., Maciel G.R., et al. Effect of concentration, temperature and plasticizer content on rheological properties of sodium caseinate and sodium caseinate/ sorbitol solutions and glass transition of their films[J]. Food Chemistry. 2003, 82: 425-431.
    [4] Chinnan, Gas and aterw vapor barrier properties of edible films from protein and cellulosic Materials[J]. Journalof Food Engineering. 1995, 25: 497-507.
    [5] Susan L., Woo T. R., Functional properties of phosphorylatedβ-Lactoglobulin[J]. J. Dairy Sci. 1983, 66: 984-987.
    [6]青木孝良.食品蛋白质磷酸化改性的研究进展[J].食品科学. 2009, 30(11) : 252-255.
    [7]张坤生,李阳阳.食品蛋白质的磷酸化及功能性研究[J].食品研究与开发. 2005, 26(3) : 95-98.
    [8] Torres-Giner S., Lagarona J.M., Characterization of the morphology and thermal properties of Zein Prolamine nanostructures obtained by electrospinning[J]. Food Hydrocolloids. 2008, 22: 601-614.
    [9] Medina A. L., Tainturier G., Lorient D., Chemical phosporylation of bovine casein: realtionships between the reacting mixture and the binding sites of the phosphoryl moiety[J]. Food Chemistry. 1996, 57(2): 261-265.
    [10] Anna Ooma, John R.N., Taylorb, Rheological properties of kafirin and zein prolamins[J]. Journal of Cereal Science. 2008, 47: 109-116.
    [11] Woods K. K., Selling G. W., Improved tensile strength of zein films using glyoxal as a crosslinking reagent[J]. Journal of Biobased Materials and Bioenergy. 2007, 1(2): 282-288.
    [12] Gordon W. Selling, D. J. S., Debra E. Palmquist, Effect of water and tri(ethylene) glycol on the rheological properties of zein[J]. Polymer. 2004, 45: 4249-4255.
    [13] Wang Q., Geil P., Padua G., Role of hydrophilic and hydrophobic interactions in structure development of zein films[J]. Journal of Polymers and the Environment. 2004, 12(3): 197-202.
    [14] Wang Qin, P. G., Graciela Padua, Role of hydrophilic and hydrophobic interactions in structure development of zein films[J]. Journal of Polymers and the Environment. 2004, 12(3): 197-202.
    [15] Namita Deo S. J., Nicholas J. Turro, Somasundaran P., Surfactant interactions with zein protein[J]. Langmuir. 2003, 19: 5083-5088.
    [16] Wang Ying, G. W. P., Water sorption properties of extruded zein films[J]. J. Agric. Food Chem. 2004, 52(10) : 3100-3105.
    [17] Babak Ghanbarzadeha, Mohamad Musavib, Oromiehiec A.R., et al. Effect of plasticizing sugars on water vapor permeability, surface energy and microstructure properties of zein films[J]. LWT. 2007, 40: 1191-1197.
    [18] Myers D., Surfaces, Interfaces, and Colloids: Principles and Applications[M]. John Wiley & Sons, Inc. 1999, Second Edition., 415-447.
    [19] Rankl M., Laib S., Seeger S., Surface tension properties of surface-coatings for application in biodiagnostics determined by contact angle measurements[J]. Colloids and Surfaces B-Biointerfaces. 2003, 30(3): 177-186.
    [20] Gouin H., The wetting problem of fluids on solid surfaces. Part 2: the contact angle hysteresis[J]. Continuum Mechanics and Thermodynamics. 2003, 15(6): 597-611.
    [21] Petersson M., Loren N., Stading M., Characterization of phase separation in film forming biopolymer mixtures[J]. Biomacromolecules. 2005, 6(2): 932-941.
    [22] Ghanbarzadeh B., Oromiehie A., Musavi M., et al. Effect of polyolic plasticizers on rheological and thermal properties of zein resins[J]. Iranian Polymer Journal. 2006, 15(10): 779-787.
    [23] Liu Hongshen, Yu Long, Dean Katherine, et al. Thermal behaviour of high amylose cornstarch studied by DSC[J]. International Journal of Food Engineering. 2005, 1(1): 23-27.
    [24] Santosa F. X. B., Padua G. M., Thermal behavior of zein sheets plasticized with oleic acid[J]. Cereal Chemistry. 2000, 77(4): 459-462.
    [25] Ghanbarzadeh B., Oromiehi A. R., Studies on glass transition temperature of mono and bilayer protein films plasticized by glycerol and olive oil[J]. Journal of Applied Polymer Science. 2008, 109(5): 2848-2854.
    [26] David J., Sess A. M., Jeffrey A. Byars, Properties of films from corn zein reacted with glutaraldehyde[J]. Journal of Applied Polymer Science. 2007, 105: 2877–2883.
    [27] Yao Chen, Song Tangying, Electrospinning and crosslinking of zein nanofiber mats[J]. Journal of Applied Polymer Science. 2007, 103: 380-385.
    [28] Meltem Aydinli M. T., Altan Bozdem, Mechanical and light transmittance properties of locust bean gum based edible films. Turk J Chem. 2004, 28: 163-171.
    [29] Babak Ghanbarzadeh, Mohamad Musavi, Zahra Emam D-Jomeh, et al. Effect of plasticizing sugars on rheological and thermal properties of zein resins and mechanical properties of zein films. Food Research International. 2006, 39: 882–890.
    [30] Li B., Kennedy, Yie X., et al. Preparation and performance evaluation of glucomannan– chitosan–nisin ternary antimicrobial blend film[J]. Carbohydrate Polymers. 2006, 65: 488-494.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700