气液两相流动相界面追踪方法及液滴撞击壁面运动机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在许多领域中都存在着喷雾液滴撞击壁面的现象,不同领域对液滴撞击壁面后的形态及运动要求各有不同。在小型高速柴油机中,随着燃油喷射压力的不断提高,喷雾液滴碰壁现象变得越发明显;如何充分利用燃油喷雾碰壁现象提高柴油机的性能,已成为内燃机界的一个研究热点问题。论文以单液滴撞击壁面为研究对象,开展了气液两相流动相界面追踪方法及液滴撞击壁面运动的基础性研究,研究工作可以深化人们对液滴碰壁运动机制及运动规律的理解,为液滴碰壁现象的控制及利用研究提供理论依据。
     相界面追踪是气液两相流动和液滴撞击壁面运动研究的基础。论文首先根据液滴撞击壁面运动研究的需要,开展了气液两相流动相界面追踪的复合Level Set-VOF方法以及基于复合Level Set-VOF方法的相界面追踪与气液两相流动耦合求解方法的研究。提出了综合了VOF方法和Level Set方法优点的用于气液两相流动相界面追踪的复合Level Set-VOF方法的基本思想,给出了复合Level Set-VOF方法中的相函数初始化方法、相函数对流输运方程求解方法、相界面构造与实现方法以及(?)函数重新距离化方法;提出了基于复合Level Set-VOF方法的相界面追踪与气液两相流动耦合求解流程,解决了相函数与控制方程变量耦合、各求解过程所需参量传递和相互调用以及求解过程先后顺序设定等问题;以无重力静止液滴问题为对象,对气液两相流动数值求解时虚假流动的特征及其影响因素进行了研究,给出了气液两相流动数值求解过程中虚假流动现象产生的原因,并提出采用复合Level Set-VOF方法进行相界面追踪可以作为削弱气液两相流动数值求解时虚假流动现象的一种方法。通过经典算例对论文提出的基于复合Level Set-VOF方法的气液两相流动数值求解方法的精确性进行了分析,表明相对于VOF方法和Level Set方法来说,复合Level Set-VOF方法的精确性有了明显的提高。
     在基于复合Level Set-VOF方法的相界面追踪与气液两相流动耦合求解方法研究的基础上,开展了反映液滴与壁面相互作用的壁面润湿模型及气液两相流动与固壁相互作用耦合求解方法的研究。根据接触角滞后现象,采用唯象分析方法建立了反映接触角滞后性的滞后张力模型;通过固-液-气三相接触线附近区域流动的分析,发现了应力奇点产生的原因;根据前驱膜和夹带膜理论,提出了消除应力奇点问题的方法;在此基础上,建立了基于唯象分析方法的能够反映接触角滞后性及壁面性质对润湿过程影响的壁面润湿模型。提出了一种气液两相流动与固壁相互作用耦合求解时接触线速度计算的改进方法及边界条件的设定方法;并以基于复合Level Set-VOF方法的气液两相流动数值求解方法和建立的壁面润湿模型为基础,实现了气液两相流动与固壁相互作用的耦合求解。对提出的壁面润湿模型和气液两相流动与固壁相互作用耦合求解方法的有效性进行了验证。
     在上述工作基础上,开展了液滴撞击干壁面和湿润壁面运动的研究。分析了液滴撞击干壁面铺展运动时液滴形态及其特征参数的变化历程以及撞击速度对铺展运动液滴形态及其特征参数的影响;研究了液滴撞击干壁面铺展运动过程中液滴中心高度与润湿长度的关系;分析了液滴撞击干壁面铺展运动时压力场的分布特征及其变化特性;研究了液滴撞击干壁面时气泡的产生机制;通过引入前进接触角和指前因子,得到了无量纲润湿长度最大值解析模型的改进模型;建立了液滴撞击干壁面后发生飞溅运动临界条件的理论模型,并提出了发生飞溅的判据;研究了液滴撞击干壁面发生飞溅运动的机制。分析了不同条件下液滴撞击湿润壁面呈现出的波动运动、皇冠几何体运动以及飞溅运动的运动形态以及各种运动形态下运动特征参数的变化规律及其影响因素;研究了液滴撞击湿润壁面后波动运动、皇冠几何体运动以及飞溅运动等几种不同运动形态的形成机制;分析了液滴撞击湿润壁面时飞溅运动产生的条件。
     建立了柴油液滴撞击壁面运动的可视化实验系统;在此基础上,对液滴撞击壁面的运动过程、铺展运动无量纲润湿长度的变化历程、飞溅运动发生的临界速度以及壁面和液体层对液滴撞击壁面运动的影响进行了实验研究,获得了柴油液滴撞击壁面运动时形态特征的变化规律以及柴油液滴撞击壁面运动形态特征的影响因素及影响规律。通过液滴撞击干壁面铺展运动和飞溅运动以及液滴撞击湿润壁面运动的数值计算结果与实验结果的对比,进一步验证了论文提出的液滴撞击壁面运动数值计算方法的有效性。
The phenomenon of spray droplet impacting onto the surface exists in many areas, and it is different in the requirements on the liquid shape and movement after impacting in different areas. In the working process of small high-speed diesel engines, the droplets become more likely impacting onto the cylinder wall with the continuous improvement of the fuel injection pressure, and it has become a hot issue to improve diesel engine performance by taking full advantage of droplets impacting onto the surface for the researchers in the internal combustion engine field. Single droplet impacting onto the surface was set as the research object in this thesis, and the fundamental of interface tracking methods for the gas-liquid two-phase flow and the liquid movements of droplet impacting onto the surface were researched. The fundamental research could be contributed to understanding the mechanism and discipline, and providing theoretical basis for the control technique of droplet impacting onto the surface.
     Interface tracking is the base of the research of the gas-liquid two-phase flow and droplet impinging onto a surface. According to the requirement of the research of droplet impinging onto a surface, the combined Level Set-VOF method used in interface tracking for the gas-liquid two-phase flow and the coupled solution method for the coactions of interface tracking with gas-liquid two-phase flow were promoted. The basic idea and solution chart of combined Level Set-VOF method which is used in interface tracking were presented by carrying forward the advantage of VOF method and Level Set method. The phase function initializing method, the solve method for the convection equations of phase function, the interface structure method and the re-distance method of Φ were provided. The solving processes were worked out, For example, coupled process of phase function with variables of governing equations, the process of the transferring and invoking for variables of governing equations, etc. The characteristics and influencing factors of spurious currents during the solving process of the gas-liquid two-phase flow were studied based on the zero gravity static droplet problem, the cause for the spurious currents was given, and it was proposed that the combined Level Set-VOF method could be an effective way to weaken the spurious currents. The solving performance of combined Level Set-VOF method was analyzed through the computation of some classical two-phase flows, it showed that the combined Level Set-VOF method could compute the problem of incompressible two-phase flows much more precisely than the VOF and Level Set method.
     Based on the methods research of interface tracking and the coupled solution for the coactions of interface tracking with gas-liquid two-phase flow, the researches of wall wetting model which reflects the interaction of liquid droplet with wall and coupled solution method for the coactions of gas-liquid two-phase flow with wall were put forward. According to the phenomena of the contact angle hysteresis, a model of hysteresis tension was established with the method of the phenomenological analysis. The cause of stress singularity was worked out by the flow analysis near the area of solid-liquid-gas three-phase contact line, and a method that could avoid the stress singularity was put forward according to the theory of precursor and entrained film. On the basis of above work, the wall wetting model that could reflect the influences of the contact angle hysteresis and the properties of the wall surface was established. The calculation methods of the contact line speed and the boundary conditions in the process of coupled solution for the coactions of gas-liquid two-phase flows with wall were presented. Based on the combined Level Set-VOF method and the wall wetting model proposed in this thesis, the coupled solution method for the coactions of gas-liquid two-phase flow with wall was achieved. The wall wetting model and the coupled solution method for the coactions of gas-liquid two-phase flow with wall were validated with experimental results.
     On the basis of above work, movements of droplets impacting onto the dry surface and wet surface were studied. While droplets were spreading on the dry surface after impacting, droplet shape variations, characteristic parameter variations and the effect of impacting velocity were analyzed, relation between height and wetting length of droplet was studied, the features of pressure distribution and transformation were analyzed, mechanism of bubble generation and dynamic under an impacting droplet on the dry surface were researched, the theoretical model for predicting the maximum spreading ratio was developed by introducing advancing contact angle and a pre-exponential factor, the theoretical model and mechanism for splashing after droplet impacting onto the dry surface was studied, and the criteria for splashing was presented. While the droplets impacting onto the wet surface, liquid shape variations, laws of characteristic parameter variations and influence factors were studied for the liquid movement of wave, crown and splashing, etc. The formation mechanisms of wave, crown and splashing were researched and the splashing condition while droplet impacting onto a wet surface was analyzed.
     The visual experiment system for diesel droplet impacting onto a surface was built. On the basis of the system, the movement process, variations of dimensionless wetting length, the critical velocity for splashing and the effect of surface and liquid layer height on the droplet movement after impacting were studied by experiments. The law of the droplet shape changing and the effects of influence factors on the droplet shape were achieved. The method for computing droplet impacting onto a surface suggested in this thesis was validated through the comparison of the calculation results with the experimental results on the condition of droplet spreading/splashing on a dry surface after impacting and the liquid movement after droplet impacting onto a wet surface.
引文
[1]Seong Hyuk Lee, Hong Sun Ryou. Development of a new spray/wall interaction model [J]. International Journal of Multiphase Flow,2000,26(1):1209-1234.
    [2]Sang Yong Lee, Sung Uk Ryu. Recent progress of spray-wall interaction research [J]. Journal of Mechanical Science and Technology,2006,20(8):1101-1117.
    [3]万吉安,黄荣华,成晓北.喷雾撞壁模型的发展[J].柴油机设计与制造,2004,(2):28-34.
    [4]贺萍,刘永长,宋军,汪海清.喷雾碰壁对喷雾混合特性的影响[J].车用发动机,1995,(1):11-15.
    [5]Bai C X, Gosman A D. Development of methodology for spray impingement simulation [C]. SAE paper 950283,1995.
    [6]刘宇,隆武强,杜宝国,陈雷.基于喷雾可视化装置的碰撞喷雾研究[J].内燃机工程,2008,29(4):20-23.
    [7]车得福,李会雄.多相流及其应用[M].西安:西安交通大学出版社,2007:529-536.
    [8]Elin O, Gunilla K. A conservative level set method for two phase flow [J]. Journal of Computational Physics,2005,210(1):225-246.
    [9]王晓东,彭晓峰,王补宣.动态湿润与动态接触角研究进展[J].应用基础与工程科学学报,2003,11(04):396-403.
    [10]Gottfried B S, Lee C J, Bell K J. The leidenfrost phenomenon:film boiling of liquid droplets on a flat plate [J]. International Journal of Heat and Mass Transfer,1966,9(11):1167-1188.
    [11]Worthington A M. On the forms assumed by drops of liquids falling vertically on a horizontal plate [J]. Proceedings of the Royal Society of London,1876,25:261-271.
    [12]Worthington A M. A second paper on the forms assumed by drops of liquids falling vertically on a horizontal plate [J]. Proceedings of the Royal Society of London,1877,25:498-503.
    [13]Yarin A L. Drop impact dynamics:splashing, spreading, receding, bouncing... [J]. Annual Review of Fluid Mechanics,2005,38:159-192.
    [14]Harlow F H. PIC and its progeny [J]. Computer Physics Communications,1987,48:1-10.
    [15]Lebaigue O, Jamet D, Duquennoy C, Coutris N. Review of existing methods for direct numerical simulation of liquid-vapor two-phase flows [A]. In:Proceedings of the 6th International Conference on Nuclear Engineering ICONE6348 [C]. San Diego:1998.10-14.
    [16]Cushman R B, Esenkov O E, Mathias B J. A particle in cell method for the solution of two-layer shallow-water equations [J]. International Journal for Numerical Methods in Fluids, 2000,32(5):515-543.
    [17]Harlow F H, Welch J E. Numerical calculation of time-dependent viscous incompressible flow of fluid with free surface [J]. Physics of Fluids,1965,8:2182-2189.
    [18]Daly D J. Numerical study of two-fluid rayleigh-taylor instability [J]. Physics of Fluids,1969, 10:297-307.
    [19]Amsden A A, Harlow F H. A simplified MAC technique for incompressible fluid calculation [J]. Journal of Computational Physics,1970,6:322-325.
    [20]Hirt C W, Nichols B D. Volume of fluid (VOF) method for the dynamics of free boundaries [J]. Journal of Computational Physics,1981,39:201-225.
    [21]Hirt C W, Nichols B D. A computational method for free surface hydrodynamics [J]. Trans ASME. Journal of Pressure Vessel Technology,1981,103(2):136-141.
    [22]Guegffier D, Li J. Volume of fluid interface tracking with smoothed surface stress methods for 3D flows [J]. Journal of Computational Physics,1999,152:423-456.
    [23]Osher S, Sethian J A. Fronts propagating with curvature-dependent speed:algorithms based on hamilton-jacobi formulations [J]. Journal of Computational Physics,1988,79:12-49.
    [24]Sethian J A. Level Set methods [M]. Cambridge:Cambridge University Press,1996.
    [25]Sussman M, Smereka P, Osher S. A level set approach for computing solutions to incompressible two-phase flow [J]. Journal of Computational Physics,1994,114:146-159.
    [26]Chen S, Merriman B, Osher S. et al. A simple Level Set method for solving stefan problems [J]. Journal of Computational Physics,1997,135:8-29.
    [27]Osher S, Fedkiw R. P. Level set method:an overview and some recent results [J]. Journal of Computational Physics,2001,169:463-502.
    [28]Daly B J, Pracht W E. Numerical study of density current surges [J]. Physics of Fluids,1968, 11:15-30.
    [29]Bourlioux A. A coupled level-set volume-of-fluid algorithm for tracking material interfaces [J]. Computational Fluid Dynamics,1995,6:15-22.
    [30]Sussman M, Puckett E G. A coupled level set and volume-of-fluid method for computing 3D axisymmetric incompressible two-phase flows [J]. International Journal of Computational Physics,2000,162:301-337.
    [31]Son G, Hur N. A coupled level set and volume-of-fluid method for the buoyancy-driven motion of fluid particles [J]. Numerical Heat Transfer,2002,42:523-542.
    [32]Son G. Efficient implementation of a coupled level-set and volume-of-fluid method for three-dimensional incompressible two-phase flows [J]. Numerical Heat Transfer,2003,43: 549-565.
    [33]Sun D L, Tao W Q. A coupled volume-of-fluid and level set (VOSET) method for computing incompressible two-phase flows [J]. International Journal of Heat and Mass Transfer,2010,53: 645-655.
    [34]Yarin A L, Weiss D A. Impact of drops on solid surfaces: self-similar capillary waves, and splashing as a new type of kinematic discontinuity [J]. Journal of Fluid Mechanics,1995,283: 141-173.
    [35]Davidson M R. Spreading of an inviscid drop impacting on a liquid film [J]. Chemical Engineering Science,2002,57:3639-47.
    [36]Biance A L, Clanet C, Quere D. First steps in the spreading of a liquid droplet [J]. Physical Review E,2004,69:016301.
    [37]Bush J W M, Aristoff J M. The influence of surface tension on the circular hydraulic jump [J]. Journal of Fluid Mechanics,2003,489:229-38
    [38]Cossali G E, Coghe A, Marengo M. The impact of a single drop on a wetted solid surface [J]. Experiments in Fluids,1997,22:463-72.
    [39]Wang A B, Chen C C. Splashing impact of a single drop onto very thin liquid films [J]. Physics of Fluids,2000,12:2155-2158.
    [40]Rioboo R, Bauthier C, Conti J, Voue M, De Coninck J. Experimental investigation of splash and crown formation during single drop impact on wetted surfaces [J]. Experiments in Fluids, 2003,35:648-652.
    [41]Levin Z, Hobbs P V. Splashing of water drops on solid and wetted surfaces:hydrodynamics and charge separation [J]. Philosophical Transactions of the Royal Society of London, Series A,1971,269:555-585
    [42]Cossali G E, Marengo M, Coghe A, Zhdanov S. The role of time in single drop splash on thin film [J]. Experiments in Fluids,2004,36:888-900
    [43]Sivakumar D, Tropea C. Splashing impact of a spray onto a liquid film [J]. Journal of Fluid Mechanics,2002,14:85-88
    [44]Thoroddsen S T. The ejecting sheet generated by the impact of a drop [J]. Journal of Fluid Mechanics,2002,451:373-81.
    [45]蔡一坤.液滴和液面碰撞[J].力学学报,1989,21(3):273-279.
    [46]Engel O. A water drop collision with solid surface [J]. Journal of research of the National Bureau of Standards,1955,54:281-298.
    [47]Rioboo R, Tropea C, Marengo M. Outcomes from a drop impact on solid surfaces [J]. Sprays, 2001,11:155-165.
    [48]Rioboo R, Marengo M, Tropea C. Time evolution of liquid drop impact onto solid, dry surfaces [J]. Experiments in Fluids,2002,33:112-24.
    [49]Sikalo S, Marengo M. Tropea C, Ganic E N. Analysis of impact of droplets on horizontal surfaces [J]. Experimental Thermal and Fluid Science,2002,25:503-10.
    [50]Scheller B L, Bousfield D W. Newtonian drop impact with a solid surface [J]. AIChE Journal, 1995,41:1357-1367.
    [51]Xu L, Zhang W W, Nagel S R. Drop splashing on a dry smooth surface. [J]. Physical Review Letters,2005,94:184505.
    [52]王晓东.接触角滞后现象与动态润湿分析[D].北京:清华大学,2003.
    [53]Schiaffino S, Sonin A A. Molten droplet deposition and solidification at low Weber numbers [J]. Physics of Fluids,1997,9:3172-3187
    [54]Chandra S, Avedisian C T. On the collision of a droplet with a solid surface [J]. Proceedings of the Royal Society of London Series A,1991,432:13-41.
    [55]Mundo C, Sommerfeld M, Tropea C. Droplet-wall collisions:experimental studies of the deformation and breakup process [J]. International Journal of Multiphase Flow,1995,21: 151-173
    [56]Stow C D, Hadfield M G. An experimental investigation of fluid flow resulting from the impact of a water drop with an unyielding dry surface [J]. Proceedings of the Royal Society of London Series A,1981, (373):419-441.
    [57]Range K, Feuillebois F. Influence of surface roughness on liquid drop impact [J]. Journal of Colloid and Interface Science,1998, (203):16-30.
    [58]施明恒.单个液滴碰击表面时的流体动力学特性[J].力学学报,1985,17(05):419-425.
    [59]毛靖儒,施红辉,俞茂铮等.液滴撞击固体表面时的流体动力特性实验研究[J].力学与实践,1995,17(3):52-54.
    [60]崔洁,陆军军,陈雪莉等.液滴高速撞击固体板面过程的研究[J].化学反应工程与工艺,2008,24(5):390-394.
    [61]陆军军,陈雪莉,曹显奎等.液滴撞击平板的铺展特性[J].化学反应工程与工艺,2007,23(6):506-511.
    [62]李维仲,朱卫英,权生林等.液滴撞击水平固体表面的可视化实验研究[J].热科学与技术,2008,7(2):155-160.
    [63]李西营.液滴撞击固体璧面的实验及理论研究[D].大连:大连理工大学,2010.
    [64]Trujillo M F, Lee C F. Modeling crown formation due to the splashing of a droplet [J]. Physics of Fluids,2001,13:2503-2516.
    [65]Roisman I V, Tropea C. Impact of a drop onto a wetted wall:description of crown formation and propagation [J]. Journal of Fluid Mechanics,2002,472:373-397.
    [66]Fedorchenko A I, Wang A B. On some common features of drop impact on liquid surfaces [J]. Physics of Fluids,2004,16:1349-1365.
    [67]Starov V M, Zhdanov S A, Kosvintsev S R, et al. Spreading of liquid drops over porous substrates [J]. Advances in Colloid and Interface Science,2003,104:123-158.
    [68]Starov V M, Kalinin V V, Chen J D. Spreading of liquid drops over dry surfaces [J]. Advances in Colloid and Interface Science,1994,50:187-221.
    [69]Pasandideh-Fard M, Qiao Y M, Chandra S, Mostaghimi J. Capillary effects during droplet impact on a solid surface [J]. Physics of Fluids,1996,8:650-659.
    [70]Bennett T, Poulikakos D. Splat-quench solidification:estimating themaximum spreading of a droplet impacting a solid surface [J]. Journal of Materials Science,1993,28:963-970.
    [71]Kwon T J. Simulating collisions of droplets with walls and films using a level set method [D]. Purdue University,2003.
    [72]Xu H, Liu Y, He P, Wang H. The TAR model for calculation of droplet/wall impingement [J]. Journal of Fluids Engineering,1998,120:593-597.
    [73]Kim H Y, Chun J H. The recoiling of liquid droplets upon collision with solid surfaces [J]. Physics of Fluids,2001,13:643-659.
    [74]Okumura K, Chevy F, Richard D, Quere D, Clanet C. Water spring:a model for bouncing drops [J]. Europhysics Letters,2003,62:237-243.
    [75]Roisman I V, Rioboo R, Tropea C. Normal impact of a liquid drop on a dry surface:model for spreading and receding [J]. Proceedings of the Royal Society of London Series A,2002,458: 1411-1430.
    [76]Roisman I V, Prunet-FochB, Tropea C, Vignes-AdlerM. Multiple drop impact onto a dry solid substrate [J]. Journal of Colloid and Interface Science,2002,256:396-410.
    [77]覃群,张群生.单液滴碰壁理论模型[J].武汉理工大学学报,2007,29(10):73-76.
    [78]Weiss D A, Yarin A L. Single drop impact onto liquid films:neck distortion, jetting, tiny bubble entrainment, and crown formation [J]. Journal of Fluid Mechanics,1999,385: 229-254.
    [79]Rieber M, Frohn A. A numerical study of the mechanism of splashing [J]. International Journal of heat and fluid flow,1999,20:455-461.
    [80]Taylor G I. The dynamics of thin sheets of fluid Ⅱ.Waves on fluid sheets [J]. Proceedings of the Royal Society of London Series A,1959,253:296-312.
    [81]Fullana J M, Zaleski S. Stability of a growing end rim in a liquid sheet of uniform thickness [J]. Physics of Fluids,1999,11:952-954.
    [82]Lafaurie Bruno, Nardone Carlo, Scardovelli Ruben, et al. Modeling merging and fragmentation in multiphase flows with SURFER [J]. Journal of Computational Physics,1994. 113(1):134-147.
    [83]Aulisa E, Manservisi S and Scardovelli R. A novel representation of the surface tension force for two-phase flow with reduced spurious currents [J]. Computer Methods in Applied Mechanics and Engineering,2006.195(44):6239-6257.
    [84]倪明玖,李忠伟.两类方法处理两相流表面张力的比较研究[J].工程热物理学报,2009,30(12):2043-2046.
    [85]E. Shirani, N. Ashgriz, J. Mostaghimi. Interface pressure calculation based on conservation of momentum for front capturing methods [J]. Journal of Computational Physics,2005,203: 154-175.
    [86]Francois M M, Cummins S J, Dendy E D, et al. A balanced-force algorithm for continuous and sharp interfacial surface tension models within a volume tracking framework [J]. Journal of Computational Physics,2006,213:141-173.
    [87]Nadooshan A A, Shirani E. Numerical simulation of a single air bubble rising in water with various models of surface tension force [J]. World Academy of Science, Engineering and Technology,2008,39:72-76.
    [88]Francois M M, Sicilian J M. Modeling interfacial surface tension in fluid flow [J]. Coupled Physics and Multiscale Methods and Algorithms,2007,7:40-41.
    [89]Lorstad D, Francois M M, Shyy W, Fuchs L. Assessment of volume of fluid and immersed boundary methods for droplet computations [J]. International Journal for Numerical Methods in Fluids,2004,46:109-125.
    [90]Meier M, Yadigaroglu G, Smith B. A novel technique for including surface tension in PLIC-VOF methods [J]. European Journal of Biochemistry,2002,21:61-73.
    [91]Popinet S, Zaleski S. A front-tracking algorithm for accurate representation of surface tension [J]. International Journal for Numerical Methods in Fluids,1999,30:775-793.
    [92]Renardy Y, Renardy M. PROST:a parabolic reconstruction of surface tension for the volume-of-fluid method [J]. Journal of Computational Physics,2002,183:400-421.
    [93]Rudman M. Volume tracking methods for interfacial flow calculations [J]. International Journal for Numerical Methods in Fluids,1998,24:671-691.
    [94]Torres D J, Brackbill J U. The point-set method:front-tracking without connectivity [J]. Journal of Computational Physics,2000,165:620-644.
    [95]宁智,王春海,宋云超.气液两相流数值求解过程中虚假流动问题的研究[J].农业机械学报,2012,42(2):192-197.
    [96]Frisch U, Hasslacher B, Pomeau Y. Lattice-gas automata for the navier-stokes equation [J]. Physical Review Letters,1986,56:1505-1508.
    [97]Shan X W, Doolen D. Difusion in multi-component lattice-boltzmann equation model [J]. Physical Review E,1996,54(4):3614-3620.
    [98]He X Y, Luo L S, Dembo M. Some progress in lattice-boltzmann method, part Ⅰ, non-uniform mesh grids [J]. Journal of Computational Physics,1996,129:357-363.
    [99]严永华,石自媛,杨帆,陈红勋.液滴撞击液膜喷溅过程的LBM模拟[J].上海大学学报,2008,14(4):399-404.
    [100]张华,郝智文,冯志军.格子Boltzmann方法在模拟液滴冲击液面中的应用[J].水利学报,2008,39(12):1316-1320.
    [101]周轶,郭加宏,陈红勋.格子Boltzmann方法模拟双液滴撞击液膜的流动过程[J].计算物理,2010,27(1):31-37.
    [102]Harlow, Francis H, Shannon, John P. The Splash of a Liquid Drop [J]. Journal of Applied Physics,1967,38:3855-3866.
    [103]Tsurutani K, YAO M, Senda J, Fujimoto H. Numerical Analysis of the Deformation Process of a Droplet Impinging upon a Wall [J]. JSME international journal. Ser.2,1990,33: 555-561.
    [104]Watanabe T, Kuribayashi Ⅰ, Honda T, Kanzawa A. Deformation and solidification of a droplet on a cold substrate [J]. Chemical Engineering Science,1992,47(12):3059-3065.
    [105]Liu H, Lavernia E J, Rangel R H. Numerical simulation of substrate impact and freezing of droplets in plasma spray processes [J]. Journal of Physics D:Applied Physics,1993,26(11): 1900-1908.
    [106]Fukai J, Zhao Z, Poulikakos D, Megaridis C M, Miyatake O. Modeling of the deformation of a liquid droplet impinging upon a flat surface [J]. Physics of Fluids A,1993, (5):2588-2599
    [107]Hartmut A W, Jose A A, Miguel A R V, et al. Dynamic contact angle and spreading rate measurements for the characterization of the effect of dentin surface treatments [J]. Journal of Colloid and Interface Science,2003,263:162-169.
    [108]Eggers J. Toward a description of contact line motion at higher capillary numbers [J]. Physics of Fluids,2004,16:3491-3494.
    [109]Cox R G. Inertial and viscous effects on dynamic contact angles [J]. Journal of Fluid Mechanics,1998,357:249-278.
    [110]Hoffman R. A study of the advancing interface. I. Interface shape in liquid-gas systems [J]. Journal of Colloid and Interface Science,1975,50:228-241.
    [111]Tanner L. The spreading of silicone oil drops on solid surfaces [J]. Journal of Physics D: Applied Physics,1979,12:1473-1483.
    [112]Sikalo S. Dynamic contact angle of spreading droplets:Experiments and simulations [J]. Physics of Fluids,2005,17:062103-062103-13.
    [113]Tanner L. The spreading of silicon oil drops on horizontal surfaces [J]. Journal of Physics D, 1979,12:1473-1484.
    [114]Ehrhard P, Davis S H. Non-isothermal spreading of liquid drops on horizontal plates [J]. Journal of Fluid Mechanics,1991,229:365-388.
    [115]Haley P J, Miksis M J. The effect of the contact line on droplet spreading [J]. Journal of Fluid Mechanics,1991,223:57-81.
    [116]Shikhmurzaev Y D. Moving contact lines in liquid/liquid/solid systems [J]. Journal of Fluid Mechanics,1997,334:211-249.
    [117]Yokoi K, Vadillo D, Hinch J, Hutchings Ⅰ. Numerical studies of the influence of the dynamic contact angle on a droplet impacting on a dry surface [J]. Physics of Fluids,2009,21: 072102-072102-12.
    [118]Mukherjee S, Abraham J. Investigations of drop impact on dry walls with a lattice-boltzmann model [J], Journal of Colloid and Interface Science,2007,312:341-354.
    [119]Mehdi-Nejad V, Mostaghimi J, Chandra S. Air bubble entrapment under an impacting droplet [J]. Physics of Fluids,2003,15:173-183.
    [120]Hadjiconstantinou G. A molecular view of Tanner's law:molecular dynamics simulations of droplet spreading [J]. Journal of Fluid Mechanics,2003,497:123-132
    [121]Bussmann M, Chandra S, Mostaghimi J. Modeling the splash of a droplet impacting a solid surface [J]. Physics of Fluids,2000,12:3121-3132.
    [122]Huh C, Scriven L E. Hydrodynamic model of steady movement of a solid/liquid/fluid contact line [J], Journal of Colloid and Interface Science,1971,35:85-101.
    [123]沈胜强,崔艳艳,郭亚丽.液滴撞击等温倾斜面的数值模拟[J].热科学与技术,2009,8(3):194-197.
    [124]李燕.液滴撞击加热固体平壁变形过程的数值模拟[D].大连:大连理工大学,2003.
    [125]宋昱,何枫.粗糙壁面上微液滴的数值模拟[J].力学学报,2007,28(4):528-534.
    [126]李彦鹏,王焕然.低冲击能量液滴与球面碰撞沉积特性的数值研究[J].西安交通大学学报,2009,43(7):21-24.
    [127]李爽.基于格子Boltzmann方法液滴撞击固壁动力学行为研究[D].大连:大连理工大学,2007.
    [128]Zhiping W, George P H. An Essentially Nonoscillatory High-Order Pade-Type (ENO-Pade) Scheme [J], Journal of Computational Physics,2002,177(1):37-58.
    [129]Ashgriz N, Poo J Y. FLAIR:flux line-segment model for advection and interface reconstruction [J]. The International Journal of Computational Physics,1991,92:449-468.
    [130]Young D L. Time-dependent multi-material flow with large fluid distortion [A]. In:Morton K W, Baines M J. Numerical Methods for fluid dynamics [C]. New York:Academic Press,1982: 273-285.
    [131]Zalesak S T. Fully multi-dimensional flux corrected transport algorithms for fluid Flow [J]. Journal of Computational Physics,1979,31:335-362.
    [132]Inverarity G. Dynamic wetting of glass fibre and polymer fibre [J]. British Polymer Journal, 1969,1(6):245-251.
    [133]Voinov O V. Hydrodynamics of Wetting [J]. Fluid Dynamics,1975,11(5):714-721.
    [134]Voinov O V. Asymptote to the free surface of a viscous liquid creeping on a surface and the velocity dependence of the angle of contact [J]. Soviet Physics Uspekhi,1978,23(12): 891-893.
    [135]Jiang T S, Oh S G, Slattery J C. Correlation for dynamic contact angle [J]. Journal of Colloid and Interface Science,1979,69:74-77.
    [136]Kistler S F. Hydrodynamics of wetting [A]. In:Berg J C. Wettability [C]. New York:Marcel Dekker,1993:311-315.
    [137]Thomas Young M D. An essay on the cohesion of fluids [J]. Philosophical transactions of the Royal Society of London.1805,95:65-87.
    [138]Bangham D H, Razouk R I. Adsorption and the wettability of solid surfaces [J]. Transactions of the Faraday Society,1937,33:1459-1463.
    [139]Blake T D. Dynamic contact angles and wetting kinetics [A]. In:Berg J C. Wettability [C]. New York:Marcel Dekker,1993,251-309.
    [140]Thompson P A, Robbins M O. Simulations of contact line motion:slip and dynamic contact angle [J]. Physical Review Letters,1989,63:766-769.
    [141]Koplik J, Banavar J R, Willemsen J F. Molecular dynamics of poiseuille flow and moving contact line [J]. Physical Review Letters,1988,60:1282-1285.
    [142]王泽农.物理学中的唯象方法与唯象理论的认识论意义[J].现代物理知识,2008,3:52-54.
    [143]Morra M, Occhiello E, Garbassi F. Knowledge's about polymer surfaces from contact angle measurements [J]. Advances in Colloid and Interface Science,1990,32:79-116.
    [144]Wenzel R N. Resistance of solid surfaces to wetting by water [J]. Industrial and Engineering Chemistry,1936,28:994-995.
    [145]Tay-Yuan Chen, John A, Tsamopoulos, et al. Capillary bridges between parallel and non-parallel surfaces and their stability [J]. Journal of Colloid and Interface Science,1992, 151(1):49-69.
    [146]曾祥轩.APTES自组装单分子膜的制备和表面性质的表征[D].杭州:浙江大学,2008.
    [147]曹晓平.流体在粗糙固体表面的润湿及其滞后现象[D].长沙:中南大学,2005.
    [148]Moffat H K. Viscous and resistive eddies near a sharp corner [J]. Journal of Fluid Mechanics, 1964,18:1-18.
    [149]Elliott G E P, Riddiford A C. Dynamic contact angles, Part 1:The effect of impressed motion [J]. Journal of Colloid and Interface Science,1967,23:389-398.
    [150]Bussmann M, Mostaghimi J, Chandra S. On a three-dimensional volume track-ing model of droplet impact [J]. Physics of Fluids,1999,11:1406-1417.
    [151]Sussman M, An adaptive mesh algorithm for free surface flows in general geometries [J]. In: Vande Wouwer A, Saucez Ph and Scheisser W E. Adaptive method of lines [M]. Boca Raton, FL, USA:Chapman and Hall/CRC,2001.
    [152]Roisman I V. Opfer L, Tropea C, et al. Drop impact onto a dry surface:Role of the dynamic contact angle [J]. Colloids and Surfaces A:Physicochemical and Engineering Aspects,2008, 332(1-3):183-191.
    [153]解茂昭.内燃机计算燃烧学[M].大连:大连理工大学出版社,2005.9.
    [154]Chen R H, Chiu S L, Lin T H. On the collision behaviors of a diesel drop impinging on a hot surface [J]. Experimental Thermal and Fluid Science,2007,32(2):587-595.
    [155]Shinjo J, Umemura A. Simulation of liquid jet primary breakup:Dynamics of ligament and droplet formation [J]. International Journal of Multiphase Flow,2010,36(7):513-532.
    [156]叶卫平,方安平,于本方.Origin 7.0科技绘图及数据分析[M].北京:机械工业出版社,2003.11.
    [157]权生林,李维仲,朱卫英.水滴撞击固体表面实验研究[J].大连理工大学学报,2009,49(6):832-836.
    [158]Hinsberg N P, Budakli M, Gohler S, et al. Dynamics of the cavity and the surface film for impingements of single drops on liquid films of various thicknesses [J]. Journal of Colloid and Interface Science,2010,350:336-343.
    [159]Edin B, Nils P V H, Suad J, et al. Drop impact onto a liquid layer of finite thickness: Dynamics of the cavity evolution [J]. Physical Review E,2009,79:036306.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700