视蛋白基因3(OPN3)对人肺癌A549细胞紫杉醇耐药性作用机制的初步研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
肺癌是最常见的恶性肿瘤之一,严重危害人类健康,以非小细胞肺癌多见,而化学治疗是其主要的治疗手段。但随着化疗药物的广泛使用,肿瘤耐药性也不断出现,严重影响了治疗效果。耐药性是由基因决定的,因此,发现和研究肿瘤耐药性相关基因及其作用的分子机制,有助于进行针对性的临床治疗,为研究新的药物作用靶点和治疗方法提供依据,其已成为当前肿瘤防治研究的重点课题。
     本室前期研究表明,与淡色库蚊对杀虫剂抗性相关视蛋白基因高度同源的人视蛋白基因3(Opsin3,OPN3)与人肺癌A549细胞紫杉醇耐药性相关,推测其可能作为G蛋白偶联受体(GPCR)成员,参与了肺癌A549细胞对紫杉醇的耐药机制。
     本研究采用G蛋白偶联受体信号通路基因芯片,对A549紫杉醇敏感细胞转染OPN3及其空载体对照组、A549_(PTX)紫杉醇耐药细胞干涉OPN3及其空载体对照组共4种细胞系,紫杉醇处理前后2种状态,共8组样品进行高通量筛选,以研究OPN3对其他G蛋白偶联受体及GPCR下游信号通路的影响:采用定量PCR及Western Blot验证目的基因及蛋白质表达差异,研究其对A549细胞紫杉醇耐药影响的可能机制。结果表明,OPN3可以抑制c-Jun表达,从而降低下游基因转录、抑制细胞增殖,增加肿瘤细胞对药物的敏感性。
     同时,本研究采用使用annexin V/propidium iodide(PI)双染,流式细胞仪结合荧光显微镜对芯片实验样本细胞进行凋亡检测。结果表明,OPN3相对表达水平与A549细胞在紫杉醇处理下的凋亡水平正相关,提示OPN3可能还上调细胞凋亡信号通路,诱导细胞凋亡,这一结果与前期~3H-TdR增殖试验结果相符。
     本研究初步研究了OPN3在肺癌耐药性中的功能,首次发现OPN3对A549细胞紫杉醇耐药性的影响包括抑制c-Jun表达和促进细胞凋亡2方面,为深入研究视蛋白基因在耐药性产生机制中的作用、发现新的肿瘤基因治疗位点奠定了基础。
As one of the most popular fetal diseases all around the world, lung cancer was mainly treated by chemotherapy. Resistance to chemotherapy frequently occurs and represents a major obstacle to successful cancer treatment. Understanding the basis of resistance is a principal goal of molecular oncology. But the mechanisms of drug resistance are polygenetic and incompletely defined. Elucidating the molecular mechanisms of this complex process may lead to the identification of novel molecules that in turn may serve as targets for therapeutic, diagnostic tests or alternatively predictive markers.
     In the previous study, we found that 0PN3, the protein component of visual pigment molecules, participated in paclitaxel resistance of the non-small cell lung cancer (NSCLC) cell line (A549).
     In the present study, GPCR Signaling PathwayFinder genechips were used to detect the affection of OPN3 to A549 and A549_(PTX) cell lines with it's GPCR activity. The results showed that 0PN3 downregulated the expression of c-Jun, resulted in the depressed transcription of downstream genes, and inhibited cell proliferation and sensitivity of tumor cells to drugs. We analyzed the cell apoptosis by annexin V / propidium iodide (PI) staining detected by flow cytometry and fluorescence microscopy, suggesting that 0PN3 may upregulated the cell apoptosis signal pathway.
     The negative regulation of paclitaxel resistance suggested that 0PN3 could be the potential target of tumor therapy. And the data in this work could improve the research of opsins in tumor drug resistance.
引文
1. Jemal, A., et al, Cancer statistics, 2007. CA Cancer J Clin, 2007. 57(1): p. 43-66.
    2. Hayat, M.J., et al, Cancer statistics, trends, and multiple primary cancer analyses from the Surveillance, Epidemiology, and End Results (SEER) Program. Oncologist, 2007. 12(1): p. 20-37.
    
    3. 中华人民共和国卫生部,2006 中国卫生统计年鉴.2006.
    4. Dancey, J. and T. Le Chevalier, Non-small cell lung cancer: an overview of current management. Eur J Cancer, 1997.33 Suppl 1: p. S2-7.
    5. Longley, D.B. and P.G. Johnston, Molecular mechanisms of drug resistance. J Pathol, 2005. 205(2): p. 275-92.
    6. Luqmani, Y.A., Mechanisms of drug resistance in cancer chemotherapy. Med Princ Pract, 2005.14 Suppl 1: p. 35-48.
    7. Yusuf, R.Z., et al, Paclitaxel resistance: molecular mechanisms and pharmacologic manipulation. Curr Cancer Drug Targets, 2003.3(1): p. 1-19.
    8. Horwitz, S.B., Mechanism of action of taxol. Trends Pharmacol Sci, 1992. 13(4): p. 134-6.
    9. Schiff, P.B., J. Fant, and S.B. Horwitz, Promotion of microtubule assembly in vitro by taxol. Nature, 1979.277(5698): p. 665-7.
    10. Longuet, M., R. Serduc, and C. Riva, Implication of bax in apoptosis depends on microtubule network mobility. Int J Oncol, 2004.25(2): p. 309-17.
    11. Salah-Eldin, A.E., et al., An association of Bcl-2 phosphorylation and Bax localization with their functions after hyperthermia and paclitaxel treatment. Int J Cancer, 2003. 103(1): p. 53-60.
    12. Stumm, S., et al, Paclitaxel treatment of breast cancer cell lines modulates Fas/Fas ligand expression and induces apoptosis which can be inhibited through the CD40 receptor. Oncology, 2004. 66(2): p. 101-11.
    13. Giannakakou, P., et al, Low concentrations of paclitaxel induce cell type-dependent p53, p21 and G1/G2 arrest instead of mitotic arrest: molecular determinants of paclitaxel-induced cytotoxicity. Oncogene, 2001.20(29): p. 3806-13.
    14. Bunn, P.A., Jr., The treatment of non-small cell lung cancer: current perspectives and controversies, future directions. Semin Oncol, 1994.21(3 Suppl 6): p. 49-59.
    15. Murphy, W.K., et al, Phase II study of taxol in patients with untreated advanced non-small-cell lung cancer. J Natl Cancer Inst, 1993. 85(5): p. 384-8.
    16. Shepherd, F.A., et al, Phase I study of paclitaxel (Taxol) and ifosfamide in previously untreated patients with advanced non-small-cell lung cancer. A study of the National Cancer Institute of Canada Clinical Trials Group. Ann Oncol, 1996. 7(3): p. 311-3.
    17. Blackshaw, S. and S.H. Snyder, Encephalopsin: a novel mammalian extraretinal opsin discretely localized in the brain. J Neurosci, 1999.19(10): p. 3681-90.
    18. Halford, S., et al, Characterization of a novel human opsin gene with wide tissue expression and identification of embedded and flanking genes on chromosome 1q43. Genomics, 2001. 72(2): p. 203-8.
    19. Livak, K.J. and T.D. Schmittgen, Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods, 2001.25(4): p. 402-8.
    20. Schena, M., et al, Quantitative monitoring of gene expression patterns with a complementary DNA microarray. Science, 1995.270(5235): p. 467-70.
    21. Wooster, R., Cancer classification with DNA microarrays is less more? Trends Genet, 2000.16(8): p. 327-9.
    22. Draghici, S., et al, Onto-Tools, the toolkit of the modern biologist: Onto-Express, Onto-Compare, Onto-Design and Onto-Translate. Nucleic Acids Res, 2003. 31(13): p. 3775-81.
    23. Huang, Y. and W. Sadee, Drug sensitivity and resistance genes in cancer chemotherapy: a chemogenomics approach. Drug Discov Today, 2003.8(8): p. 356-63.
    24. Branca, M., Genetics and medicine. Putting gene arrays to the test. Science, 2003. 300(5617): p.238.
    25. Chun, E. and K.Y. Lee, Bcl-2 and Bcl-xL are important for the induction of paclitaxel resistance in human hepatocellular carcinoma cells. Biochem Biophys Res Commun, 2004.315(3): p. 771-9.
    26. Cassinelli, G., et al, A role for loss of p53 function in sensitivity of ovarian carcinoma cells to taxanes. Int J Cancer, 2001.92(5): p. 738-47.
    27. Zhang, M., et al, Adenovirus-mediated inhibition of survivin expression sensitizes human prostate cancer cells to paclitaxel in vitro and in vivo. Prostate, 2005. 64(3): p. 293-302.
    28. Monzo, M., et al, Paclitaxel resistance in non-small-cell lung cancer associated with beta-tubulin gene mutations. J Clin Oncol, 1999.17(6): p. 1786-93.
    29. Duan, Z., et al, Description of paclitaxel resistance-associated genes in ovarian and breast cancer cell lines. Cancer Chemother Pharmacol, 2005. 55(3): p. 277-85.
    30. Szabo, E., et al, Altered cJUN expression: an early event in human lung carcinogenesis. Cancer Res, 1996. 56(2): p. 305-15.
    31. Ferguson, H.A. and J.A. Goodrich, Expression and purification of recombinant human c-Fos/c-Jun that is highly active in DNA binding and transcriptional activation in vitro. Nucleic Acids Res, 2001.29(20): p. E98.
    32. Lee, H.Y., et al, Response of non-small cell lung cancer cells to the inhibitors of phosphatidylinositol 3-kinase/Akt- and MAPK kinase 4/c-Jun NH2-terminal kinase pathways: an effective therapeutic strategy for lung cancer. Clin Cancer Res, 2005.11(16): p. 6065-74.
    33. Khatlani, T.S., et al, c-Jun N-terminal kinase is activated in non-small-cell lung cancer and promotes neoplastic transformation in human bronchial epithelial cells. Oncogene, 2007.26(18): p. 2658-66.
    34. Levresse, V., et al, Regulation of platinum-compound cytotoxicity by the c-Jun N-terminal kinase and c-Jun signaling pathway in small-cell lung cancer cells. Mol Pharmacol, 2002. 62(3): p. 689-97.
    35. Yang, L., et al, A signaling mechanism from G alpha q-protein-coupled metabotropic glutamate receptors to gene expression: role of the c-Jun N-terminal kinase pathway. J Neurosci, 2006.26(3): p. 971-80.
    36. Yowell, C.W. and Y. Daaka, G protein-coupled receptors provide survival signals in prostate cancer. Clin Prostate Cancer, 2002.1(3): p. 177-81.
    37. Clerk, A. and P.H. Sugden, Activation of protein kinase cascades in the heart by hypertrophic G protein-coupled receptor agonists. Am J Cardiol, 1999. 83(12A): p. 64H-69H.
    38. Lazou, A., P.H. Sugden, and A. Clerk, Activation of mitogen-activated protein kinases (p38-MAPKs, SAPKs/JNKs and ERKs) by the G-protein-coupled receptor agonist phenylephrine in the perfused rat heart. Biochem J, 1998.332 (Pt 2): p. 459-65.
    39. Paul, A., et al, Stress-activated protein kinases: activation, regulation and function. Cell Signal, 1997.9(6): p. 403-10.
    40. Minden, A., et al, c-Jun N-terminal phosphorylation correlates with activation of the JNK subgroup but not the ERK subgroup of mitogen-activated protein kinases. Mol Cell Biol, 1994.14(10): p. 6683-8.
    41. Cicatiello, L., et al., Estrogens and progesterone promote persistent CCND1 gene activation during G1 by inducing transcriptional derepression via c-Jun/c-Fos/estrogen receptor (progesterone receptor) complex assembly to a distal regulatory element and recruitment of cyclin D1 to its own gene promoter. Mol Cell Biol, 2004. 24(16): p. 7260-74.
    42. Schwabe, R.F., et al., c-Jun-N-terminal kinase drives cyclin D1 expression and proliferation during liver regeneration. Hepatology, 2003.37(4): p. 824-32.
    43. Bakiri, L., et al, Cell cycle-dependent variations in c-Jun and JunB phosphorylation: a role in the control of cyclin D1 expression. EMBO J, 2000.19(9): p. 2056-68.
    44. Vermes, I., et al, A novel assay for apoptosis. Flow cytometric detection of phosphatidylserine expression on early apoptotic cells using fluorescein labelled Annexin V. J Immunol Methods, 1995.184(1): p. 39-51.
    1.Brattsten,L.B.,et al.,Insecticide Resistance:Challenge to Pest Management and Basic Research.Science,1986.231(4743):p.1255-1260.
    2.Hemingway,J.,L.Field,and J.Vontas,An overview of insecticide resistance.Science,2002.298(5591):p.96-7.
    3.Labbe,P.,et al.,Forty years of erratic insecticide resistance evolution in the mosquito Culex pipiens.PLoS Genet,2007.3(11):p.e205.
    4.Umina,P.A.,Pyrethroid resistance discovered in a major agricultural pest in southern Australia:the redlegged earth mite Halotydeus destructor(Acari:Penthaleidae).Pest Manag Sci,2007.63(12):p.1185-90.
    5.Awolola,T.S.,et al.,Dynamics of knockdown pyrethroid insecticide resistance alleles in a field population of Anopheles gambiae s.s.in southwestern Nigeria.J Vector Borne Dis,2007.44(3):p.181-8.
    6.Jirakanjanakit,N.,et al.,Insecticide susceptible/resistance status in Aedes(Stegomyia) aegypti and Aedes (Stegomyia) albopictus (Diptera: Culicidae) in Thailand during 2003-2005. J Econ Entomol, 2007.100(2): p. 545-50.
    7. Cui, F., Y. Tan, and C.L. Qiao, Filariasis vector in China: insecticide resistance and population structure of mosquito Culex pipiens complex. Pest Manag Sci, 2007. 63(5): p. 453-8.
    8. Cui, F., M. Raymond, and C.L. Qiao, Insecticide resistance in vector mosquitoes in China. Pest Manag Sci, 2006.62(11): p. 1013-22.
    9. Nauen, R., Insecticide resistance in disease vectors of public health importance. Pest Manag Sci, 2007. 63(7): p. 628-33.
    10. Denholm, I., G.J. Devine, and M.S. Williamson, Evolutionary genetics. Insecticide resistance on the move. Science, 2002.297(5590): p. 2222-3.
    11. Weill, M., et al, Comparative genomics: Insecticide resistance in mosquito vectors. Nature, 2003.423(6936): p. 136-7.
    12. Yebakima, A., et al., Evolution of resistance under insecticide selection pressure in Culex pipiens quinquefasciatus (Diptera, Culicidae) from Martinique. J Med Entomol, 2004. 41(4): p. 718-25.
    13. Ffrench-Constant, R.H., P.J. Daborn, and G. Le Goff, The genetics and genomics of insecticide resistance. Trends Genet, 2004.20(3): p. 163-70.
    14. Labbe, P., T. Lenormand, and M. Raymond, On the worldwide spread of an insecticide resistance gene: a role for local selection. J Evol Biol, 2005. 18(6): p. 1471-84.
    15. 胡小邦, 等. 昆虫抗药性机制研究进展. 国外医学寄生虫病分册, 2004. 31: p.18-23.
    
    16. Scott, J.G., Cytochromes P450 and insecticide resistance. Insect Biochem Mol Biol, 1999. 29(9): p. 757-77.
    
    17. Ranson, H., et al., Evolution of supergene families associated with insecticide resistance. Science, 2002. 298(5591): p. 179-81.
    
    18. Daborn, P.J., et al., A single p450 allele associated with insecticide resistance in Drosophila. Science, 2002.297(5590): p. 2253-6.
    
    19. Small, G.J. and J. Hemingway, Molecular characterization of the amplified carboxylesterase gene associated with organophosphorus insecticide resistance in the brown planthopper, Nilaparvata lugens. Insect Mol Biol, 2000. 9(6): p. 647-53.
    20. Vaughan, A. and J. Hemingway, Mosquito carboxylesterase Est alpha 2(1) (A2). Cloning and sequence of the full-length cDNA for a major insecticide resistance gene worldwide in the mosquito Culex quinquefasciatus. J Biol Chem, 1995.270(28): p. 17044-9.
    21. Enayati, A.A., H. Ranson, and J. Hemingway, Insect glutathione transferases and insecticide resistance. Insect Mol Biol, 2005.14(1): p. 3-8.
    22. Haiwei, W., T. Haisheng, and W. Guanling, Culex pipiens pallens: identification of genes differentially expressed in deltamethrin-resistant and-susceptible strains. Pestic Biochem Phys., 2004. 79: p. 75- 83.
    23. Melendez-Hevia, E., T.G. Waddell, and E.D. Shelton, Optimization of molecular design in the evolution of metabolism: the glycogen molecule. Biochem J, 1993. 295 (Pt 2): p. 477-83.
    24. Melendez, R., E. Melendez-Hevia, and E.I. Canela, The fractal structure of glycogen: A clever solution to optimize cell metabolism. Biophys J, 1999. 77(3): p. 1327-32.
    25. Georghiou, G., Implication of agricultural pesticide used in relation to the development of resistance in desease vectors., W. Geneva, Editor. 1990.
    26. McKenzie, J.B., P., The genetic, molecular and phenotypic consequences of selection for insecticide resistance. Trends Ecol Evol., 1994.9: p. 166-169.
    27. McKenzie, J.A., The character or the variation: the genetic analysis of the insecticide-resistance phenotype. Bull Entomol Res, 2000.90(1): p. 3-7.
    28. Gong, M., et al, Serine proteinase over-expression in relation to deltamethrin resistance in Culex pipiens pallens. Arch Biochem Biophys, 2005.438(1): p. 53-62.
    29. Zhao J, Chen H, Davidson T, et al. Nickel-induced 1,4-alpha-glucan branching enzyme 1 up-regulation via the hypoxic signaling pathway[J]. Toxicol Appl Pharmacol, 2004; 196:404-409.
    30. Davies, T.G., et al, DDT, pyrethrins, pyrethroids and insect sodium channels. IUBMB Life, 2007. 59(3): p. 151-62.
    31. Berridge, M.J., M.D. Bootman, and H.L. Roderick, Calcium signalling: dynamics, homeostasis and remodelling. Nat Rev Mol Cell Biol, 2003.4(7): p. 517-29.
    32. Clapham, D.E., Calcium signaling. Cell, 2007.131(6): p. 1047-58.
    33. Clark, J.M. and S.B. Symington, Pyrethroid action on calcium channels: neurotoxicological implications. Invert Neurosci, 2007. 7(1): p. 3-16.
    34. Davies, G. and B. Henrissat, Structures and mechanisms of glycosyl hydrolases. Structure, 1995. 3(9): p. 853-9.
    
    35. Henrissat, B., et al, Conserved catalytic machinery and the prediction of a common fold for several families of glycosyl hydrolases. Proc Natl Acad Sci U S A, 1995. 92(15): p. 7090-4.
    36. Abe, A., et al, Complexes of Thermoactinomyces vulgaris R-47 alpha-amylase 1 and pullulan model oligossacharides provide new insight into the mechanism for recognizing substrates with alpha-(1,6) glycosidic linkages. FEBS J, 2005. 272(23): p. 6145-53.
    37. Boel, E., et al, Calcium binding in alpha-amylases: an X-ray diffraction study at 2.1-A resolution of two enzymes from Aspergillus. Biochemistry, 1990.29(26): p. 6244-9.
    38. Machius, M., et al, Activation of Bacillus licheniformis alpha-amylase through a disorder-->order transition of the substrate-binding site mediated by a calcium-sodium-calcium metal triad. Structure, 1998. 6(3): p. 281-92.
    39. Brzozowski, A.M., et al, Structural analysis of a chimeric bacterial alpha-amylase. High-resolution analysis of native and ligand complexes. Biochemistry, 2000. 39(31): p. 9099-107.
    1.Potempa,J.and A.Dubin,[Evolution of the structure and function of serine proteolytic enzymes].Postepy Biochem,1985.31(3-4):p.531-54.
    2.Neurath,H.,Evolution ofproteolytic enzymes.Science,1984.224(4647):p.350-7.
    3.Imamura,T.and Y.Kitamoto,Expression of enteropeptidase in differentiated enterocytes,goblet cells,and the tumor cells in human duodenum.Am J Physiol Gastrointest Liver Physiol,2003.285(6):p.G1235-41.
    4.Paju,A.and U.H.Stenman,Biochemistry and clinical role of trypsinogens and pancreatic secretory trypsin inhibitor.Crit Rev Clin Lab Sci,2006.43(2):p.103-42.
    5.Itkonen,O.,et al.,Serum samples from pancreatectomized patients contain trypsinogen immunoreactivity.J Lab Clin Med,1996.128(1):p.98-102.
    6.Koshikawa,N.,et al.,Expression of trypsin by epithelial cells of various tissues,leukocytes,and neurons in human and mouse.Am J Pathol,1998.153(3):p.937-44.
    7.Wiegand,U.,et al.,Cloning of the eDNA encoding human brain trypsinogen and characterization of its product.Gene,1993.136(1-2):p.167-75.
    8.Tani,T.,et cal.,Nucleotide sequence of the human pancreatic trypsinogen Ⅲ cDNA.Nucleic Acids Res,1990.18(6):p.1631.
    9.Emi,M.,et al.,Cloning,characterization and nucleotide sequences of two cDNAs encoding human pancreatic trypsinogens.Gene,1986.41(2-3):p.305-10.
    10.Guy,O.,et al.,Two human trypsinogens.Purification,molecular properties,and N-terminal sequences. Biochemistry, 1978.17(9): p. 1669-75.
    11. Paju, A., et al, Expression of trypsinogen-1, trypsinogen-2, and tumor-associated trypsin inhibitor in ovarian cancer: prognostic study on tissue and serum. Clin Cancer Res, 2004. 10(14): p. 4761-8.
    12. Yamamoto, H., et al, Association of trypsin expression with tumour progression and matrilysin expression in human colorectal cancer. J Pathol, 2003.199(2): p. 176-84.
    13. Bjartell, A., et al, Expression of tumor-associated trypsinogens (TAT-1 and TAT-2) in prostate cancer. Prostate, 2005.64(1): p. 29-39.
    14. Miyata, S., et al., Expression of trypsin in human cancer cell lines and cancer tissues and its tight binding to soluble form of Alzheimer amyloid precursor protein in culture. J Biochem, 1999. 125(6): p. 1067-76.
    15. Kawano, N., et al, Expression of gelatinase A, tissue inhibitor of metalloproteinases-2, matrilysin, and trypsin(ogen) in lung neoplasms: an immunohistochemical study. Hum Pathol, 1997.28(5): p. 613-22.
    16. Stenman, U.H., E. Koivunen, and O. Itkonen, Biology and function of tumor-associated trypsin inhibitor, TATI. Scand J Clin Lab Invest Suppl, 1991.207: p. 5-9.
    17. Koivunen, E., et al, Cyst fluid of ovarian cancer patients contains high concentrations of trypsinogen-2. Cancer Res, 1990. 50(8): p. 2375-8.
    18. Hedstrom, J., et al, Trypsinogen-1, -2 and tumour-associated trypsin-inhibitor in bile and biliary tract tissues from patients with biliary tract diseases and pancreatic carcinomas. Scand J Clin Lab Invest, 2001.61(2): p. 111-8.
    19. Ichikawa, Y, et al, Marked increase of trypsin(ogen) in serum of linitis plastica (gastric cancer, borrmann 4) patients. Clin Cancer Res, 2000. 6(4): p. 1385-8.
    20. Williams, S.J., D.C. Gotley, and T.M. Antalis, Human trypsinogen in colorectal cancer. Int J Cancer, 2001. 93(1): p. 67-73.
    21. Yamashita, K., et al, A tumor-suppressive role for trypsin in human cancer progression. Cancer Res, 2003. 63(20): p. 6575-8.
    22. Egeblad, M. and Z. Werb, New functions for the matrix metalloproteinases in cancer progression. Nat Rev Cancer, 2002.2(3): p. 161-74.
    23. Visse, R. and H. Nagase, Matrix metalloproteinases and tissue inhibitors of metalloproteinases: structure, function, and biochemistry. Circ Res, 2003. 92(8): p. 827-39.
    24. Zucker, S. and J. Vacirca, Role of matrix metalloproteinases (MMPs) in colorectal cancer. Cancer Metastasis Rev, 2004.23(1-2): p. 101-17.
    25. Halbersztadt, A., et al, [The role of matrix metalloproteinases in tumor invasion and metastasis]. Ginekol Pol, 2006. 77(1): p. 63-71.
    26. Demers, M., et al, New roles for matrix metalloproteinases in metastasis. Crit Rev Immunol, 2005.25(6): p. 493-523.
    27. Fingleton, B., Matrix metalloproteinases: roles in cancer and metastasis. Front Biosci, 2006. 11:p. 479-91.
    28. Yoon, S.O., et al, Roles of matrix metalloproteinases in tumor metastasis and angiogenesis. J Biochem Mol Biol, 2003.36(1): p. 128-37.
    29. Moilanen, M., et al, Tumor-associated trypsinogen-2 (trypsinogen-2) activates procollagenases (MMP-1, -8, -13) and stromelysin-1 (MMP-3) and degrades type I collagen. Biochemistry, 2003.42(18): p. 5414-20.
    30. Nyberg, P., et al, MMP-9 activation by tumor trypsin-2 enhances in vivo invasion of human tongue carcinoma cells. J Dent Res, 2002. 81(12): p. 831-5.
    31. Sorsa, T., et al, Activation of type IV procollagenases by human tumor-associated trypsin-2. J Biol Chem, 1997.272(34): p. 21067-74.
    32. Vilen, S.T., et al, Intracellular co-localization of trypsin-2 and matrix metalloprotease-9: possible proteolytic cascade of trypsin-2, MMP-9 and enterokinase in carcinoma. Exp Cell Res, 2008.314(4): p. 914-26.
    33. Stenman, M., et al., Trypsin-2 degrades human type II collagen and is expressed and activated in mesenchymally transformed rheumatoid arthritis synovitis tissue. Am J Pathol,2005.167(4): p. 1119-24.
    34. Sawada, K., et al., Purification and characterization of a trypsin-like serine proteinase from rat brain slices that degrades laminin and type IV collagen and stimulates protease-activated receptor-2. J Neurochem, 2000. 74(4): p. 1731-8.
    35. Hollenberg, M.D., Physiology and pathophysiology of proteinase-activated receptors (PARs): proteinases as hormone-like signal messengers: PARs and more. J Pharmacol Sci, 2005. 97(1): p. 8-13.
    36. Itoh, Y., T. Sendo, and R. Oishi, Physiology and pathophysiology of proteinase-activated receptors (PARs): role of tryptase/PAR-2 in vascular endothelial barrier function. J Pharmacol Sci, 2005.97(1): p. 14-9.
    37. Kawabata, A. and N. Kawao, Physiology and pathophysiology of proteinase-activated receptors (PARs): PARs in the respiratory system: cellular signaling and physiological/pathological roles. J Pharmacol Sci, 2005.97(1): p. 20-4.
    38. Hirano, K., The roles of proteinase-activated receptors in the vascular physiology and pathophysiology. Arterioscler Thromb Vasc Biol, 2007.27(1): p. 27-36.
    39. Kanke, T., et al, Physiology and pathophysiology of proteinase-activated receptors (PARs): PAR-2 as a potential therapeutic target. J Pharmacol Sci, 2005.97(1): p. 38-42.
    40. Bohm, S.K., et al, Proteinase-Activated Receptors: New Functions for Old Enzymes. News Physiol Sci, 1998.13: p. 231-240.
    41. D'Andrea, M.R., et al, Characterization of protease-activated receptor-2 immunoreactivity in normal human tissues. J Histochem Cytochem, 1998. 46(2): p. 157-64.
    42. Ducroc, R., et al, Trypsin is produced by and activates protease-activated receptor-2 in human cancer colon cells: evidence for new autocrine loop. Life Sci, 2002. 70(12): p. 1359-67.
    43. Mall, M., et al, Activation of ion secretion via proteinase-activated receptor-2 in human colon. Am J Physiol Gastrointest Liver Physiol, 2002.282(2): p. G200-10.
    44. Cottrell, G.S., et al, Trypsin IV, a novel agonist of protease-activated receptors 2 and 4. J Biol Chem, 2004.279(14): p. 13532-9.
    45. Ohta, T., et al, Protease-activated receptor-2 expression and the role of trypsin in cell proliferation in human pancreatic cancers. Int J Oncol, 2003.23(1): p. 61-6.
    46. Nishibori, M., S. Mori, and H.K. Takahashi, Physiology and pathophysiology of proteinase-activated receptors (PARs): PAR-2-mediated proliferation of colon cancer cell. J Pharmacol Sci, 2005.97(1): p. 25-30.
    47. Sanchez-Hernandez, P.E., et al, Protease-activated receptor-2 (PAR-2) in cervical cancer proliferation. Gynecol Oncol, 2008.108(1): p. 19-26.
    48. Miyata, S., et al, Trypsin stimulates integrin alpha(5)beta(1)-dependent adhesion to fibronectin and proliferation of human gastric carcinoma cells through activation of proteinase-activated receptor-2. J Biol Chem, 2000.275(7): p. 4592-8.
    49. Matej, R., et al, Proteinase-activated receptor-2 expression in breast cancer and the role of trypsin on growth and metabolism of breast cancer cell line MDA MB-231. Physiol Res, 2007. 56(4): p. 475-84.
    50. Hjortoe, G.M., et al, Tissue factor-factor Vila-specific up-regulation of IL-8 expression in MDA-MB-231 cells is mediated by PAR-2 and results in increased cell migration. Blood, 2004.103(8): p. 3029-37.
    51. Shi, X., et al, Protease-activated receptors (PAR1 and PAR2) contribute to tumor cell motility and metastasis. Mol Cancer Res, 2004.2(7): p. 395-402.
    52. Darmoul, D., et al, Protease-activated receptor 2 in colon cancer: trypsin-induced MAPK phosphorylation and cell proliferation are mediated by epidermal growth factor receptor transactivation. J Biol Chem, 2004.279(20): p. 20927-34.
    53. Shimamoto, R., et al., A role for protease-activated receptor-2 in pancreatic cancer cell proliferation. Int J Oncol, 2004.24(6): p. 1401-6.
    54. Chambers, L.S., et al, PAR-2 activation, PGE2, and COX-2 in human asthmatic and nonasthmatic airway smooth muscle cells. Am J Physiol Lung Cell Mol Physiol, 2003. 285(3): p. L619-27.
    55. Syeda, F., et al, Cyclooxygenase-2 induction and prostacyclin release by protease-activated receptors in endothelial cells require cooperation between mitogen-activated protein kinase and NF-kappaB pathways. J Biol Chem, 2006. 281(17): p. 11792-804.
    56. Pai, R., et al., Prostaglandin E2 transactivates EGF receptor: a novel mechanism for promoting colon cancer growth and gastrointestinal hypertrophy. Nat Med, 2002. 8(3): p. 289-93.
    57. Pozzi, A., et al, Colon carcinoma cell growth is associated with prostaglandin E2/EP4 receptor-evoked ERK activation. J Biol Chem, 2004.279(28): p. 29797-804.
    58. Krysan, K., et al, Prostaglandin E2 activates mitogen-activated protein kinase/Erk pathway signaling and cell proliferation in non-small cell lung cancer cells in an epidermal growth factor receptor-independent manner. Cancer Res, 2005. 65(14): p. 6275-81.
    59. Nagataki, M., et al, Evidence that PAR2-triggered prostaglandin E2 (PGE2) formation involves the ERK-cytosolic phospholipase A2-COX-l-microsomal PGE synthase-1 cascade in human lung epithelial cells. Cell Biochem Funct, 2008.26(2): p. 279-82.
    60. Lee, Y.C., et al, Overexpression of tumour-associated trypsin inhibitor (TATI) enhances tumour growth and is associated with portal vein invasion, early recurrence and a stage-independent prognostic factor of hepatocellular carcinoma. Eur J Cancer, 2007. 43(4): p. 736-44.
    61. Paju, A., et al, Increased expression of tumor-associated trypsin inhibitor, TATI, in prostate cancer and in androgen-independent 22Rvl cells. Eur Urol, 2007. 52(6): p. 1670-9.
    62. Hotakainen, K., et al, Differential expression of trypsinogen and tumor-associated trypsin inhibitor (TATI) in bladder cancer. Int J Oncol, 2006.28(1): p. 95-101.
    63. Wiksten, J.P., et al, High tissue expression of tumour-associated trypsin inhibitor (TATI) associates with a more favourable prognosis in gastric cancer. Histopathology, 2005. 46(4): p. 380-8.
    64. Catarino, M. and R. Conde, Tumor-associated trypsin inhibitor (TATI) in patients with colorectal carcinoma. A critical comparison with CEA. Scand J Clin Lab Invest Suppl, 1991.207: p. 43-6.
    65. Mogensen, O., B. Mogensen, and A. Jakobsen, Tumour-associated trypsin inhibitor (TATI) and cancer antigen 125 (CA 125) in mucinous ovarian tumours. Br J Cancer, 1990. 61(2): p. 327-9.
    
    66. Gadducci, A., et al, A comparative evaluation of the ability of serum CA 125, CA 19-9, CA 15-3, CA 50, CA 72-4 and TATI assays in reflecting the course of disease in patients with ovarian carcinoma. Eur J Gynaecol Oncol, 1990. 11(2): p. 127-33.
    67. Gadducci, A., et al., A comparison of the usefulness of serum measurements of CA 125, CA 50 and TATI in patients with malignant and benign gynecological pathology. Eur J Gynaecol Oncol, 1990.11(2): p. 111-5.
    68. Peters-Engl, C, et al, TATI (tumor associated trypsin inhibitor) and cancer antigen 125 (CA 125) in patients with early-stage endometrial cancer. Anticancer Res, 1998. 18(6B): p. 4635-9.
    69. Sjostrom, J., et al., Serum tumour markers CA 15-3, TPA, TPS, hCGbeta and TATI in the monitoring of chemotherapy response in metastatic breast cancer. Scand J Clin Lab Invest, 2001. 61(6): p. 431-41.
    70. Solakidi, S., et al, Tumour-associated trypsin inhibitor, carcinoembryonic antigen and acute-phase reactant proteins CRP and alphal-antitrypsin in patients with gastrointestinal malignancies. Clin Biochem, 2004. 37(1): p. 56-60.
    71. Yoshioka, I., et al., Urinary trypsin inhibitor suppresses surgical stress-facilitated lung metastasis of murine colon 26-L5 carcinoma cells. Anticancer Res, 2005. 25(2A): p. 815-20.
    72. Oka, N., et al, Amiloride and urinary trypsin inhibitor inhibit urothelial cancer invasion. Eur Urol, 2003.44(6): p. 737-41.
    73. Lanza, A., et al, Effects of the Medicago scutellata trypsin inhibitor (MsTI) on cisplatin-induced cytotoxicity in human breast and cervical cancer cells. Anticancer Res, 2004. 24(1): p. 227-33.
    74. Wang, Z.H., et al, Induction of apoptosis by buckwheat trypsin inhibitor in chronic myeloid leukemia K562 cells. Biol Pharm Bull, 2007. 30(4): p. 783-6.
    75. Park, S.S. and H. Ohba, Suppressive activity of protease inhibitors from buckwheat seeds against human T-acute lymphoblastic leukemia cell lines. Appl Biochem Biotechnol, 2004. 117(2): p. 65-74.
    76. Miller, C.P., et al, NPI-0052, a novel proteasome inhibitor, induces caspase-8 and ROS-dependent apoptosis alone and in combination with HDAC inhibitors in leukemia cells. Blood, 2007. 110(1): p. 267-77.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700