有毒有机污染物正辛醇/空气分配系数(K_(OA))的定量预测方法
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
正辛醇/空气分配系数(K_(OA))是描述污染物在空气和环境有机相之间分配行为的一个关键参数,对于评估污染物的长距离环境迁移能力和生物蓄积性等具有重要意义。实验测定K_(OA),成本昂贵,比较费时,并且部分化合物尚缺乏标准样品。因此,需要发展简便而准确的K_(OA)理论预测法,用于估算有毒有机污染物的K_(OA)。本论文发展了预测K_(OA)的碎片常数模型和基于Dragon描述符的3D-定量结构-活性关系(QSAR),并对现有的三种K_(OA)预测方法和本研究建立的两种K_(OA)预测模型进行了全面评价。
     1.首先建立了预测不同温度下卤代芳烃化合物K_(OA)的碎片常数模型。利用该模型定义的5个碎片常数和1个结构修正因子,可以预测卤代芳烃化合物在10℃到40℃之间的K_(OA)值。碎片常数模型的训练集由包含C、H、O、Cl和Br原子的芳烃化合物组成,因此模型的应用范围为氯代和溴代的芳烃化合物,如氯苯(CBs)、多氯代萘(PCNs)、多氯联苯(PCBs)、多氯代二苯并二噁英和多氯代二苯并呋喃(PCDD/Fs)、多环芳烃(PAHs)、多溴代联苯醚(PBDEs)等,这些都是典型的持久性有毒物质(PTS)。内部验证(Jackknife检验)和外部验证(包含316个数据点)结果表明,该模型具有较高的稳健性和预测能力。相比于采用量子化学描述符的QSAR模型,本研究建立的K_(OA)预测模型更加简单而准确。
     2.为了扩展K_(OA)预测模型的应用范围,全面收集了272个化合物在环境温度(25℃)下的logK_(OA)实验测定值,数据集包含了CBs、PCBs、PCNs、PCDD/Fs、PBDEs、PAHs、有机氯杀虫剂、多氟代磺胺药物、羟基烷基硝酸盐、磺胺乙醇、端醇、卤代烃、醚、酮、醛、酸、酯等有机污染物。
     基于272个logK_(OA)的实验测定数据,采用逐步回归-偏最小二乘(SR-PLS)变量筛选法,确定原子中心碎片的最佳组合,建立了预测有毒有机污染物单一温度下K_(OA)的碎片常数模型。包含23个原子中心碎片的最优模型解释了因变量总方差的97.7%,预测均方根误差(RMSE)为0.43。内部验证(去一法和去多法)和外部验证结果表明,该碎片常数模型具有较高的稳健性,并且对于应用域内的化合物具有较高的预测能力。单一温度下K_(OA)的碎片常数模型具有更大的应用域,可用于预测多种类、宽范围的有机污染物在25℃下的K_(OA)。
     3.基于272个logK_(OA)数据,采用Dragon描述符建立了3D-QSAR模型。经SR-PLS变量选择方法,最优模型共引入9个分子结构描述符(x1sol、GATS2p、C006、C025、H050、Mor04p、L3s、C005、N072),解释了因变量总方差的98.2%,预测RMSE为0.38。通过最优模型的机理分析得出,控制K_(OA)的主要影响因素为分子在正辛醇中的色散作用、特定结构碎片形成氢键的能力、分子形状和对称性方面的3 D结构特征以及共轭体系的电子效应。内部验证(去多法、去一法、Y的随机性检验)和外部验证结果表明,3D-QSAR模型具有较高的稳健性,并且对于应用域内的化合物具有很高的预测能力。
     4.从应用角度综合评价和比较了本文建立的单一温度K_(OA)的碎片常数模型、基于Dragon描述符的3D-QSAR模型和现有的3种K_(OA)定量预测方法。现有的3种K_(OA)定量预测方法包括:基于正辛醇/水分配系数(K_(OW))和亨利定律常数(K_H)的直接计算法,基于溶解自由能的理论计算法,基于量子化学描述符的QSAR模型。
     结果表明:(1)K_(OW)-K_H直接计算法的理论应用域很大,稳健性较高。但是大多数化合物的K_(OW)和K_H的实测值较缺乏,因此K_(OW)-K_H直接计算法的预测准确性高度依赖于K_(OW)和K_H预测值的准确性,它们的误差可能联合扩大K_(OA)的预测不确定性。(2)基于溶解自由能的理论计算法,应用域很大,但溶解自由能的计算误差较大,从而影响K_(OA)的预测准确性。(3)基于量子化学描述符的QSAR模型,分子结构描述符具有明确的物理化学意义,并且能够分辨同分异构体。(4)碎片常数法具有明确的算法,碎片划分简便而快速,并且对应用域内的化合物具有较好的预测能力,但该方法应用范围受训练集化合物覆盖程度的限制。(5)基于Dragon描述符的3D-QSAR模型,对同分异构体具有很好的分辨能力,并且分子结构描述符易于机理解释,对于应用域内的化合物该模型给出更加准确的预测结果。
The octanol-air partition coefficient(K_(OA)) is a key physicochemical parameter for describing the partition of toxic organic pollutants between air and environmental organic phases.K_(OA) plays an important role in evaluating the global distribution,transport and biomagnification of toxic organic compounds.Experimental determination of K_(OA) is costly, time-consuming,and restricted by lack of sufficiently pure chemicals,thus there is a need to develop a simple and accurate method to estimate K_(OA).In the current thesis,fragment constant models and 3D- quantitative structure-activity relationship(QSAR) model based on Dragon descriptors were developed and five predictive methods of K_(OA) were evaluated and compared.
     Firstlyly,a fragment constant method based on 5 fragment constants and 1 structural correction factor,was developed for predicting logK_(OA) at temperatures ranging from 10℃to 40℃.As aromatic compounds that contain C,H,O,Cl and Br atoms,were included in the training set for model development,the fragment constant model can be applied to a wide range of chlorinated and brominated aromatic pollutants,such as chlorobenzenes(CBs), polychlorinated naphthalenes(PCNs),polychlorinated biphenyls(PCBs),polychlorinated dibenzo-p-dioxins and dibenzofurans(PCDD/Fs),polycyclic aromatic hydrocarbons(PAHs), and polybrominated diphenyl ethers(PBDEs),all of which are typical persistent toxic substance(PTS).It can be inferred from internal validation(Jackknife test) and external validation that the fragment constant models have good predictive ability and robustness. Compared to QSAR model based quantan chemical descriptors,the present model has the advantage that it is much easier to implement.
     Secondly,in order to expand the utility of the fragment constant method,272 experimental values of logK_(OA) at 25℃were collected from literatures.The K_(OA) data set included a wide range of compound classes,such as PCBs,CBs,PCNs,PCDD/Fs,PBDEs,PAHs, organochlorine pesticides,hydroxy alkyl nitrates,polyfluorinated sulfonamide, sulfonamidoethanols,telomere alcohols,halogenated hydrocarbons,alcohols,ketones, aldehydes,acids,esters and ethers etc.
     Based on training set of the 272 compounds,the fragment constant model was developed for predicting logK_(OA) values at the ambient temperature(25℃).The best combination of 23 atom centered fragments was selected by stepwise regression-partial least squares(SR-PLS) variable selection method.For the training set,R~2 = 0.977 and root mean square error(RMSE) =0.43.Internal and external validation indicated that the fragment constant model was ideal for predicting logK_(OA) of new compounds within application domain(AD).This fragment constant model could be used to estimate K_(OA) for a wide set of heterogeneous organic compounds at 25℃.
     Thirdly,based on the training set including 272 compounds,3D-QSAR model for predicting logK_(OA) was developed using Dragon descriptors.The best combination of 0~3 dimension(D) Dragon descriptors was selected by SR-PLS variable selection method.The optimal model contained nine descriptors(Xlsol,GATS2p,C006,C025,H050,Mor04p,L3s, C005,N072),leading to R~2=0.982 and RMSE=0.38.It was concluded from the optimal QSAR model that the main factors governing K_(OA) are dispersive interactions in octanol solution,potential of hydrogen bond,3D structural feature of symmetry and shape, distribution of conjugated electric charge.Internal and external validation has shown the 3D-QSAR model with good robustness and good predictive power for compounds within AD.
     Currently,there are five predictive methods for K_(OA):(a) the fast estimation method that employ the octanol-water partition coefficients(Kow) and Henry's law constant(K_H),(b) a direct method by computing the solvation free energy of organic chemical molecules in octanol(△Gs) using quantum chemical solvent models,(c) the QSAR model that employ quantum chemical descriptors,(d) the fragment constants model,(e) the QSAR model based on Dragon descriptors.
     For the five predictive methods for K_(OA),models were evaluated and compared by goodness of fit,robustness and prediction power,AD and algorithms.The K_(OW)-K_H method had a broader AD,but it was limited by the lack of sufficient data of K_(OW),K_H and their temperature dependence.Besides,experimental or estimative errors in K_(OW) and K_H values could be propagated or magnified due to the division.Theoretically the AD of the△Gs method could be extended to every compound;nevertheless the method relied on the accurate calculation of△Gs.The quantum chemical descriptors of the QSAR method are favorable for mechanistic interpretation,and this method could identify isomers(high resolution).The fragment constant model was a simple and transparent method,but its AD was restricted by the coverage of the training set.The 3D-QSAR model based on Dragon descriptors gave more accurate predictions for the compounds within the AD,and had high resolution for isomers.
引文
[1]美国化学文摘社(CAS).http://www.cas.org
    [2]联合国环境规划署(UNEP).Regionally based assessment of persistent toxic substances.Globe Report 2003,http://www.chem.unep.ch/pts/
    [3]王震.辽宁地区土壤中多环芳烃污染水平、来源解析及致癌风险:(博士学位论文).大连:大连理工大学,2007.
    [4]Lerche,D.,van de Plassche,E.,Schwegler,A.,et al.Selecting chemical substances for the UN-ECE POP protocol.Chemosphere,2002,47(6):617-630.
    [5]UNEP.Stockholm convention on persistent organic pollutants[EB/OL].http://www.pops.int/documents/convtext/convtexten.pdf,1997.2.7.
    [6]Environment Canada.http://www.ee.gc.ca/international/multilat/l-pop_e.htm,2004.6.1.
    [7]Jones,K.C.,de Voogt,P.Persistent organic pollutants(POPs):state of the science.Environmental Pollution.1999,100(1-3):209-221.
    [8]余刚,黄俊,张彭义.持久性有机污染物:倍受关注的全球性环境问题.环境保护,2001,4:37-38.
    [9]Jones,K.C.,de Voogt,P.Persistent organic pollutants(POPs):state of the science.Environmental Pollution.1999,100(1-3):209-221.
    [10]李政禹.国际上持久性有机污染物的控制动向及其对策.现代化工,1999,19(7):5-8
    [11]刘征涛.持久性有机污染物的主要特征和研究进展.环境科学研究,2005,18(3):93-102.
    [12]MacLeod,M.,McKone,T.E.,Foster,K.L.,et al.Applications of contaminant fate and bioaccumulation models in assessing ecological risks of chemicals:A case study for gasoline hydrocarbons.Environmental Science & Technology,2004,38(23):6225-6233.
    [13]王斌,余刚,黄俊等.QSAR/QSPR在POPs归趋与风险评价中的应用.化学进展,2007,19(10):1612-1619.
    [14]Verhaar,H.J.M.,Solbe,J.,Speksnijder,J.,et al.Classifying environmental pollutants:Part 3.External validation of the classification system.Chemosphere,2000,40(8):875-883.
    [15]Enterprise & Industry Directorate General and Environment Directorate General.European Commission,REACH in brief.2002,September.Available online at:http://ecb.jrc.it/REACH/
    [16]Linkov,I.,Ames,M.R.,Crouch,E.A.C.,et al.Uncertainty in octanol-water partition coeffieient:Implications for risk assessment and remedial costs.Environmental Science & Technology.2005,39(18):6917-6922.
    [17]Harner,T.,Mackay,D.Measurement of octanol-air partition coefficients for chlorobenzenes,PCBs and DDT.Environmental Science and Technology,1995,29(6):1599-1606.
    [18]Hippelein,M.,McLachlan,M.S.Soil/air partitioning of semivolatile organic compounds.1.Method development and influence of physical-chemical properties.Environmental Science & Technology,1998,32(2):310-316.
    [19]Harner,T.,Bidleman,T.F.,Jantunen,L.M.M.,et al.Soil-air exchange model of persistent pesticides in the United States cotton belt.Environmental Toxicology and Chemistry,2001,20(7):1612-1621.
    [20]Tolls,J.,Mclachlan,M.S.Partitioning of semivolatile organic compounds between air and lolium multiflorum. Environmental Science & Technology, 1994,28(1): 159-166.
    [21] Simonich, S. L., Hites, R. A. Organic Pollutant Accumulation in Vegetation. Environmental Science & Technology, 1995, 29(12): 2905-2914.
    [22] Komp, P., McLachlan, M. S. Interspecies variability of the plant/air partitioning of polychlorinated biphenyls. Environmental Science & Technology, 1997,31(10): 2944-2948.
    [23] Paterson, S., Mackay, D., Bacci, E., et al.. Correlation of the equilibrium and kinetics of leaf-air exchange of hydrophobic organic chemicals. Environmental Science & Technology, 1991, 25(5): 866-871.
    [24] Platts, J. A., Abraham, M. H. Partition of volatile organic compounds from air and from water into plant cuticular matrix: An LFER analysis. Environmental Science & Technology, 2000, 34(2): 318-323.
    [25] Dachs, J., Eisenreich, S. J. Adsorption onto aerosol soot carbon dominates gas-particle partitioning of polycyclic aromatic hydrocarbons. Environmental Science & Technology, 2000, 34(17): 3690-3697.
    [26] Falconer, R. L., Harner, T. Comparison of the octanol-air partition coefficient and liquid-phase vapor pressure as descriptors for particle/gas partitioning using laboratory and field data for PCBs and PCNs. Atmospheric Environment, 2000, 34(23): 4043-4046.
    [27] Batterman, S., Zhang, L., Wang, S. G., et al. Partition coefficients for the trihalomethanes among blood, urine, water, milk and air. Science of the Total Environment, 2002,284(1-3): 237-247.
    [28] Won, D. Y., Corsi, R. L., Rynes, M. New indoor carpet as an adsorptive reservoir for volatile organic compounds. Environmental Science & Technology, 2000,34(19): 4193-4198.
    [29] Opperhuizen A, Whitmore P M, Cass G R et al. Thermodynamics of fish/water and octan-l-ol partitioning of some chlorinated benzenes. Environmental Science and Technology, 1988, 22 (3): 286-292.
    [30] Halsall, C. J., Sweetman, A. J., Barrie, L. A., et al. Modelling the behaviour of PAHs during atmospheric transport from the UK to the Arctic. Atmospheric Environment, 2001, 35(2): 255-267.
    [31] Duarte-Davidson, R., Sewart, A., Alcock, R. E., et al. Exploring the balance between sources, deposition, and the environmental burden of PCDD/Fs in the U.K. terrestrial environment: An aid to identifying uncertainties and research needs. Environmental Science & Technology, 1997,31(1): 1-11.
    [32] Hippelein, M., Mclachlan, M. S. Soil/air partitioning of semivolatile organic compound. 1. Method development and influence of physical-chemical properties. Environmental Science & Technology, 1998,32(2): 310-316.
    [33] Cousins, I. T, McLachlan, M. S., Jones, K. C. Lack of an aging effect on the soil/air partitioning of PCBs. Environmental Science & Technology, 1998, 32(18): 2734-2740.
    [34] Nellessen, J. E., Fletcher, J. S. Assessment of published literature on the uptake/accumulation, translocation, adhesion and biotransformation of organic chemicals by vascular plants. Environmental Toxicology and Chemistry, 1993, 12(11): 2045-2052.
    [35] Simonich, S. L., Hites, R. A. Vegetation-atmosphere partitioning of polycyclic aromatic hydrocarbons. Environmental Science & Technology, 1994,28(5): 939-943.
    [36] Mclachlan, M. S., Horstmann, M. Forests as filters of airborne organic pollutants: A model. Environmental Science & Technology, 1998,32(3): 413-420.
    [37] Wagrowski, D. M., Hites, R. A. Polycyclic aromatic hydrocarbon sccumulation in urban, suburban, and rural vegetation. Environmental Science & Technology, 1997, 31(1): 279-282.
    [38] Ockenden, W. A., Steinnes, E., Parker, C, et al. Observations on persistent organic pollutants in plants: Implications for their use as passive air samplers and for POP cycling. Environmental Science & Technology, 1998, 32(18): 2721-2726.
    [39] Barber, J. L., Thomas, G. O., Kerstiens, G., et al. Air-side and plant-side resistances influence the uptake of airborne PCBs by evergreen plants. Environmental Science & Technology, 2002, 36(15): 3224-3229.
    [40] Mclachlan, M. S. Framework for the interpretation of measurements of SOCs in plants. Environmental Science & Technology, 1999,33(11): 1799-1804.
    [41] Kipopoulou, A. M., Manoli, E., Samara, C. Bioconcentration of polycyclic aromatic hydrocarbons in vegetables grown in an industrial area. Environmental Pollution, 1999,106(3): 369-380.
    [42] Hiatt, M. H. Leaves as an indicator of exposure to airborne volatile organic compounds. Environmental Science & Technology, 1999, 33(22): 4126-4133.
    [43] Tremolada, P., Burnett, V., Calamari, D., et al. Spatial distribution of PAHs in the U. K. atmosphere using pine needles. Environmental Science & Technology, 1996,30(12): 3570-3577.
    [44] Lohmann, R., Harner, T., Thomas, G. O., et al. Comparative study of gas-particle partitioning of PCDD/Fs, PCBs, and PAHs. Environmental Science & Technology, 2000,34(23): 4943-4951.
    [45] Cousins, I. T., Mackay, D. Gas-particle partitioning of organic compounds and its interpretation using relative solubilities. Environmental Science & Technology, 2001, 35(4): 643-647.
    [46] Lee, R. G. M., Burnett, V., Harner, T., et al. Shor-term temperature-dependent air-surface exchange and atmosphere concentrations of polychlorinated naphthalenes and organochlorine pesticides. Environmental Science & Technology, 2000, 34(3): 393-398.
    [47] Finizio, A., Mackay, D., Bidleman, T., et al. Octanol-air partition coefficient as a predictor of partitioning of semi-volatile organic chemicals to aerosols. Atmospheric Environment, 1997, 31(15): 2289-2296.
    [48] Lee, R. G. M., Jones, K. Gas-particle partitioning of atmospheric PCDD/Fs: measurements and observation on modeling. Environmental Science & Technology, 1999, 33(20): 3596-3604.
    [49] Pankow, J. F. Further discussion of the octanol/air partition coefficient K_(OA) as a coorelating parameter for gas/particle partitioning coefficients. Atmospheric Environment, 1998, 32(9): 1493-1497.
    [50] Kallenborn, R., Oehme, M, Wynn-Williams, D. D., et al. Ambient air levels and atmospheric long-range transport of persistent organochlorines to Signy Island, Antarctica. Science of the Total Environment, 1998,220(2-3): 167-180.
    [51] Polder, A., Odland, J. O., Tkachev, A., et al. Geographic variation of chlorinated pesticides, toxaphenes and PCBs in human milk from sub-arctic and arctic locations in Russia. Science of the Total Environment, 2003, 306(1-3): 179-195.
    [52] Zhulidov, A. V., Robarts, R. D., Headley, J. V., et al. Levels of DDT and hexachlorocyclohexane in burbot (Lota iota L.) from Russian Arctic rivers. Science of the Total Environment, 2002, 292(3): 231-246.
    [53] Halsall, C. J., Bailey, R., Stern, G. A., et al. Multi-year observations of organohalogen pesticides in the Arctic atmosphere. Environmental Pollution, 1998,102(1): 51-62.
    [54] Hung, H., Blanchard, P., Poole, G., et al. Measurement of particle-bound polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/Fs) in Arctic air at Alert, Nunavut, Canada. Atmospheric Environment, 2002, 36(6): 1041-1050.
    [55] Fernandez, P., Vilanova, R. M., Martinez, C., et al. The historical record of atmospheric pyrolytic pollution over Europe registered in the sedimentary PAH from remote mountain lakes. Environmental Science & Technology, 2000,34(10): 1906-1913.
    [56] Carrera, G., Fernandez, P., Vilanova, R. M., et al. Persistent organic pollutants in snow from European high mountain areas. Atmospheric Environment, 2001,35(2): 245-254.
    [57] Fernandez, P., Grimalt, J. O., Vilanova, R. M. Atmospheric gas-particle partitioning of polycyclic aromatic hydrocarbons in high mountain regions of Europe. Environmental Science & Technology, 2002,36(6): 1162-1168.
    [58] Wania, F., Mackay, D. Tracking the distribution of persistent organic pollutants. Environmental Science & Technology, 1996, 30 (9): 390A-396A.
    [59] Wania, F. Assessing the potential of persistent organic chemicals for long-range transport and accumulation in polar regions. Environmental Science & Technology, 2003,37(7): 1344-1351.
    [60] Kelly B. C. Ikonomou M G, Blair J D et al. Food web-specific biomagnification of persistent organic pollutants. Science, 2007,317 (5835): 236-239.
    [61] Harner, T., Bidleman, T. F. Measurement of octanol-air partition coefficients for polychlorinated biphenyls. Journal of Chemical and Engineering Data, 1996,41 (4): 895-899.
    [62] Harner, T, Bidleman, T. F. Measurement of octanol-air partition coefficients for polycyclic aromatic hydrocarbons and polychlorinated naphthalenes. Journal of Chemical and Engineering Data, 1998, 43 (1): 40-46.
    [63] Harner, T., Green, N. J. L., Jones, K. Measurement of octanol-air partition coefficients for PCDD/Fs: a tool in assessing air-soil equilibrium status. Environmental Science and Technology, 2000, 34 (2): 3109-3114.
    [64] Harner, T., Shoeib, M. Measurements of octanol-air partition coefficients (K_(oa)) for polybrominated diphenyl ethers (PBDEs): predicting partitioning in the environment. Journal of Chemical and Engineering Data, 2002,47 (2): 282-232.
    [65] Shoeib, M., Harner, T. Using measured octanol-air partition coefficients to explain environmental partitioning of organochlorine pesticides. Environmental Toxicology and Chemistry, 2002, 21 (5): 984-990.
    [66] Komp, P., Mclachlan, M. S. Octanol/air partitioning of polychlorinated biphenyls. Environmental Toxicology and Chemistry, 1997,16 (12): 2433-2437.
    [67] Treves, K., Shragina, L., Rudich, Y. Measurement of octanol-air partition coefficients using solid-phase microextraction (SPME)-application to hydroxy alkyl nitrates. Atmospheric Environment, 2001,35(33): 5843-5854.
    [68] Abraham, H. M., Le, J., Acree, W. E. et al. The solubility of gases and vapours in dry octan-1-ol at 298 K. Chemosphere, 2001, 44 (4): 855-863.
    [69] Wania, F., Lei, Y. D., Harner, T. Estimating octanol-air partition coefficients of nonpolar semivolatile organic compounds from gas chromatographic retention times. Analytical Chemistry, 2002,74 (14): 3476-3483.
    [70] Lei, D. Y., Wania, F., Masthers, D. et al. Determination of vapor pressures, octanol-air, and water-air partition coefficients for polyfluorinated sulfonamide, sulfonamidoethanols, and telomer alcohols. Journal of Chemical and Engineering Data, 2004,49 (4): 1013-1022.
    [71] Odabasi, M., Cetin, E., Sofuoglu, A. Determination of octanol/air partition coefficients and supercooled liquid vapor pressures of PAHs as a function of temperature: Application to gas/particle partitioning in an urban atmosphere. Atmospheric Environment, 2006, 40 (4): 6615-6625.
    [72] Zhang, X., Schramm, K-W, Henning, T. A. A method to estimate the octanol-air partition coefficient of semivolatile organic compounds. Analytical Chemistry, 1999,71 (17): 3834-3838.
    [73] Su, Y. S., Lei, Y. D., Daly, G. L. et al. Determination of octanol-air partition coefficient (K_(oa)) values for chlorobenzenes and polychlorinated naphthalenes from gas chromatographic retention times. Journal of Chemical and Engineering Data, 2002,47 (3): 449-455.
    [74] Meylan, W. M., Howard, P. H. Estimating octanol-air partition coefficients with octanol-water partition coefficients and Henry's constants. Chemosphere, 2005,61 (5): 640-644.
    [75] Abraham, H. M., Le, J., Acree, W. E. et al. The solubility of gases and vapours in dry octan-1-ol at 298 K. Chemosphere, 2001,44 (4): 855-863.
    [76] Li, X. H., Chen, J. W., Zhang, L. et al. The fragment constant method for predicting octanol-air partition coefficients of persistent organic pollutants at different temperatures. Journal of Physical and Chemical Reference Data, 2006, 35 (3): 1365-1384.
    [77] Xiao, H., Wania, F. Is vapor pressure or the octanol-air partition coefficient a better descriptor of the partitioning between gas phase and organic matter? Atmospheric Environment, 2003, 37(20): 2867-2878.
    [78] Staikova, M., Wania, F., Donaldson, D. J. Molecular polarizability as a single-parameter predictor of vapour pressures and octanol-air partitioning coefficients of non-polar compounds: a priori approach and results. Atmospheric Environment, 2004, 38 (2): 213-225.
    [79] Chen, J. W., Harner, T., Schramm, K. W., et al. Quantitative relationships between molecular structures, environmental temperatures and octanol-air partition coefficients of PCDD/Fs. Science of the Total Environment, 2002, 300(1-3): 155-166.
    [80] Chen, J. W., Xue, X. Y., Schramm, K-W. et al. Quantitative structure-property relationships for octanol-air partition coefficients of polychlorinated biphenyls. Chemosphere, 2002, 48 (5): 535-544.
    [81] Chen, J. W., Xue, X. Y., Schramm, K. W., et al. Quantitative structure-property relationships for octanol-air partition coefficients of polychlorinated naphthalenes, chlorobenzenes and p,p '-DDT. Computational Biology and Chemistry, 2003, 27(3): 165-171.
    [82] Zhao, H. X., Zhang, Q., Chen, J. P. et al. Prediction of octanol-air partition coefficients of semivolatile organic compounds based on molecular connectivity index. Chemosphere, 2005, 59 (8): 1421-1426.
    [83] Puzyn, T., Falandysz, J. Computational estimation of logarithm of n-octanol/air partition coefficient and subcooled vapor pressures of 75 chloronaphthalene congeners. Atmospheric Environment, 2005, 39 (8): 1439-1446.
    [84] Chen, J. W., Harner, T., Ding, G. H. et al. Universal predictive models on octanol-air partition coefficients at different temperatures for persistent organic pollutants. Environmental Toxicology and Chemistry, 2004, 23 (10): 2309-2317.
    [85]Chen,J.W.,Harner,T.,Sehramm,K.W.,et al.Quantitative relationships between molecular structures,environmental temperatures and octanol-air partition coefficients of polychlorinated biphenyls.Computational Biology and Chemistry,2003,27(3):405-421.
    [86]Chen,J.W.,Harner,T.,Yang,P.et al.Quantitative predictive models for octanol-air partition coefficients of polybrominated diphenyl ethers at different temperatures.Chemosphere,2003,51(7):577-584.
    [87]于海瀛.部分有机化合物空气/颗粒物分配系数与正辛醇/空气分配系数的预测研究:(硕士学位论文).大连:大连理工大学,2007.
    [88]张青,赵洪霞,陈吉平 等.多氯联苯的正辛醇-空气分配系数与气相色谱参数的关联.色谱,2007,23(5):441-444.
    189]曾荣今,杨征军.多氯联苯正辛醇-空气分配系数的预测研究.湘潭师范学院学报(自然科学版),2007,29(1):58-60.
    [90]王连生,韩朔睽.分子结构性质与活性.北京:化学工业出版社,1997.
    [91]Tunkel,J.,Mayo,K.,Austin,C.,et al.Practical considerations on the ues of predictive models for regulatory purposes.Environmental Science & Technology,2005,39(7):2188-2199.
    [92]戴树桂.环境化学进展.北京:化学工业出版社,2005.
    [93]陈景文.有机污染物定量结构-性质关系与定量结构-活性关系.大连:大连理工大学出版社,1999.
    [94]Kier,L.B.,Hall,L.H.Intermolecular accessibility:The meaning of molecular connectivity.Journal of Chemical Information and Computer Sciences,2000,40(3):792-795.
    [95]Hall,L.H.,Kier,L.B.Development of molecular connectivity and the role of creativity.Abstracts of Papers of the American Chemical Society,2000,220:U283-U283.
    [96]Randic,M.On characterization of molecular branching.Journal of the American Chemical Society,1975,97(23):6609-6615.
    [97]Hall,L.H.,Kier,L.B.Electrotopological state indices for atom types:A novel combination of electronic,topological,and valence state information.Journal of Chemical Information and Computer Sciences,1995,35(6):1039-1045.
    [98]刘树深,刘堰,李志良等.一个新的分子电性距离矢量.化学学报,2000,58(11):1353-1357.
    [99]Liu,S.S.,Yin,C.S.,Wang,L.S.Combined MEDV-GA-MLR method for QSAR of three panels of steroids,dipeptides,and COX-2 inhibitors.Journal of Chemical Information and Computer Sciences,2002,42(3):749-756.
    [100]Wiener,H.J.Structural determination of paraffin boiling points.Journal of the American Chemical Society,1947,69(1):17-20.
    [101]Dewar,M.J.S.,Thiel,W.Ground states of molecules.38.The MNDO method.Approximations and parameters.Journal of the American Chemical Society,1977,99(15):4899-4907.
    [102]Dewar,M.J.S.,Zoebisch,E.G.,Healy,E.F.,Stewart,J.J.P.AM1:A new general purpose quantum mechanical molecular model.Journal of the American Chemical Society,1985,107(13):3902-3909.
    [103]Dewar,M.J.S.,Healy,E.F.,Holder,A.J.,et al.Comments on a comparison of AM1 with the recently developed PM3 method.Journal of Computational Chemistry,1990,11(4):541-542.
    [104]Hansch,C.,Maloney,P.P.,Fujita,T.et al.Correlation of biological activity of phenoxyacetic acids with Hammett substituent constants and partition coefficients.Nature,1962,194(4824):178-180.
    [105]Hansch,C.,Muir,R.M.,Fujita,T.et al.The correlation of biological activity of plant growth regulators and chloromycetin derivatives with Hammett constants and partition coefficients.Journal of the American Chemical Society,1963,85(18):2817-2824.
    [106]Fujita,T.,Iwasa,J.,Hansch,C.A new substituent constant,π,derived from partition coefficients.Journal of the American Chemical Society,1964,86(23):5175-5180.
    [107]Hermens,J.,Leeueanch,P.,Musch,A.Quantitative structure-activity relationships and mixture toxicitystudies of chloro- and alkylanilines at an acute lethal toxicity level to the guppy(Poecilia reticulata).Ecotoxicology and Environmental Safety,1984,8(4):388-394.
    [108]Schultz,W.T.,Bryant,S.E.,Lin,D.T.Structure-toxicity relationships for tetrahymana:aliphatic aldehydes.Bulletin of Environmental Contamination and Toxicology,1994,52(2):279-285.
    [109]Kamlet,M.J.,Abraham,M.H.,Doherty,R.M.et al.Solubility properties in polymers and biological media.4.Correlations of octanol/water partition coefficients with solvatochromic parameters.Journal of the American Chemical Society,1984,106(2):464-466.
    [110]Kamlet,M.J.,Taft,R.W.The solvatochromie comparison method.I.The beta-scale of solvent hydrogen-bond acceptor(HBA) basicities.Journal of the American Chemical Society,1976,98(2):377-383.
    [111]Taft,R.W.,Kamlet,M.J.The solvatochromic comparison method.2.The alpha-scale of solvent hydrogen-bond donor(HBD) acidities.Journal of the American Chemical Society,1976,98(10):2886-2894.
    [112]Wilson,L..Y.,Famini G.R.Using theoretical descriptors in quantitative structure-activity relationships:some toxicological indices.Journal of Medicinal Chemistry,1991,34(5):1668-1674.
    [113]Famini,G.R.,Renski,C.A.,Wilson,L.Y.Using theoretical descriptors in quantitative structure-activity relationships:some physicochemieal properties.Journal of Physical Organic Chemistry,1992,5(7):395-408.
    [114]Chen,J.W.,Feng,L.,Liao,Y.Y.et al.Using AM1 Hamiltonian in quantitative structure-properties relationship studies of alkyl(1-phenylsulfonyl) cycloalkane-carboxylates.Chemosphere,1996,33(3):537-546.
    [115]Chen,J.W.,Wang,L.S.Using MTLSER model and AM1 Hamiltonian in quantitative structure-activity relationship studies of alkyl(1-phenylsulfonyl) cycloalkane-carboxylates.Chemosphere,1997,35(3):623-631.
    [116]Abraham,M.H.,Ibrahim,A.,Zissimos,A.M.Determination of sets of solute descriptors from chromatographic measurements.Journal of Chromatography A,2004,1037(1-2):29-47.
    [117]陈安进,石杰.计算机辅助药物设计中用于建模的计算方法研究进展.中国海洋大学学报,2005,35(3):407-411.
    [118]丁光辉.PLS和GA应用于部分有机污染物的QSAR研究:(博士学位论文).大连:大连理工大学,2006.
    [119]Netzeva,T.I.,Worth,A.P.,Aldenberg,T.,et al.Current status of methods for defining the applicability domain of(quantitative) structure-activity relationships - The report and recommendations of ECVAM Workshop 52.Atla-Alternatives to Laboratory Animals,2005,33(2): 155-173.
    
    [120] 赵春燕. QSAR研究在生命分析化学和环境化学中的应用:博士学位论文.兰州:兰州大学,2003
    [121] Kamlet, M. J., Doherty, R. M., Carr, P. W., et al. Linear solvation energy relationships. 44. Parameter estimation rules that allow accurate prediction of octanol/water partition coefficients and other solubility and toxicity properties of polychlorinated biphenyls and polycyclic aromatic hydrocarbons. Environmental Science & Technology, 1988,22(5): 503-509.
    [122] Leahy, D. E. Intrinsic molecular volume as a measure of the cavity term in linear solvation energy relationship: octanol-water partition coefficients and aqueous solubilities. Journal of Pharmaceutical Sciences, 1986, 75(7): 629-639.
    [123] Chen, J. W., Quan, X., Zhao, Y. Z., et al. Quantitative structure-property relationship studies on n-octanol/water partitioning coefficients of PCDD/Fs. Chemosphere, 2001,44(6): 1369-1374.
    [124] Papa, E., Dearden, J. C, Gramatica, P. Linear QSAR regression models for the prediction of bioconcentration factors by physicochemical properties and structural theoretical molecular descriptors. Chemosphere, 2007, 67(2): 351-358.
    [125] Meylan, W. M., Howard, P. H., Boethling, R. S. Molecular topology/fragment contribution method for predicting soil sorption coefficients. Environmental Science & Technology, 1992, 26(8): 1560-1567.
    [126] Schuurmann, G., Ebert, R. U., Kuhne, R. Prediction of the sorption of organic compounds into soil organic matter from molecular structure. Environmental Science & Technology. 2006, 40(22): 7005-7011.
    [127] Hermens, J. L. M., Leeuwangh, P., Musch, A. Quantitative structure-activity relationships and mixture toxicity studies of chloro- and alkylanilines at an acute lethal toxicity level to the guppy (Poecilia reticulata). Ecotoxicology and Environmental Safety, 1984, 8(4): 388-394.
    [128] Bradbury, S. P., Russom, C. L., Ankley, G. T., et al. Overview of data and conceptual approaches for derivation of quantitative structure-activity relationships for ecotoxicological effects of organic chemicals. Environmental Toxicology and Chemistry, 2003, 22(8): 1789-1798.
    [129] Tong, W. D., Fang, H., Hong, H. X., et al. Regulatory application of SAR/QSAR for priority setting of endocrine disruptors: A perspective. Pure and Applied Chemistry, 2003, 75(11-12): 2375-2388.
    [130] Asikainen, A. H., Ruuskanen, J., Tuppurainen, K. A. Consensus kNN QSAR: A versatile method for predicting the estrogenic activity of organic compounds in silico. A comparative study with five estrogen receptors and a large, diverse set of ligands. Environmental Science & Technology, 2004, 38(24): 6724-6729.
    [131] Liu, H. X., Papa, E., Gramatica, P. QSAR prediction of estrogen activity for a large set of diverse chemicals under the guidance of OECD principles. Chemical Research in Toxicology, 2006, 19(11): 1540-1548.
    [132] Raymond, J. W., Rogers, T. N., Shonnard, D. R., et al. A review of structure-based biodegradation estimation methods. Journal of Hazardous Materials, 2001, 84(2-3): 189-215.
    [133] Chen, J. W., Peijnenburg, W. J. G. M., Quan, X., et al. Is it possible to develop a QSPR model for direct photolysis half-lives of PAHs under irradiation of sunlight? Environmental Pollution, 2001, 114(1): 137-143.
    [134] Chen, J. W., Peijnenburg, W. J. G. M., Quan, X., et al. The use of PLS algorithms and quantum chemical parameters derived from PM3 hamiltonian in QSPR studies on direct photolysis quantum yields of substituted aromatic halides. Chemosphere, 2000,40(12): 1319-1326.
    [135] Chen, J. W., Quan, X., Schramm, K. W., et al. Quantitative structure-property relationships (QSPRs) on direct photolysis of PCDDs. Chemosphere, 2001,45(2): 151-159.
    [136] Chen, J., Pei, J., Quan, X., et al. Linear free energy relationships on rate constants for dechlorination by zero-valent iron. Sar and Qsar in Environmental Research, 2002,13(6): 597-606.
    [137] Yan, C. L., Chen, J. W., Huang, L. P., et al. Linear free energy relationships on rate constants for the gas-phase reactions of hydroxyl radicals with PAHs and PCDD/Fs. Chemosphere, 2005, 61(10): 1523-1528.
    [138] Walker, J. D. International workshops on QSARs in the environmental sciences - The first 20 years. Qsar & Combinatorial Science, 2003, 22(4): 415-421.
    [139] Hammett, L. P. The effect of structure upon the reactions of organic compounds. Benzene derivatives. Journal of the American Chemical Society, 1937,59(1): 96-103.
    [140] Taft, R. W., Lewis, I. C. The general applicability of a fixed scale of inductive effects. II. Inductive effects of dipolar substituents in the reactivities of m- and p-substituted derivatives of benzene. Journal of the American Chemical Society, 1958, 80(10): 2436-2443.
    [141] Hansch, C., Leo, A., Taft, R. W. A survey of Hammett substituent constants and resonance and field parameters. Chemical Reviews, 1991, 91(2): 165-195.
    [142] Taft, R. M. Polar and steric substituent constants for aliphatic and o-benzoate groups from rates of esterification and hydrolysis of esters. Journal of the American Chemical Society, 1952, 74(12): 3120-3128.
    [143] Hancock, C. K., Meyers, E. A., Yager, B. J. Quantitative separation of hyperconjugation effects from steric substituent constants. Journal of the American Chemical Society, 1961, 83(20): 4211-4213.
    [144] Charton, M. The nature of the ortho effect. II. Composition of the Taft steric parameters. Journal of the American Chemical Society, 1969, 91(3): 615-618.
    [145] Ghose, A. K., Crippen, G. M. Atomic physicochemical parameters for three-dimensional-structure-directed quantitative structure-activity relationships. 2. Modeling dispersive and hydrophobic interactions. Journal of Chemical Information and Computer Sciences, 1987, 27(1): 21-35.
    [146] Kamlet, M. J., Taft, R. W. The solvatochromic comparison method. I. The beta-scale of solvent hydrogen-bond acceptor (HBA) basicities. Journal of the American Chemical Society, 1976, 98(2): 377-383.
    [147] Taft, R. W., Kamlet, M. J. The solvatochromic comparison method. 2. The alpha-scale of solvent hydrogen-bond donor (HBD) acidities. Journal of the American Chemical Society, 1976, 98(10): 2886-2894.
    [148] Balaban, A. T. Using real numbers as vertex invariants for third-generation topological indexes. Journal of Chemical Information and Computer Sciences, 1992,32(1): 23-28.
    [149] Kier L B, Hall L H. The nature of structure-activity relationships and their relation to molecular connectivity. European Journal of Medicinal Chemistry, 1977,12: 307-312.
    [150]Karelson,M.,Lobanov,V.S.,Katritzky,A.R.Quantum-chemical descriptors in QSAR/QSPR studies.Chemical Reviews,1996,96(3):1027-1043.
    [151]任若恩,王惠文.多元统计数据分析-理论、方法、实例.北京:国防工业出版社,1999.
    [152]Livingstone,D.J.,Salt,D.W.Judging the significance of multiple linear regression models.Journal of Medicinal Chemistry,2005,48(3):661-663.
    [153]Dudek,A.Z.,Arodz,T.,Galvez,J.Computational methods in developing quantitative structure-activity relationships(QSAR):A review.Combinatorial Chemistry & High Throughput Screening,2006,9(3):213-228.
    [154]许禄,邵学广.化学计量学方法.北京:科学出版社,2004.
    [155]Guha,R.,Jurs,P.C.Determining the validity of a QSAR model - A classification approach.Journal of Chemical Information and Modeling,2005,45(1):65-73.
    [156]Barnard,J.M.,Downs,G.M.Clustering of chemical structures on the basis of two-dimensional similarity measures.Journal of Chemical Information and Computer Sciences,1992,32(6):644-649.
    [157]Vapnik,V.N.An overview of statistical learning theory.Ieee Transactions on Neural Networks,1999,10(5):988-999.
    [158]Kovesdi,I.,Dominguez-Rodriguez,M.F.,Orfi,L.,et al.Application of neural networks in structure-activity relationships.Medicinal Research Reviews,1999,19(3):249-269.
    [159]栾峰.支持向量机和径向神经网络方法在化学、环境化学和药物化学中的应用.博士学位论文.兰州:兰州大学,2006.
    [160]Yang,S.S.,Lu,W.C.,Chen,N.Y.,et al.Support vector regression based QSPR for the prediction of some physicochemical properties of alkyl benzenes.Journal of Molecular Structure-Theochem,2005,719(1-3):119-127.
    [161]Leardi,R.Genetic algorithms in chemometrics and chemistry:a review.Journal of Chemometrics,2001,15(7):559-569.
    [162]Liu,H.X.,Zhang,R.S.,Yao,X.J.,et al.Prediction of the isoelectric point of an amino acid based on GA-PLS and SVMs.Journal of Chemical Information and Computer Sciences,2004,44(1):161-167.
    [163]Wanchana,S.,Yamashita,F.,Hashida,M.QSAR analysis of the inhibition of recombinant CYP 3A4 activity by structurally diverse compounds using a genetic algorithm-combined partial least squares method.Pharmaceutical Research,2003,20(9):1401-1408.
    [164]Liu,J.J.,Cutler,G.,Li,W.X.,et al.Multiclass cancer classification and biomarker discovery using GA-based algorithms.Bioinformatics,2005,21(11):2691-2697.
    [165]MeInerney,M.,Dhawan,A.P.Use of genetic algorithms with back propagation in training of feed-forward neural networks.In:IEEE International Conference on Neural Networks,1993.203-208.
    [166]Wang,H.,Yu,J.Application study on nonlinear dynamic FIR modeling using hybrid SVM-PLS method.In:Proceedings of the World Congress on Intelligent Control and Automation(WCICA) 4,2004.3479-3482.
    [167]Jaworska,J.S.,Comber,M.,Auer,C.,et al.Summary of a workshop on regulatory acceptance of QSARs for human health and environmental endpoints.Environmental Health Perspectives,2003,111(10):1358-1360.
    [168]Cronin,M.T.D.,Walker,J.D.,Jaworska,J.S.,et al.Use of QSARs in international decision-making frameworks to predict ecologic effects and environmental fate of chemical substances.Environmental Health Perspectives,2003,111(10):1376-1390.
    [169]Cronin,M.T.D.,Jaworska,J.S.,Walker,J.D.,et al.Use of QSARs in international decision-making frameworks to predict health effects of chemical substances.Environmental Health Perspectives,2003,111(10):1391-1401.
    [170]Walker,J.D.,Carlsen,L.,Hulzebos,E.,et al.Global government applications of analogues,SARs and QSARs to predict aquatic toxicity,chemical or physical properties,environmental fate parameters and health effects of organic chemicals.Sar and Qsar in Environmental Research,2002,13(6):607-616.
    [171]Enterprise & Industry Directorate General and Environment Directorate General.European Commission,REACH in brief.2002,September.Available online at:http://ecb.jrc.it/REACH/
    [172]Worth,A.P.,Bassan,A.,De Bruijn,J.,et al.The role of the European Chemicals Bureau in promoting the regulatory use of(Q)SAR methods.Sar and Qsar in Environmental Research,2007,18(1-2):111-125.
    [173]Organisation for Economic Co-Operation and Development(OECD).Report from the Expert Group on(Q)SARs on the Principles for the Validation of(Q)SARs,2004.Available online at:http://applil.oecd.org/olis/2004doc.nsf/linkto/env-jm-mono(2004)24
    [174]Organisation for Economic Co-Operation and Development(OECD).Guidance document on the validation of(Quantitative) Structure-Activity Relationships[(Q)SARs]models,2007.Available online at:http://www.oecd.org/dataoecd/55/22/38131728.pdf
    [175]Organisation for Economic Co-Operation and Development(OECD).Testing and assessment Report on the regulatory uses and applications in OECD member countries of(Quantitative)Structure-Activity Relationship[(Q)SARs]models in the assessment of new and existing chemicals,2006.Available online at:http://applil.oecd.org/olis/2006doc.nsf/linkto/env-jm-mono(2006)25
    [176]王连生,韩朔睽.有机物定量结构-活性相关.北京:中国环境科学出版社,1993
    [177]王连生.有机污染化学.北京:高等教育出版社,2004
    [178]Lu,Q.Z.,Shen,G.L.,Yu,R.Q.Genetic training of network using chaos concept:Application to QSAR studies of vibration modes of tetrahedral halides.Journal of Computational Chemistry,2002,23(14):1357-1365.
    [179]栾峰.支持向量机和径向神经网络方法在化学、环境化学和药物化学中的应用:博士学位论文.兰州:兰州大学,2006
    [180]Yao,Y.Y.,Xu,L.,Yang,Y.Q.,et al.Study on structure-activity relationships of organic compounds:Three new topological indices and their applications.Journal of Chemical Information and Computer Sciences,1993,33(4):590-594.
    [181]Lu,G.H.,Yuan,X.,Zhao,Y.H.QSAR study on the toxicity of substituted benzenes to the algae (Scenedesmus obliquus).Chemosphere,2001,44(3):437-440.
    [182]Cronin,M.T.D.,Schultz,T.W.Pitfalls in QSAR.Journal of Molecular Structure-Theochem,2003,622(1-2):39-51.
    [183]Schultz,T.W.,Cronin,M.T.D.Essential and desirable characteristics of ecotoxicity quantitative structure-activity relationships.Environmental Toxicology and Chemistry,2003,22(3):599-607.
    [184] Cronin, M. T. D., Schultz, T. W. Validation of Vibrio fischeri acute toxicity data: mechanism of action-based QSARs for nonpolar narcotics and polar narcotic phenols. Science of the Total Environment, 1997,204(1): 75-88.
    [185] Walker, J. D., Jaworska, J., Comber, M. H. I., et al. Guidelines for developing and using quantitative structure-activity relationships. Environmental Toxicology and Chemistry, 2003, 22(8): 1653-1665.
    [186] Livingstone, D. J. Data Analysis for Chemists: Applications to QSAR and Chemical Product Design. Oxford: Oxford University Press, 1995.
    [187] Cronin, M. T. D., Schultz, T. W. Development of quantitative structure-activity relationships for the toxicity of aromatic compounds to Tetrahymena pyriformis: Comparative assessment of the methodologies. Chemical Research in Toxicology, 2001,14(9): 1284-1295.
    [188] Burden, F. R., Winkler, D. A. A quantitative structure-activity relationships model for the acute toxicity of substituted benzenes to Tetrahymena pyriformis using Bayesian-regularized neural networks. Chemical Research in Toxicology, 2000,13(6): 436-440.
    [189] 王惠文, 吴载斌, 孟洁. 偏最小二乘回归的线性与非线性方法. 北京: 国防工业出版社, 2006,35-42.
    [190] Kholodovych, V., Smith, J. R., Knight, D., et al. Accurate predictions of cellular response using QSPR: a feasibility test of rational design of polymeric biomaterials. Polymer, 2004, 45(22): 7367-7379.
    [191] Furusjo, E., Svenson, A., Rahmberg, M., et al. The importance of outlier detection and training set selection for reliable environmental QSAR predictions. Chemosphere, 2006, 63(1): 99-108.
    [192] Dimitrov, S., Dimitrova, G., Pavlov, T., et al. A stepwise approach for defining the applicability domain of SAR and QSAR models. Journal of Chemical Information and Modeling, 2005, 45(4): 839-849.
    [193] EC (European Commission). Technical Guidance Document on Risk Assessment in support of Commission Directive 93/67/EEC on Risk Assessment for new notified substances and Commission Regulation (EC) No 1488/94 on Risk Assessment for existing substances, and Directive 98/8/EC of the European Parliament and of the Council concerning the placing of bio-cidal products on the market, Parts 3.2003
    [194] Jaworska, J., Nikolova-Jeliazkova, N., Aldenberg, T. QSAR applicability domain estimation by projection of the training set in descriptor space: A review. Atla-Alternatives to Laboratory Animals, 2005, 33(5): 445-459.
    [195] Netzeva, T. I., Saliner, A. G., Worth, A. P. Comparison of the applicability domain of a quantitative structure-activity relationship for estrogenicity with a large chemical inventory. Environmental Toxicology and Chemistry, 2006,25(5): 1223-1230.
    [196] Nikolova-Jeliazkova N., Jaworska J. An approach to determining applicability domain for QSAR group contribution models: an analysis of SRC KOWWIN. Atla-Alternatives to Laboratory Animals, 2005,33(5): 461-470.
    [197] Sheridan, R. P., Feuston, B. P., Maiorov, V. N., et al. Similarity to molecules in the training set is a good discriminator for prediction accuracy in QSAR. Journal of Chemical Information and Computer Sciences, 2004,44(6): 1912-1928.
    [198] Dimitrov, S., Koleva, Y., Schultz, T. W., et al. Interspecies quantitative structure-activity relationship model for aldehydes: Aquatic toxicity. Environmental Toxicology and Chemistry, 2004, 23(2): 463-470.
    [199] Schultz, T. W., Hewitt, M., Netzeva, T. I., et al. Assessing applicability domains of toxicological QSARs: Definition, confidence in predicted values, and the role of mechanisms of action. Qsar & Combinatorial Science, 2007, 26(2): 238-254.
    [200] Eriksson, L., Jaworska, J., Worth, A. P., et al. Methods for reliability and uncertainty assessment and for applicability evaluations of classification- and regression-based QSARs. Environmental Health Perspectives, 2003,111(10): 1361-1375.
    
    [201] Jackson, J. E. A user's guide to principal components. New York: John Wiley, 1991.
    [202] Kolossov, E., Stanforth, R. The quality of QSAR models: problems and solutions. Sar and Qsar in Environmental Research, 2007,18(1-2): 89-100.
    [203] Tropsha, A., Gramatica, P., Gombar, V. K. The importance of being earnest: Validation is the absolute essential for successful application and interpretation of QSPR models. Qsar & Combinatorial Science, 2003, 22(1): 69-77.
    [204] Livingstone, D. J., Manallack, D. T., Tetko, I. V. Data modeling with neural networks: advantages and limitations. Journal of Computer-Aided Molecular Design, 1997,11(2): 135-142.
    [205] Hawkins, D. M. The problem of overfitting. Journal of Chemical Information and Computer Sciences, 2004,44(1): 1-12.
    [206] Zhang P. Model selection via multifold cross validation. The Annals of Statistics, 1993, 21(1): 299-313.
    [207] Baumann, K., von Korff, M., Albert, H. A systematic evaluation of the benefits and hazards of variable selection in latent variable regression. Part II. Practical applications. Journal of Chemometrics, 2002, 16(7): 351-360.
    [208] Wehrens, R., Putter, H., Buydens, L. M. C. The bootstrap: a tutorial. Chemometrics and Intelligent Laboratory Systems, 2000, 54(1): 35-52.
    [209] Yasri, A., Hartsough, D. Toward an optimal procedure for variable selection and QSAR model building. Journal of Chemical Information and Computer Sciences, 2001,41(5): 1218-1227.
    [210] Burden, F. R., Ford, M. G., Whitley, D. C, et al. Use of automatic relevance determination in QSAR studies using Bayesian neural networks. Journal of Chemical Information and Computer Sciences, 2000, 40(6): 1423-1430.
    [211] Mitchell, T. J. An algorithm for the construction of "D-optimal" experimental designs. Technometrics, 2000,42(1): 48-54.
    [212] Kubinyi, H., Hamprecht, F. A., Mietzner, T. Three-dimensional quantitative similarity-activity relationships (3D QSiAR) from SEAL similarity matrices. Journal of Medicinal Chemistry, 1998, 41(14): 2553-2564.
    [213] Golbraikh, A., Tropsha, A. Beware of q(2)! Journal of Molecular Graphics & Modelling, 2002, 20(4): 269-276.
    [214] Schultz, T. W., Netzeva, T. I., Cronin, M. T. D. Evaluation of QSARs for ecotoxicity: A method for assigning quality and confidence. Sar and Qsar in Environmental Research, 2004,15(5-6): 385-397.
    [215] Dearden, J. C., Roberts, D. W. Larger molecules penetrate membranes more readily. Journal of Pharmacy and Pharmacology, 2006, 58: A60-A60.
    [216] Tao, S., Piao, H. S., Dawson, R., et al. Estimation of organic carbon normalized sorption coefficient (K-oc) for soils using the fragment constant method, Environmental Science & Technology. 1999, 33(16): 2719-2725.
    [217] Tao, S., Hu, H. Y., Lu, X. X., et al. Fragment constant method for prediction of fish bioconcentration factors of non-polar chemicals. Chemosphere. 2000, 41(10): 1563-1568.
    [218] Zefirov, N. S., Palyulin, V. A. Fragmental approach in QSPR. Journal of Chemical Information and Computer Sciences, 2002,42(5): 1112-1122.
    [219] Chao, M. R., Hu, C. W., Chen, Y. L., et al. Approaching gas-particle partitioning equilibrium of atmospheric PCDD/Fs with increasing distance from an incinerator: measurements and observations on modeling. Atmospheric Environment, 2004,38(10): 1501-1510.
    [220] Nizzetto, L., Cassani, C., Di Guardo, A. Deposition of PCBs in mountains: The forest filter effect of different forest ecosystem types. Ecotoxicology and Environmental Safety, 2006,63(1): 75-83.
    [221] Tao, S., Xi, X. H., Xu, F. L., et al. A fragment constant QSAR model for evaluating the EC50 values of organic chemicals to Daphnia magna. Environmental Pollution, 2002,116(1): 57-64.
    [222] Leo,A. J. Symposium on structure-sctivity correlations in studies of toxicity and bio-concentration with aquatic organisms. Great Lakes Research Advisory Board: Burlington, Ontarion, 1975.
    [223] Van den Berg, M., Birnbaum, L., Bosveld, A. T. C., et al. Toxic equivalency factors (TEFs) for PCBs, PCDDs, PCDFs for humans and wildlife. Environmental Health Perspectives, 1998, 106(12): 775-792.
    [224] Jonker, M. T. O., Koelmans, A. A. Sorption of polycyclic aromatic hydrocarbons and polychlorinated biphenyls to soot and soot-like materials in the aqueous environment mechanistic considerations. Environmental Science & Technology, 2002, 36(17): 3725-3734.
    [225] Jonker, M. T. O., Smedes, F. Preferential sorption of planar contaminants in sediments from Lake Ketelmeer, The Netherlands. Environmental Science & Technology, 2000, 34(9): 1620-1626.
    [226] Chen, G. S., Konstantinov, A. D., Chittim, B. G., et al. Synthesis of polybrominated diphenyl ethers and their capacity to induce CYP1A by the Ah receptor mediated pathway. Environmental Science & Technology, 2001, 35(18): 3749-3756.
    [227] Kodavanti, P. R., Ward, T. R., McKinney, J. D., et al. Increased [3H]phorbol ester binding in rat cerebellar granule cells and inhibition of 45Ca~(2+) sequestration in rat cerebellum by polychlorinated diphenyl ether congeners and analogs: structure-activity relationships. Toxicology and Applied Pharmacology, 1996,138(2): 251-261.
    [228] Shaw, G. R., Connell, D. W. Physicochemical properties controlling polychlorinated biphenyl (PCB) concentrations in aquatic organisms. Environmental Science & Technology, 1984,18(1): 18-23.
    [229] Norusis, M. J. SPSS 7.5 guide to data analysis. A Simon and Schuster Company: Upper Saddle River, New Jersey, 1997: 434-458.
    [230] Sacan, M. T., Erdem, S. S., Ozpinar, G. A., et al. QSPR study on the bioconcentration factors of nonionic organic compounds in fish by characteristic root index and semiempirical molecular descriptors. Journal of Chemical Information and Computer Sciences, 2004,44(3): 985-992.
    [231] Clark, M. Generalized fragment-substructure based property prediction method. Journal of Chemical Information and Modeling, 2005,45(1): 30-38.
    [232] Viswanadhan, V.N., Ghose, A.K., Revankar, G.R., et al. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. Journal of Chemical Information and Computer Sciences, 1989, 29(3): 163-172.
    [233] Schuur, J.H., Selzer, P., Gasteiger, J. The coding of the three-dimensional structure of molecules by molecular transforms and its application to structure-spectra correlation and studies of biological activity. Journal of Chemical Information and Computer Sciences, 1996, 36(2): 334-344.
    [234] Todeschini, R., Consonni, V. Handbook of molecular descriptors. Wiley-VCH, Weinheim, Germany, 2000.
    [235] http://www.epa.gov/opptintr/exposure/pubs/episuite.htm
    [236] Viswanadhan, V.N., Ghose, A.K., Revankar, G.R., et al. Atomic physicochemical parameters for three dimensional structure directed quantitative structure-activity relationships. 4. Additional parameters for hydrophobic and dispersive interactions and their application for an automated superposition of certain naturally occurring nucleoside antibiotics. Journal of Chemical Information and Computer Sciences, 1989, 29(3): 163-172.
    [237] AMBIT Discovery v0.04, http://ambit.acad.bg/downloads/AmbitDiscovery/

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700