黄河三角洲典型植物中类二噁英类多氯联苯来源、积累、分布规律研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多氯联苯(PCBs)是持久性有机污染物(POPs)的一类,具持久性、半挥发性、生物蓄积性、高毒性等特点,是《关于持久性有机污染物的斯德哥尔摩公约》中规定的首批控制消除的12类污染物之一。类二噁英类多氯联苯(DL-PCBs)是指邻位上没有或只有一个氯原子取代基的PCBs,具有12种同系物,是PCBs中毒性最强的一类。虽然DL-PCBs在环境和生物样品中的含量较低,但毒性贡献值却比较高,因此在生物体中PCBs的研究,DL-PCBs更为重要,是目前国内外研究的热点领域。
     本研究在详细查阅和系统分析国内外相关研究的基础上,建立了植物中DL-PCBs的分析方法,进一步分析了黄河三角洲地区植物中DL-PCBs的含量和污染情况,对污染物来源进行了识别,探讨了DL-PCBs在不同植物中的积累特点和差异,得出了DL-PCBs在植物体不同部分中的分布规律。
     (1)植物中痕量DL-PCBs分析方法的研究与建立
     植物中PCBs分析存在杂质干扰多、目标污染物含量低等问题,目前针对植物样品中痕量DL-PCBs的研究很少,迫切需要建立简便快速的专属性分析方法。因此,本研究从样品的前处理技术开始,通过优化改进实验条件和参数,建立了简便快速的植物中DL-PCBs的分析方法,可以实现植物样品中痕量DL-PCBs的定性定量分析。具体条件及结果如下:
     样品前处理。通过对索氏提取条件参数的优化研究,得出最佳条件:利用200mL正己烷/丙酮(1:1V/V)混合溶剂,回流速度4次/h索氏提取20-30g(干重)植物样品24h。提取后的萃取液用浓硫酸/高锰酸钾进行处理,然后用Florisil柱净化。
     样品中DL-PCBs分析。采用弱极性和中极性双毛细管柱色谱互补分离技术结合GC/MS分析样品中的DL-PCBs,该方法可以很好的将DL-PCBs同其它PCBs异构体和有机氯农残的干扰组分彼此分开,能够有效的分析植物样品中的DL-PCBs。研究结果表明,12种DL-PCBs的加标回收率在75.56%-87.42%之间,植物样品平行测量的相对标准偏差在3.60%-14.53%,符合美国EPA标准中回收率(70%-140%)及环境样品精密度相对标准偏差(<20%)的要求。
     (2)黄河三角洲地区典型植物中DL-PCBs的含量及来源
     为了研究黄河三角洲地区植物中DL-PCBs的含量和来源,于2006年10月对黄河三角洲地区白茅(Imperata cylindrical var.major)、芦苇(Phragmitesaustralis(Cav.)Trin.ex Steud)、碱蓬(Suaeda Heteroptera)、柽柳(Tamarixchinensis Lout.)、柳树(Salix matsudana Koidz.)五种典型植物及对应土壤中DL-PCBs含量进行了测定。
     其中,植物中DL-PCBs总量的含量范围为575.48-819.23ng/kg,DL-PCBs各同系物的含量范围为2.32-237.36ng/kg;植物所对应土壤中DL-PCBs总量的含量范围为147.75-505.58ng/kg,DL-PCBs各同系物的含量范围为2.48-403.58ng/kg。DL-PCBs在黄河三角洲地区植物和土壤中的含量不论从总量还是同系物水平上均比文献报道中的其它地区低。
     通过对土壤和植物中DL-PCBs各同系物浓度的相关分析,得出植物中DL-PCBs的浓度与土壤不显著相关,这说明黄河三角洲植物中的DL-PCBs主要来源不是土壤,根据DL-PCBs的辛醇-空气分配系数(k_(oa))和辛醇-水分配系数(K_(ow))的数值范围,结合其它同类研究的结果,可以判断大气是其主要来源。
     (3)黄河三角洲地区典型植物对DL-PCBs的积累特点
     通过对DL-PCBs在黄河三角洲地区三种一年生植物(白茅、芦苇、碱蓬)和两种多年生植物(柽柳、柳树)体内及相应土壤中浓度的分析比较,研究了DL-PCBs在不同种类植物中的总量和成分差异性,从DL-PCBs的辛醇-空气分配系数、同系物种类、植物的分类和生长时间等方面阐明了造成这种差异的原因。主要研究结果如下:
     ①不同种类植物中积累的DL-PCBs的总量和成分差异性
     白茅中DL-PCBs总量(575.48ng/kg)在五种植物中最低,其它四种植物间无显著差异;12种DL-PCBs在所有植物样品中均有检出,其中只有PCB126在各植物间的积累水平相同,另外,PCB77、PCB81、PCB114、PCB123和PCB156在三种以上植物中存在显著差异,差异最大的PCB81在柽柳中的含量是白茅中含量的72倍。
     ②植物中DL-PCBs积累的影响因素
     DL-PCBs的K_(oa)对植物积累量的影响。通过对log K_(oa)与C植物/C白茅(芦苇、碱蓬、柽柳、柳树四种植物中DL-PCBs含量与白茅中DL-PCBs含量比值)之间的关系分析,当logK_(oa)为8.46时,C植物/C白茅的数值为2.0-72.3,当logK_(oa)为11.25时,C植物/C白茅为0.7-1.5。由此可见,植物积累DL-PCBs的种间差异程度随着辛醇-空气分配系数的增大而减少,K_(oa)是DL-PCBs在不同植物间积累量产生差异的重要影响因素。
     植物类型对植物积累DL-PCBs量的影响。通过对五种植物中12种DL-PCBs浓度的聚类分析知,五种植物中,白茅和芦苇的积累方式最为相似,因为它们属于同一个科—禾本科,所以相对于其它植物而言,白茅和芦苇对DL-PCBs的积累最相似。
     植物组织的不同生长时间对积累DL-PCBs特性的影响。通过对植物中的DL-PCBs浓度与log K_(oa)的相关分析发现,碱蓬、芦苇、白茅三种一年生植物中二者相关(p<0.05),相关系数分别为0.354,0.464,0.390,而多年生植物中二者相关性不显著。由此可以看出多年生植物和一年生植物对DL-PCBs的积累特点不同,这是由于多年生植物中不同生长时间的组织对DL-PCBs的积累存在差异,一年生组织的生物量在整株中所占的比例较小,因此多年生植物中的DL-PCBs浓度与log K_(oa)没有体现出显著的相关性。
     (4)黄河三角洲地区典型植物不同组织中DL-PCBs的分布规律
     选取一年生植物碱蓬、多年生植物柳树两种植物于2007年11月进行研究,通过对碱蓬的地上、地下部分和柳树的叶、根及不同生长时间的枝条中DL-PCBs浓度的测定,探讨不同植物组织中DL-PCBs的分布规律。
     ①碱蓬不同部分中DL-PCBs的分布规律
     实验结果表明,碱蓬地上部分的DL-PCBs含量显著高于地下部分,总浓度分别为1263.33ng/kg和889.47ng/kg。从DL-PCBs同系物的组分在碱蓬不同部位的分析结果看,PCB81、77、123、118、114在碱蓬地上部分的积累浓度显著高于在地下部分中的积累浓度,而其它7种DL-PCBs同系物间差异不显著,低氯代的DL-PCBs更容易在碱蓬的地上部分积累。
     ②柳树不同组织中DL-PCBs的积累分布规律
     通过对柳树各组织中DL-PCBs含量的测定,得出叶中总含量为3054.64ng/kg,根中总含量为704.28ng/kg,一二三四级枝条中总含量分别为538.58、770.75、714.65、552.59ng/kg。以上结果可见,在柳树的六种组织中,叶中DL-PCBs总含量最高;枝条中DL-PCBs总含量从高到低依次为:二级枝条>三级枝条>四级枝条>一级枝条;根中的DL-PCBs总含量与三级枝条相似,与其它组织差异显著。根据柳树各部分中DL-PCBs同系物含量的测定结果知,叶片中12种DL-PCBs同系物浓度均高于其它各部分,各级枝条和根中的各DL-PCBs同系物并未表现出明显的差异性。
     ③DL-PCBs在两种植物不同组织中分布规律的影响因素
     通过对碱蓬和柳树中DL-PCBs总含量与植物中粗脂肪含量的相关分析知,二者不显著相关。将碱蓬和柳树各部分中的DL-PCBs总含量与植物中的总有机碳含量进行相关分析研究发现,碱蓬和柳树各部分中的DL-PCBs总含量与总有机碳含量的关系都呈显著负相关,相关系数为-0.661,-0.854(p<0.05)。这是因为,DL-PCBs的积累没有总有机碳的积累快,生长稀释的作用造成了总有机碳含量高的部位DL-PCBs含量反而少的趋势。
Polychlorinated biphenyls(PCBs) are a group of persistent organic pollutants (POPs).Being persistent,semivolatile,bioaccumulted and high toxic,PCBs are listed in the 12 primary group pollutants in "Stockholm Convention on Persistent Organic Pollutants".Dioxin-like PCBs(DL-PCBs) are referred to the non-ortho and mono-ortho PCBs,including 12 congeners.DL-PCBs are the most toxic group of compounds in the PCBs.Though the concentrations of DL-PCBs in the environmental and biological matrices are low,they contribute much to the total toxic value of pollutants.Therefore,DL-PCBs are more important than the other PCB congeners for the study of PCBs in biological matrices,and are becoming a research hotspot in the world.
     In this study,firstly the analysis method of dioxin-like PCBs(DL-PCBs) was set up based on the review of related literature,secondly the pollution conditions and sources of DL-PCBs in the typical plants from Yellow River delta were studied, thirdly the accumulation characteristics of DL-PCBs in plants were explored,finally, DL-PCBs the distribution patterns of DL-PCBs in plants were given out.
     (1) Research on the analysis method of trace DL-PCBs in plants
     The analytical difficulties in the analysis of PCBs in plants are due to the complex components of plants,trace concentration of DL-PCBs in plants,etc. Current studies about analysis of trace DL-PCBs in plants are seldom reported,so convenient and rapid methods to determine the trace DL-PCBs in plants are required. By study of pretreatment technology and experimental parameters improvement,a rapid and accurate analysis method of trace DL-PCBs in plants were developed in this study.
     Samples pretreatment.The parameters of Soxhlet extraction was studied,the results are as follows:200mL mixed solvents hexane/acetone(1:1,V/V) were used to extract 20-30g dry weight of plant samples,Soxhlet time was 24h,the reflux speed was 4 circles/h.The extraction was then concentrated and treated with concentrated sulfuric acid and potassium permanganate solution,and the Florisil column was used for purification.
     DL-PCBs analysis.Dual-column system with low and intermediate polarities combined with GC/MS was used analyze DL-PCBs in plant samples.The method can separate 12 DL-PCBs from the bulk PCBs and organochlorine pesticides,and effectively analyze DL-PCB congeners in the plant samples.The results found the spiked recovery of this method was in the range of 75.56%-87.42%,the relative standard deviation(RSD) of repeated plant samples was in the range of 3.60%-14.53%,meeting the US EPA standard of recoveries(70%-140%) and RSD of repeated samples(<20%).
     (2) Loadings and sources of DL-PCBs in typical plants from Yellow River delta
     To investigate the loadings and sources of DL-PCBs in plants from Yellow River delta,five typical plant species were chosen to determine the DL-PCBs concentrations in October,2006,including Imperata cylindrical var.major, Phragmites australis(Cav.) Trin.ex Steud,Suaeda Heteroptera,Tamarix chinensis Lout.,Salix matsudana Koidz.
     The total concentrations of DL-PCBs in plants were 575.48-819.23 ng/kg, DL-PCBs congener concentrations measured in plants were 2.32-237.36 ng/kg;the total concentrations of DL-PCBs in the associated soils were 147.75-505.58 ng/kg, and DL-PCBs congener concentrations in the associated soils were 2.48-403.58 ng/kg.The total concentrations or congener concentrations of DL-PCBs in plants and associated soils from Yellow River delta were far lower than those about other area in the published reports.
     To identify the sources of DL-PCBs in plants,correlation analysis of congener concentration of DL-PCBs in plants and those in the corresponding soils were carried out.The results show the concentrations of DL-PCBs in the plants were not significantly related to those in the corresponding soils.This indicates that the source of DL-PCBs in plants from Yellow River delta was not from soil.Combined with the related studies,considering the octanol-air coefficients(K_(oa)) and octanol-water coefficients(K_(ow)) of DL-PCBs,it can be concluded that air was the main source of pollutants.
     (3) Characteristics of DL-PCBs accumulation in plants from Yellow River delta
     The DL-PCBs concentrations in three annual plants(I.cylindrical,P.australis, S.Heteroptera) and two perennial plants(T.chinensis,S.matsudana) were compared to explore the interspecies variance of DL-PCBs accumulation in plants. Octanol-air coefficients,plant taxonomy and growth time were studied as factors resulted in the variance of pollutants accumulated in plants of different species.
     ①Total concentrations and congener concentrations of DL-PCBs in different plant species
     The total concentration of DL-PCBs in I.Cylindrical was the lowest among the five species(575.48 ng/kg),and the other four species was not significantly different from each other.All the 12 DL-PCB congeners were detected in each plant sample, only PCB126 did not show different accumulation among species.PCB77,PCB81, PCB114,PCB123 and PCB156 concentrations were found be significant different among at least three species.The congener with largest variance was PCB 81,whose concentration in T.chinensis was 72 times higher than that in I.Cylindrical.
     ②Influence factors of DL-PCBs accumulation in plants
     Influence of DL-PCBs K_(oa) on pollutant accumulation in plants.Relations of log K_(oa) and CP/CI(DL-PCB concentrations in P.australis,S.Heteroptera,T.chinensis, S.matsudana versus that in I.cylindrical) was investigated.When log K_(oa) was 8.46, CP/CI was 2.0-72.3,When log K_(oa) was 11.25,CP/CI was 0.7-1.5。Thus,the interspecies variance of plants decreased with increasing log K_(oa) of DL-PCBs.K_(oa) was an important factors resulted in DL-PCBs accumulation variance in different plant species.
     Influence of plant types on DL-PCBs accumulation in plants.Hierarchical cluster analysis of the five plant species labeled by the concentrations of DL-PCBs congeners was conducted.The results show that I.cylindrical and P.australis, which belong to the same family--Gramineae,had the most similar patterns of DL-PCBs accumulation among the five species.This is because only I.cylindrical and P.australis belong to the same family in this study,leading to the smallest variance of their accumulation patterns among the five species.
     Influence of growth time on DL-PCBs accumulation in plants.Correlation analysis of log K_(oa) and DL-PCBs concentrations in the five plant species was carried out.A positive correlation between log K_(oa) and DL-PCBs concentrations of three annual species(I.cylindrical,P.australis and S.Heteroptera) was found,with Pearson correlation coefficients of 0.390,0.464 and 0.354(p<0.05) respectively.But in the perennial species(T.chinensis and S.matsudana),the correlation between log K_(oa) and DL-PCBs concentrations was not significant.The results indicate different uptake mechanism of PCBs by annual and perennial plants.This can be explained by the various DL-PCBs accumulation properties of annual and perennial tissues in perennial species,and annual tissues occupied low proportions of the biomass of whole perennial plants,therefore,correlation between log K_(oa) and DL-PCBs concentrations in the perennial species was not significant.
     (4) The DL-PCBs distribution in the plant tissues from Yellow River delta and influence factors
     An annual plant(S.Heteroptera) and a perennial plant(S.matsudana) were collected in November,2007.The above-ground and under-ground parts of S. Heteroptera,the leaves,roots and branches of different growth time were determined for the DL-PCBs concentrations,exploring the distribution patterns of DL-PCBs in plants.
     ①DL-PCBs distribution in different parts of S.Heteroptera
     The total amount of DL-PCBs concentrations in the above-ground parts (1263.33 ng/kg) of S.Heteroptera was higher than that in the under-ground parts (833.47 ng/kg).On the congener level,PCB 81,77,123,118,114 were more accumulated in the above-ground parts of S.Heteroptera than that in the under-ground parts,which indicated that the low-chlorinated PCBs are more likely to be absorbed by the above-ground parts of S.Heteroptera.
     ②DL-PCBs distribution in different parts of S.matsudana
     The total DL-PCBs concentrations in the leaves,roots,four kinds(primary, secondary,three-level and four-level) of S.Heteroptera were determined,which were 3054.64 ng/kg in the leaves,704.28 ng/kg in the roots,538.58、770.75、714.65、552.59 ng/kg in the four kinds of branches.The results indicate that total DL-PCBs concentrations were the highest in the leaves,which in the branches were secondary>three-level>four-level>primary,and the total DL-PCBs concentrations in the roots are similar to that in the third-level branches and differed significantly from the other tissues.On the congener level,DL-PCBs concentrations in the leaves were significantly higher than that of other tissues,but no significant difference was found in the rest tissues.
     ③Influence factors of DL-PCBs distribution in plants
     Correlation Analysis of total values of DL-PCBs concentrations of S. Heteroptera and S.matsudana and lipid concentration in different plant tissues was conducted,and no significant correlation was found.The DL-PCBs concentrations of S.Heteroptera and S.matsudana in different plant tissues were found to be significantly negatively related to total organic carbon concentration.This can be explained that accumulation of DL-PCBs was not as fast as that of the total organic carbon,the growth dilution effect resulted in the phenomenon that the organs with high carbon concentration have less DL-PCBs.
引文
[1]Safe S.Polychlorinated biphenyls(PCBs):environmental impact,biochemical and toxic responses,and implications for risk assessment[J].Critical Reviews in Toxicology,1994,24:87-149.
    [2]Mackay D,Shiu W Y,Ma,K C.Illustrated handbook of physical-chemical properties and environmental fate for organic chemicals[M].Chelsea:Lewis Publishers,1992-1994,Vol.1-5.
    [3]Ross G.The public health implications of polychlorinated biphenyls(PCBs) in the environment[J].Eco-toxicology and Environmental Safety,2004,59:275-291.
    [4]Sinkkonen S,Paasivirta J.Degradation half-life times of PCDDs,PCDFs and PCBs for environmental fate modeling[J].Chemosphere,2000,40:943-949.
    [5]Borga K,Gabrielsen G W,Skaare J U.Biomagnification of organochlorines along a Barents Sea food chain[J].Environmental Polution,2001,113:187-198.
    [6]苗秀生,储少岗.全球性环境污染物多氯联苯的结构-活性相关性研究进展[J].化学进展,1996,8:293-300.
    [7]Safe S.Development,validation and limitations of toxic equivalency factors[J].Chemosphere,1996,25:61-64.
    [8]Harju Ml T,Haglund P.Determination of the rotational energy barriers of atropisomeric polychlorinated biphenyls[J].Fresenius Journal of Analytical Chemistry,1999,364:219-223.
    [9]Blanch G P,Glausch A.Determination of the enant-iomeric ratios of chiral PCB95 and 149 in human milk samples by multidimensional gas chromatography with ECD and MS(SIM) detection[J].European Food Research and Technology,1999,209:294-296.
    [10]H(u∣¨)hnerfuss H,Pfaffenberger B,Gehrcke B,et al.Stereo-chemical Effects of PCBs in the Marine Environment:Seasonal Variation of Coplanar and Atropisomeric PCBs in Blue Mussels (Mytilus edulis L.) of the German Bighe [J]. Marine Pollution Bulletin, 1995, 30: 332-340.
    [11] Tanabe S. PCB problems in the future: Foresight from current knowledge [J]. Environmental Pollution, 1988, 50: 5-28.
    [12] J Liu, J L Schnoora. Uptake and translocation of lesser-chlorinated polychlorinated biphenyls (PCBs) in whole hybrid poplar plants after hydroponic exposure. Chemosphere, 2008 (in press).
    [13] Merier P G, Fook D C, Lagler K F. Organochlorine insecticides in rice paddies in Malaysia [J]. Bulletin of Environmental Contamination and Toxicology, 1983, 30: 351-357
    [14] Wania F, Mackay D. Modelling the global distribution of toxaphene: A discussion of feasibility and desirability [J]. Chemosphere, 1993, 27: 2079-2094.
    [15] Zeng E Y, Peng J, Tsukada D, et al. In situ measurement of polychlorinated biphenyls in the water of San Diego Bay, California [J]. Environmental science and technology, 2002, 36:4975-4980.
    [16] Hamer T, Shoelb M, Diamond M, et al. Using passive samples to assess urban-rural trends for persistent organic pollutants. 1. polychlorinated bipenyls and organochlorine pesticides [J]. Environmental Science and Technology, 2004, 38: 4474-4483.
    [59] Buehler S S, Hites R A. The Great Lake's integrated atmospheric deposition network [J]. Environmental Science and Technology, 2002, 36: 354A-359A.
    [96] Jaward F M, Farrar N J, Harner T, et al. Passive air sampling of PCBs, PBDEs, and organochlorine pesticides across Europe [J]. Environmental Science and Technology, 2004, 38:34-41.
    [97] Halsall C J, Lee R G M, Coleman P L, et al. PCBs in UK urban air [J]. Environmental Science and Technology, 1995,29: 2368-2376.
    [98] Yeo H G, Choi M, Chun M Y, et al. Concentration characteristics of atmospheric PCBs for urban and rural area, Korea [J]. Science of The Total Environment, 2004, 324: 261-270.
    [116]Kunisuea T,Watanabe M E,Subramanianb A,et al.Accumulation features of persistent organochlorines in resident and migratory birds from Asia[J].Environmental Pollution,2003,125:157- 172.
    [117]Deutch B,Hansen J C.High human plasma levels of organochlorine compound in Grennland-Regional differences and lifestyle effects[J].Danish Medical Bulletin,2000,47:132-137.
    [23]邢尚军,郗金标,张建锋,宋玉民,马丙尧.黄河三角洲植被基本特征及其主要类型[J].东北林业大学学报,2003,31:85-86.
    [24]叶庆华,田国良,刘高焕,叶景敏,娄维国.黄河三角洲新生湿地土地覆被演替图谱[J].地理研究,2004,23:257-264.
    [25]Wingfors H,Lindstr(o∣¨)m G,van Bavel B,et al.Multivariate data evaluation of PCB and dioxin profiles in the general population in Sweden and Spain[J].Chemosphere,2000,40:1083-1088.
    [26]储少岗,徐晓白.多氯联苯在典型污染地区环境中的分布及其环境行为[J].环境科学学报,1995,15:423-432.
    [27]Jou J J,Chang J C,Weng Y M,Liaw S L,Wang M K,Identification of dioxin and dioxin-like polychlorbiphenyls in plant tissues and contaminated soils[J].Journal of Hazardous Materials,2007,149,174-179.
    [28]Maskaoui K,Zhou J L,Zheng T L,et al.Organochlorine micropollutants in the Jiulong River Estuary and Western Xiamen Sea,China[J].Marine Pollution Bulletin,2005,51:950-959.
    [29]丘耀文,周俊良,Maskaou K等.大亚湾海域多氯联苯及有机氯农药研究[J].海洋环境科学,2002,21:46-51.
    [30]康跃惠,麦碧娴,盛国英,傅家漠.珠江三角洲河口及邻近海区沉积物中含氯有机污染物的分布特征[J].中国环境科学,2000,20:245-249.
    [31]杨永亮,潘静,李悦等.青岛近海沉积物PCBs的水平与垂直分布及贝类污染[J].中国环境科学,2003,23:515-520.
    [32]邢颖,吕永龙,刘文彬等.中国部分水域沉积物中多氯联苯污染物的空间分布、污染评价及影响因素分析[J].环境科学,2006,27:228-234.
    [33]Rappolder M,Schr(o∣¨)ter-Kermani C,Sch(a∣¨)delb S,Waller Ub,K(o∣¨)rner W.Temporal trends and spatial distribution of PCDD,PCDF,and PCB in pine and spruce shoots[J].Chemosphere,2007,67:1887-1896.
    [34]刘耕耘,陈左生,史烨弘,王关玉.北京大气沉降样品中的PCBs[J].环境科学学报,2007,27:40-44.
    [35]程金平,吴骞.上海某工业区香樟叶片对多氯联苯的富集[J].上海交通大学学报,2007,41:1185-1188.
    [36]李春雷,麦碧娴,郝永梅等.深圳市空气中多氯联苯污染的初步研究[J].环境科学研究,2004,17:6-9.
    [37]陈来国,麦碧娴.广州市夏季大气中多氯联苯和多溴联苯醚的含量及组成对比[J].环境科学学报,2008,28:150-159.
    [38]王俊,张干,李向东等.利用PUF被动采样技术监测珠江三角洲地区大气中多氯联苯分布[J].环境科学,2007,28:478-481.
    [39]刘仁沿,吴世培,王斌.长江口以北沿海主要经济贝类中有机氯农药和多氯联苯的分布及评价[J].海洋环境科学,1996,15:29-35.
    [40]孙成,许士奋,姚书春等.香港海域翡翠贻贝(Perna viridis L.)中多氯联苯的研究[J].环境化学,2003,22:182-188.
    [41]杨志军,张青,倪余文等.牡蛎和贻贝中二噁英及多氯联苯同类物的分布[J]。生态环境,2004,13:512-514.
    [42]Nakataa H,Hirakawaa Y,Kawazoea M.Concentrations and compositions of organochlorine contaminants in sediments,soils,crustaceans,fishes and birds collected from Lake Tai,Hangzhou Bay and Shanghai city region,China[J].Environmental Pollution,2005,133:415-429.
    [43]Wang Y W,Wang T,Fu J J,et al.Selection of Bioindicators of Polybrominated Diphenyl Ethers,Polychlorinated Biphenyls,and Organochlorine Pesticides in Mollusks in the Chinese Bohai Sea[J].Environmental Science and Technology,in press.
    [44]Wong C K C,Leung K M,Poon B H T,et al.Organochlorine Hydrocarbons in Human Breast Milk Collected in Hong Kong and Guangzhou[J].Archives of Environmental Contamination and Toxicology,2002,43:364-372.
    [45]Bell,R M and Failey R A.Plant uptake of organic pollutants[M].In Jones KD(Ed.), organic contaminant in the environment, Elsevier Applied Science, New York, 1991: 189-206.
    [46] Cousins I T, Mackay D. Strategies for including vegetation compartments in multimedia models [J]. Chemosphere, 2001,44, 643-654.
    [47] Wallnofer P, Koniger, Engelhardt. Fate of xenobiotic chlorinated hydrocarbons (HCB and PCBs) in plants and soils [J]. Z Pflanzenk Pflanzen 82: 91-100.
    [48] Nizzetto L, Jones K C, Gramatica P et al Accumulation of Persistent Organic Pollutants in Canopies of Different Forest Types: Role of Species Composition and Altitudinal-Temperature Gradient [J]. Environmental Science and Technology, 2006,40: 6580-6586.
    [49] Luque de Castro M D, Garcia-Ayuso L E. Soxhlet extraction of solid materials: an outdated technique with a promising innovative future [J]. Analytical ChimicaActa, 1998,369: 1-10.
    [50] Gfrerer M, Gawlikb B M, Lankmayr E. Validation of a fluidized-bed extraction method for solid materials for the determination of PAHs and PCBs using certified reference materials [J]. Analytical Chimica Acta, 2004, 527: 53-60.
    [51] Priss S, Gau W, Wenclawiak B W. Extraction of polychlorinated biphenyl with supercritical carbon dioxide, sulfur hexafluoride and sub-critical water [J]. Fresenius Journal of Analytical Chemistry, 2000, 367: 89-90.
    [52] Jaremo M, Bjorklund E, Nilsson N, et al. Utilization of fat retainers in supercritical fluid extraction for the selective extraction of polychlorinated biphenyls from a model fat sample [J]. Journal of Chromatography A, 2000, 877: 167-180.
    [53] Ling Y C, Teng H C. Supercritical fluid extraction and clean-up of organo-chlorine pesticides and polychlorinated biphenyls in mussels [J]. Journal of Chromatography A, 1997,790: 153-160.
    [54] Berset J D, Holzer R. Polychlorinated biphenyls and organochlorine pesticides in sewage sludges using supercritical fluid extraction and mass spectrometric detection [J]. Journal of Chromatography A, 1999, 852: 545-558.
    [55] During R A, Gath S T. Microwave assisted methodology for the determination of organic pollutants in organic municipal wastes and soils: extraction of polychlorinated biphenyls using heat transformer disks [J]. Analytical Chemistry, 2000,368: 684-688.
    [56] Xiong G, He X, Zhang Z. Microwave-assisted extraction or saponification combined with microwave-assisted decomposition applied in pretreatment of soil or mussel samples for the determination of polychlorinated biphenyls [J]. Analytical Chimica Acta, 2000,413,49-56.
    [57] Strek H J, Weber J B, Shea P J, et al. Reduction of polychlorinated biphenyl toxicity and uptake of carbon-14 activity by plants through the use of activated carbon. Journal of agricultural food and chemistry, 1981,29: 288-293.
    [58] Luque de Castro M D, Luque Garcia J L. Automation of sample preparation [J]. Comprehensive Analytical Chemistry, 2003,41: 649-680.
    
    [59] Misita M, Schrock M, Tracy K, et al. Simultaneous extraction of PCDD/PCDF and PCBs using accelerated solvent extraction for sediment, tissue and sludge matrices [J]. Organo-halogen Compounds, 2003, 60: 37-40.
    [60] Li K, Landriault M, Fingas M, Llompart M. Accelerated solvent extraction (ASE) of environmental organic compounds in soils using a modified supercritical fluid extractor [J]. Journal of Hazardous Materials, 2003, 102:93-104.
    [61] Zdrahal Z, Karasek P, Lojkova L, et al. Pressurised liquid extraction of polycyclic aromatic hydrocarbons from contaminated soils [J]. Journal of Chromatography A, 2000, 883: 151-162.
    [62] Hubert A, Wenzel KD, Manz M, et al. High extraction efficiency for POPs of real contaminated soil samples using ASE [J]. Analytical Chemistry, 2000, 72: 1294-1300.
    [63] Thomas G O, Sweetman A J, Parker C A, Kreibich H, Jones K C. Development and validation of methods for the trace determination of PCBs in biological matrices [J].Chemosphere, 1998, 36: 2447-2459.
    [64] US EPA. Method 3665A: Sulfuric Acid/Permanganate Cleanup [S]. 1996.
    
    [65] 康跃惠,盛国英,傅家谟,麦碧娴.沉淀物内多氯联苯测定中有机氯农药 的排除及质量控制/质量保证研究[J].分析化学,1999,27:1258-1263.
    [66]Molina L,Cabes M,Ferrero J D,et al.Separation of non-ortho polychlorinated biphenyl congeners on pre-packed carbon tubes.Application to analysis in sewage sludge and soil samples[J].Chemosphere,2000,40:921-927.
    [67]Grimvall E,Ostman C,Nillson U.Determination of polychlorinated biphenyls in human blood plasma by on-line and off-line liquid chromatography-gas chromatography[J].Journal of High Resolution Chromatography,1995,18:685-691.
    [68]US EPA.Method 3640A:Gel-permeation clean up[S].1994.
    [69]Frame G M.A collaborative study of 209 PCB congeners and 6 Aroclors on 20different HRGC columns.1.Retention and coelution database[J].Fresenius Journal of Analytical Chemistry,1997,357:701-713.
    [70]Frame G M.A collaborative study of 209 PCB congeners and 6 Aroclors on 20different HRGC columns.2.Semi-quantitative Aroclor congener distributions [J].Fresenius Journal of Analytical,1997,357:714-722.
    [71]Marriot P J,Haglund P,Ong R C Y.A review of environmental toxicant analysis by using multi-dimensional gas chromatography and comprehensive GC[J].Clinic Chimica Acta,2003,328:1-19.
    [72]张建清,李敬光,吴永宁,姜杰,蒋友胜,周健.同位素稀释的气相色谱/高分辨质谱联用测定食品中二噁英和共平面多氯联苯[J].分析化学,2005,33:296-300.
    [73]Silvis L D,Kapila S,Yan Q,Elseewi A A.Application of a two-dimensional Chromatography system for gas-phase photo-degradation studies of Polychlorinated dibenzo-p-dioxins[J].Journal of Chromatography A,1994,688:221-230.
    [74]Storr-Hansen E.Simultaneous analysis of 32 PCB-congeners on two capillary columns operated in parallel with a glass T-split[J].International Journal of Environmental Analytical Chemistry,1991,43:253-266.
    [75]De Boer J,Dao Q T,van Dortmond R.Retention times of fifty-one chloro-biphenyl congeners on seven narrow bore capillary columns coated with different stationary phases[J].Journal of High Resolution Chromatography,1992,15:249-255.
    [76]Wells D E.Improvements in the analysis of chlorobiphenyls prior to the Certification of seven CBs in teo fish oils[J].Analytical Chemistry,1988,323:591-597.
    [77]杜瑞雪,范仲学,蔡利娟,丁汉凤,毕玉平.环境样品中多氯联苯的分析技术[J].环境科学与管理,2008,33:149-160.
    [78]Brenhard R,Jean D B.High sensitivity of orth-substituted PCBs in negative ion mass spectrometry(NCI-MS):a comparison with EI-MS and ECD for the determination of regulatory PCBs in soil[J].Chemosphere,1999,38:1517-1532.
    [79]徐文兴,杨汝德,张广.免疫学分析方法在多氯联苯检测中的应用[J].四川环境,2008,27:89-105.
    [80]Hung H,Thomas G O,Jones K C,Mackay D.Grass-air exchange of polychlorinated biphenyls[J].Environmental Science and Technology,2001,35:4066-4073.
    [81]Moeckel C,Thomas G,Barber J,Jones K C.Uptake and Storage of PCBs by Plant Cuticles[J].Environmental Science and Technology,2008,42:100-105.
    [82]Barber J L,Kurt P B,Thomas G O,Kerstiens G,Jones K C.Investigation into the importance of the stomatal pathway in the exchange of PCBs between air and plants[J].Environmental Science and Technology,2002,36:4282-4287.
    [83]Smith K E C,Jones K C.Particles and vegetation:implications for the transfer of particle-bound organic contaminants to vegetation[J].Science of the Total Environment,2000,246:207-236.
    [84]Suzuki M,Aizawa G,Okano G,Takahashi T.Translocation of polychlorobiphenyls in soil into plants:a study by a method of culture of soybean sprouts[J].Archives of Environmental Contamination and Toxicology,1977,5:343-352.
    [85]Whitfield Aslund M L,Zeeb B A,Rutter A,Reimer K J.In situ phytoextraction of polychlorinated biphenyl-(PCB) contaminated soil[J].Science of the Total Environment,2007,374:1-12.
    [86]Riederer M.Partitioning and transport of organic chemicals between the atmospheric environment and leaves[A].In:Trapp S,McFarlane J C,Plant Contamination:Modeling and Simulation of Organic Chemical Processes[C].London:Lewis Publishers,1995,153-190.
    [87]Wallntfer P,K(o∣¨)niger,Engelhardt.Fate of xenobiotic chlorinated hydrocarbons (HCB and PCBs) in plants and soils[J].Journal of Plant Diseases and Protection,1975,82:91-100.
    [88]Pier M D,Zeeb B A,Reimer K J.Patterns of contamination among vascular plants exposed to local sources of polychlorinated biphenyls in the Canadian Arctic and Subarctic[J].Science of the Total Environment,2002,297:215-227.
    [89]毕新慧,储少岗,徐晓白.多氯联苯在水稻田中的迁移行为[J].环境科学学报,2001,21:454-458.
    [90]Barber J L,Thomas G O,Kerstiens G,Jones K C.Current issues and uncertainties in the measurement and modeling of air-vegetation exchange and within-plant processing of POPs[J].Environment Pollution,2005,128:99-138.
    [91]K(o∣¨)mp P,McLachlan M.The kinetics and reversibility of the partitioning of polychlorinated biphenyls between air and ryegrass[J].Science of the Total Environment,2000,250:63-71.
    [92]Simonich S,Hites A.Organic pollutant accumulation in vegetation[J].Environmental Science and Technology,1995,29:2905-2914.
    [93]Mclachlan M S.Framework for the interpretation of measurements of SOCs in plants[J].Environmental Science and Technology,1999,33:1799-1804.
    [94]B(o∣¨)hme F,Welsh-Pausch K,McLachlan M S.Uptake of airborne semivolatile organic compounds in agricultural plants:field measurements of interspecies variability[J].Environmental Science and Technology,1999,33:1805-1813.
    [95]K(o∣¨)mp P,McLachlan M.Interspecies variability of the plant/air partitioning of polychlorinated biphenyls[J].Environmental Science and Technology,1997,31:2944-2948.
    [96]Paterson S,Mackay D.Correlation of the equilibrium and kinetics of leaf-air exchange of hydrophobic organic chemicals [J]. Environmental Science and Technology, 1991,25: 866-871.
    
    [97] Helma P A, Bidleman T F. Gas-particle partitioning of polychlorinated naphthalenes and non- and mono-ortho-substituted polychlorinated biphenyls in arctic air [J]. Science of the Total Environment, 2005, 342: 161-173.
    [98] Chen J, Zhao H, Gao L, et al. Atmospheric PCDD/F and PCB levels implicated by pine (Cedrus deodara) needles at Dalian, China [J]. Environment Pollution, 2006,144: 510-515.
    [99] Holoubek I, Korinek P, Seda Z, et al. The use of mosses and pine needles to detect persistent organic pollutants at local and regional scales [J]. Environment Pollution, 2000,109: 283-292.
    [100] Ockenden W A, Steinnes E, Parker C, Jones K C. Observations on Persistent Organic Pollutants in Plants: Implications for Their Use as Passive Air Samplers and for POP Cycling [J]. Environmental Science and Technology, 1998, 32: 2721-2726.
    [101] Kerler F, Schonherr J. Permeation of lipophilic chemicals across plant cuticles: prediction from partition coefficients and molar volumes [J]. Archives of Environmental Contamination and Toxicology, 1988,17: 7-12.
    [102] Thomas G O, Sweetman A J, Ockenden W A, Mackay D, Jones K C. Air-pasture transfer of PCBs [J]. Environ Sci Technol, 1998, 32: 936-942.
    [103] Barber J L, Thomas G O, Kerstiens G, Jones K C. Air-Side and plant-Side resistances influence the uptake of airborne PCBs by evergreen plants [J]. Environmental Science and Technology, 2002,36: 3224-3229.
    [104] Kaupp H, McLachlan M S. Gas/particle partitioning of PCDD/Fs, PCBs, PCNs and PAHs [J]. Chemosphere, 1999, 38: 3411-3421.
    [105] Alexander M. Biodegradation and bioremediation [M]. 2nd ed. San Diego, CA: Academic Press, 1999.
    
    [106] Mrozek E, Queen W H, Hobbs L L. Effects of polychlorinated biphenyls on growth of Spartina alterniflora Loisel [J]. Environmental and Experimental Botany, 1983,23: 285-292.
    [107]孟亚黎,赵明宪,赵晓松等.青椒、西红柿对多氯联苯的吸收及在各部位中的分布[J].吉林农业大学学报,1993,15:38-41.
    [108]Buckley E H.Accumulation of airbome polychlorinated biphenyls in foliage [J].Science,1982,216:520-522.
    [109]Chekol T,Vough L R,Chaney R L.Phytoremediation of polychlorinated biphenyl contaminated soils:the rhizosphere effect[J].Environment International,2004,30:799- 804.
    [110]Dzantor E K,Chekol T,Vough L R.Feasibility of using forage grasses and legumes for phytoremediation of organic pollutants[J].Journal of Environmental Science and Health,2000,35:1645-1661.
    [111]Kucerova P,Wiesche C,Wolter M et al.The ability of different plants species to remove polycyclic aromatic hydrocarbons and polychlorinated biphenyls from incubation media[J].Biotechnology letters,2001,23:1355-1359.
    [112]Wilken A,Bock C,Bokern M,et al.Metabolism of different PCBs congeners in plant cell cultures[J].Environmental Toxicology and Chemistry,1995,14:2017-2022.
    [113]Maekova M,Macek T,Burkhard J et al.Biodegradation of polychlorinated biphenyls by plant cells[J].International Biodeterior and Biodegradation,1997,39:317-325.
    [114]Mackova M,Macek T,Kuceorva P,et al.Plant tissue cultures in model studies of transformation of polychlorinated biphenyls[J].Chemistry Papers,1998,52:599-600.
    [115]Mackova M,Macek T,Kuceorva P,et al.Degradation of polychlorinated biphenyls by hair root culture of Solairum nigrum[J].Biotechnology Letters,1997,19:787-790.
    [116]Macek T,Mackova M,Kas J.Exploitation of plants for the removal of organics in environmental remediation[J].Biotechnology Advances,2000,18:23-34.
    [117]Donnelly P K,Hegde R,Fletcher J S.Growth of PCB-degrading bacteria on compounds from photosynthetic plants[J].Chemosphere,1994,28:981-988.
    [118]Mackova M,Macek T,Ocenaskova J.Biodegradation of Polychlorinated Biphenyls by Plant Cells [J]. International Biodeterior and Biodegradation, 1991, 39:311-325.
    [119] Mehmanavaz R, Prasher S, Ahmad D. Rhizospheric effects of alfalfa on biotransformation of polychlorinated biphenyls in a contaminated soil augmented with Sinorhizobium meliloti [J]. Process Biochemistry, 2002, 37: 955-963.
    [120] Fletcher J S, Groeger A W, Mcfarlane J C. Metabolism of 2-chlorobiphenyl by suspension-cultures of Paul's Scarlet Rose [J]. Bulletin of Environmental Contamination and Toxicology, 1987, 39: 960-965.
    [121] Rezek J, Macek T, Mackova M, Triska J, Ruzickova K. Hydroxy-PCBs, methoxy-PCBs and hydroxy-methoxy-PCBs: metabolites of polychlorinated biphenyls formed in vitro by tobacco cells [J]. Environmental Science and Technology, 2008,42: 5746-5751.
    
    [122] Weber J B, Mrozek E. Plants and inactivation by activated carbon [J]. Bulletin of environment contamination toxicology, 23: 412-417.
    
    [123] Kucerova P, Mackova M, Polachova L, et al . Correlation of PCB transformation by plant tissue cultures with their morphology and peroxidase activity changes [J]. Collection of Czechoslovak Chemical Communications, 1999,64:1497-1509.
    [124] Ashley J T F, Secor D H, Zlokovitz E, et al. Linking habitat use of Hudson River striped bass to accumulation of polychlorinated biphenyl congeners [J]. Environmental Science and Technology, 2000, 34:1023-1029.
    [125] Echols K, Tillit D, Nichols J, et al. Accumulation of PCBs Congeners in Nestling Tree Swallows (Tachycineta bicolor) on the Hudson River, New York [J]. Environmental Science and Technology, 2004, 38: 6240-6246.
    [126] Lee I, Fletcher J S. Involvement of mixed function oxidase systems in polychlorinated biphenyl metabolism in plant cells [J]. Plant Cell Reports, 1992, 11:97-100.
    [127] Kahn R, Durst F. Function and evolution of plant cytochromeP450 [J]. Recent Advances in Phytochemistry, 2000,34: 151-189.
    [128]Chroma L,Mackova M,Kucerova P,et al.Enzymes in Plant Metabolism of PCBs and PAHs[J].Acta Biotechnologica,2002,22:35-41.
    [129]Chu,W,K,Wong M H,Zhang J.Accumulation,distribution and transformation of DDT and PCBs by Phragrnites australis and Oryza sativa L.:Ⅱ.Enzyme study[J].Environmental Geochemistry and Health,2006,28:169-181.
    [130]Jones K C,Voogt P D.Persistent organic pollutants(POPs):state of the science [J].Environment Pollution,1999,100:209-221.
    [131]Ogura Ⅰ,Masunaga S,Nakanishi J.Atmospheric deposition of polychlorinated dibenzo-p-dioxins,polychlorinated dibenzofurans,and dioxin-like polychlorinated biphenyls in the Kanto Region,Japan[J].Chemosphere,2001,44:1473-1487.
    [132]刘耕耘,陈左生,史烨弘等.北京土壤中的PCBs含量与组成[J].环境科学学报,2006,26:2013-2017.
    [134]Aichner B,Glaser B,Zech W.Polycyclic aromatic hydrocarbons and polychlorinated biphenyls in urban soils from Kathmandu,Nepal[J].Organic Geochemistry,2007,38:700-715.
    [135]Zhang H B,Luo Y M,Wong M H,et al.Concentrations and possible sources of polychlorinated biphenyls in the soils of Hong Kong[J].Geoderma,2007,138:244-251.
    [136]L Turrio-Baldassarri,Abate V,Alivernini S,et al.A study on PCB,PCDD/PCDF industrial contamination in a mixed urban-agricultural area significantly affecting the food chain and the human exposure[J].Part Ⅰ:Soil and feed.Chemosphere,2007.67:1822-1830.
    [137]Binelli A,Ricciardi F,Provini A.Present status of POP contamination in Lake Maggiore(Italy)[J].Chemosphere,2004,57:27-34.
    [138]Macdonald R W,Harner T,Fyfe J.Recent climate change in the Arctic and its impact on contaminant pathways and interpretation of temporal trend data[J].Science of the Total Environment,2005,342:5-86.
    [139]郗金标,宋玉民,邢尚军等.黄河三角洲生态系统特征与演替规律[J].东北林业大学学报,2002,30:111-114.
    [140]Kunisuea T,WatanabeM E,Subramanianb A,et al.Accumulation features of persistent organochlorines in resident and migratory birds from Asia[J].Environmental Pollution,2003,125:157-172.
    [141]Wan Y,Hu J Y,Yang M.Characterization of trophic transfer for polychlorinated dibenzo-p-dioxins,dibenzofurans,non- and mono-ortho polychlorinated biphenyls in the marine food web of Bohai bay,North China[J].Environmental Science and Technology,2008,42:2417-2425.
    [142]Kay D,Blankenship A L,Coady K K,et al.Differential Accumulation of Polychlorinated Biphenyl Congeners in the Aquatic Food Web at the Kalamazoo River Superfund Site,Michigan[J].Environmental Science and Technology,2005,39:5964-5974.
    [143]Streets S,Henderson S,Stoner A,et al.Partitioning and bioaccumulation of PBDEs and PCBs in Lake Michigan[J].Environmental Science and Technology,2006,40:7263-7269.
    [144]Kelly B C,Gobas F A P C.Bioaccumulation of persistent organic pollutants in lichen-caribou-wolf food chains of Canada's central and western Arctic[J].Environmental Science and Technology,2001,35:325-334.
    [145]US EPA.Cleanup Method 3665a:Sulfuric Acid/Permanganate Cleanup[S].1996.
    [146]Frame G M.A collaborative study of 209 PCB congeners and 6 Aroclors on 20different HRGC columns.1.Retention and coelution database[J].Fresennius Journal of Analytical Chemistry,1997,357:701-713.
    [147]胡耀铭,朱坚.陈正夫 色谱/质谱技术测定环境中的多氯联苯.第十届全国有机质谱学学术会议会议论文[C].1999,269-273。
    [148]张晓龙.现代黄河三角洲滨海湿地环境演变和退化研究[D].博士论文,2005.
    [149]Yu L S,The Huanghe(Yellow) River:a review of its development,characteristics,and future management issues[J].Continental Shelf Research,2002,22:389-403.
    [150]邢尚军,郗金标,张建锋,宋玉民,马丙尧.黄河三角洲植被基本特征及 其主要类型[J].东北林业大学学报,2003,31:85-86.
    [151]叶庆华,田国良,刘高焕,叶景敏,娄维国.黄河三角洲新生湿地土地覆被演替图谱[J].地理研究,2004,23:257-264.
    [152]Liu J,Cui Z J.Dioxin-like Polychlorinated Biphenyls in Soil of the Yellow River Delta - Current Status and Distribution Trends[J].Soil and Sediment contamination,2009,in press.
    [153]吴立新.黄河三角洲草地资源的调查与研究[J].四川草原,2005,112:12-15.
    [154]张建锋,邢尚军,孙启祥,郗金标,宋玉民.黄河三角洲植被资源及其特征分析[J].水土保持研究,2006,13:100-102.
    [155]Jou J J,Chang J C,Weng Y M,Liaw S L,Wang M K,Identification of dioxin and dioxin-like polychlorbiphenyls in plant tissues and contaminated soils[J].Journal of Hazardous Materials,2007,149:174-179.
    [156]Rappolder M,Schr(o∣¨)ter-Kermani C,Sch(a∣¨)del S,Waller U,K(o∣¨)rner W.Temporal trends and spatial distribution of PCDD,PCDF,and PCB in pine and spruce shoots[J].Chemosphere,2007,67:1887-1896.
    [157]程金平,吴骞.上海某工业区香樟叶片对多氯联苯的富集[J].上海交通大学学报,2007,41:1185-1188.
    [158]Bell R M,Failey R A.Plant uptake of organic pollutants.In Jones KD(Ed.),organic contaminant in the environment[M].New York:Elsevier Applied Science,1991:189-206.
    [159]Cousins I T,Mackay D,Strategies for including vegetation compartments in multimedia models[J].Chemosphere,2001,44:643-654.
    [160]张丽,李雪花,孙慧超等.有机污染物正辛醇/空气分配系数研究进展[J].环境科学研究,2004,17:77-80.
    [161]Nizzetto L,Jones K C,Gramatica P,et al Accumulation of persistent organic pollutants in canopies of different forest types:role of species composition and altitudinal-temperature gradient[J].Environmental Science and Technology,2006,40:6580-6586.
    [162]Lin Y J,Liu H C,Hseu Z Y,Wu W J.Study of transportation and distribution of PCBs using an ecologically simulated growth chamber [J]. Chemosphere, 2006, 64: 565-573.
    [163] Meredith M L, Hites R A. Polychlorinated biphenyl accumulation in tree bark and wood growth rings [J].. Environmental Science and Technology, 1987, 21, 709-712.
    [164] Ye Q, Puri R K, Kapila R et al. Studies on uptake of PCBs by Hordeum vulgare (Barley) and Lycopersicon esculentum (tomato) [J].. Chemosphere, 1991,23:1397-1406.
    [165] Tolls J, McLachlan M S. Partitioning of semivolatile organic compounds between air and Lolium multlflorum (welsh ray grass) [J]. Environmental Science and Technology, 1994, 28: 159-166.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700