多点强化氧化沟处理混合型城市污水脱氮技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本试验研究内容主要包括以下三个方面:(1)水解酸化调控技术研究,为解决碳源不足或工业废水量比例较大引起COD浓度过高的问题,试验采用折流板式水解酸化反应器,通过厌氧水解酸化反应达到削减COD、提高可生化性同时改善碳氮比的目的,确保后续生化处理单元高效运行,出水稳定达标;(2)溶解氧调控技术及优化研究,在氧化沟单元拟将传统曝气改成“微孔底曝+机械推流”方式,以提高氧的利用率,并大幅加大设计池深。通过调整溶解氧沿沟长空间分布,实现高效硝化反硝化,并达到节能目的。(3)氧化沟调控,研究不同水力停留时间条件下氧化沟的脱氮效率,选择合适的水力停留时间,同时考察温度对氧化沟运行情况的影响。
     水解酸化池水力停留时间设定1.5h、2h、3h、4h时,对氨氮的平均去除率分别为4.6%、9.9%、13.5%和9.7%,对COD的去除率在-25~60%之间。结果发现水解酸化池HRT=3h时,对COD和氨氮的去除最高。污水经过水解酸化池后,BOD5/COD从反应前的0.33左右提高到了0.45左右。而温度的改变对水解酸化池去除效率的影响甚微,虽然厌氧微生物与好氧微生物相比对温度较敏感,但是低温带来的不利影响通过延长固体停留时间和提高反应器内污泥浓度有效的被弥补了。
     氧化沟运行过程中,曝气管全开时氧化沟单元出水COD、NH3-N、TN可达到《城镇污水处理厂污染物排放标准》(GB18918-2002)一级A标准要求。曝气管半开时,沟内缺氧区空间比例过高,使硝化反应受到抑制,氧化沟内不能形成持续稳定的交替好氧缺氧环境。试验进入冬季后,环境温度降低,系统的处理效果不佳。为了提高氧化沟的处理效率以及改善沟内泥水混合效果,试验在氧化沟内每个廊道加放一根曝气管,增加曝气面积后,水深20cm处DO均值为1.93mg/L,水深60cm处DO均值为1.72mg/L,相对沟内之前的缺氧状态有较大改善。氧化沟对COD、氨氮、TN的去除效果均有所提高,氨氮和TN的去除率相对之前增加了一倍,COD去除率增加了10.7%,改善效果明显。
     在对氧化沟的水力停留时间进行调控时发现,当HRT=10h、8h时,系统的脱氮效率都很高,其中氨氮的去除率可以稳定在90%以上,HRT=8h时对TN的去除效果较好,且与10h时相比更稳定。但是当水力停留时间降到6h和4h后,系统的脱氮效果逐渐变差,对氮的去除非常有限。综合考虑能耗、脱氮效率等因素,氧化沟的水力停留时间取8h最适。
     监测氧化沟内温度在14~34℃之间系统的脱氮效率时发现,沟内水温在23℃以上时,出水COD、氨氮、TN都可以得到较好的控制;当温度低于20℃时,氨氮和TN的去除效果明显下降,相对之前去除率降低了20%~50%左右。但是,期间温度对COD的去除却没有太大的变化。温度降低对脱氮效果的影响主要原因是硝化细菌的活性受到抑制。而温度降低对系统处理效果的影响可以通过调节水力负荷来改善。
This pilot study mainly includes the following three aspects:①Research on hydrolysis acidification. To solve the high COD concentration as carbon resource shortage and a larger proportion of quantity of industrial waste water, experiment with a baffle hydrolysis acidification reactor to ensure follow-up biochemical processing unit can be efficient operation and the stability of the effluent water reaches the standard.②Optimum control of dissolved oxygen. We took "the miraco bubble aerate system and mechanical plug flow" instead of conventional aeration in oxidation ditch in order to improve the utilization rate of oxygen. At the same time, we increased the depth of oxidation ditch substantially. By adjusting the spatial distribution of dissolved oxygen along the channel length, achieve high efficiency of nitrification and denitrification, and achieve the purpose of saving energy.③The regulatory of oxidation ditch. This paper investigated the removal effect of nitrogen of oxidation ditch at different HRT. And the effect of temperature on oxidation ditch running effect.
     When the HRT of hydrolysis acidification was1.5h,2h,3h or4h, the average removal efficiencies of NH3-N was4.6%,9.9%,13.5%and9.7%, and the removal efficiencies of COD was-25~60%. The result showed that HRT=3h achieved the highest COD and ammonia nitrogen removal. And BOD5/COD increased from0.33to0.45. And the temperature had a little effect on hydrolytic acidification tank. Although anaerobic microorganisms is more sensitive to temperature than aerobic, but extended solids retention time and improving sludge concentration can remedy adverse effect of low temperature.
     In oxidation ditch, the effluent of oxidation ditch COD, NH3-N and TN achieved "Cities Sewage Treatment Plant Pollutant Discharged Standard"(GB18918-2002) the center one levels A to discharge the standard when aeration pipes open full. As aeration pipes open half, in the ditch could not form alternating aerobic-anoxic environment because of the high proportion of anoxic zone space and the nitration is restrained. Treatment effect of the system is poor in winter. In the oxidation ditch put a aeration pipe in each tunnel for improved the treatment efficiency and slurry mixing effect. The DO average value is2.2mg/L underwater20cm, and2.12mg/L underwater60cm after increasing the aeration area of oxidation ditch. The removal of COD, NH3-N and TN was all improved, NH3-N and TN increased doubled, COD increased10.7%.
     It was found that HRT was1Oh or8h can achieve high removal rate of nitrogen when regulated hydraulic retention time of oxidation ditch. The removal rate of NH3-N could reach more than90%, the removal of TN when HRT was8h was higher than1Oh. But the removal of NH3-N and TN was very poor when HRT drop to6h and4h. In consideration of the removal, energy saving and consumption reducing, HRT=8h was suitable.
     Control the temperature in14~34℃, effluent of COD, NH3-N and TN could get satisfactory control when the temperature is greater than23℃; the removal of COD, NH3-N and TN was dramatic decline, reduced20%-50%, when the temperature is below20℃. But the removal of COD without any big changes when the temperature below. Temperature influence on nitrogen removal efficiency because of the activity of the nitrifying bacteria was inhibited. But it could improve by adjusting the hydraulic load.
引文
[1]2010年中国环境状况公报,http://jcs.mep.gov.cn/hjzl/zkgb/2010zkgb/201106/t20110602_211 577.htm,2011,06,03.
    [2]2010年中国城镇污水处理建设情况总分析,中国水处理行业互联网站出品,http://wenku.baidu.com/view/adeb241352d380eb62946d87.html,2010,5.
    [3]幸福堂,徐静静,方月梅等.絮凝-催化氧化法处理造纸中段废水[J].工业安全与环保,2005,31(8):15-16.
    [4]W. W. Eckenfelder, Inderstial Water Pollution Control[M]. McGraw-Hill Book Company. NewYork:1989.
    [5]武江津,王凯军,丁庭华.三废处理工程技术手册——废水卷[M].北京.化学工业出版社,2000,673-681.
    [6]李巍,水解酸化-活性污泥法处理造纸中段废水试验研究[D].华中科技大学.2007,14-16.
    [7]顾夏声,李献文,竺建荣.水处理微生物学(第三版).北京:中国建筑工业出版社,1998:102-104.
    [8]王白杨.废水生物处理脱氮原理与新工艺.江西师范大学学报(自然科学版).2006,30(4):399-403.
    [9]王建龙.生物固定化技术与水污染控制.科学出版社,2002:208-217.
    [10]陈鸣岐.亚硝酸型硝化的控制与反硝化除磷影响因子的研究.哈尔滨工业大学工学硕士学位论文.2005:14--31.
    [11]李亚新.活性污泥法理论与技术[M].北京:中国建筑工业出版社.2007.
    [12]胡宇华,丁富新,范秩等.有机碳源对同时硝化/反硝化过程的影响[J].环境工程.2001,19(4):17-20.
    [13]祝丽思,完颜华,周国华.同时硝化反硝化(SND)脱氮技术[J].云南环境科学.2006,25(4):31-33.
    [14]耿安朝,张洪林.废水生物处理发展与实践[M].沈阳:东北大学出版社,1997.
    [15]孙锦宜编著.含氮废水处理技术与应用[M].化学工业出版社.
    [16]华光辉,张波.城市污水生物除磷脱氮工艺中的矛盾关系及对策.给水排水.2000,26(12):1.4.
    [17]高艳玲.悬浮载体生物流化床反应器脱氮试验研究.哈尔滨工业大学工学博士学位论文.2007:4—5.
    [18]王晓莲,王淑莹,王亚宜,彭永臻.强化A2/O工艺反硝化除磷性能的运行控制策略.环境科学学报.2006,26(5):722-727.
    [19]任洁,顾国维,杨海真.改良型A2/O工艺处理城市污水的中试研究.给水排水.2000,26(6):7-10.
    [20]周斌.改良型A2/O工艺的除磷脱氮运行效果.中国给水排水.2001,17(7):46-48.
    [21]沈耀良,王宝贞.废水生物处理新技术—理论与应用.中国环境科学出版社,1999:157—159.
    [22]邓荣森.氧化沟污水处理理论与技术.化学工业出版社,2006:4~5,128~134,58,196-198.
    [23]路江涛,周少奇,曾焕斌,林岩,多鲁昆江,覃丽Orbal氧化沟处理城市污水的效果 分析.中国给水排水.2007.23(14):90-93.
    [24]许建红,曾严.改良型DE氧化沟工艺的除磷脱氮探讨.中国给水排水.2005,21(10):70--72.
    [25]P Weiland, A Rozzi. The start-up, operation and monitoring of high-race anaerobic treatment systems, discusser's report. Wat.Sci.Tech,2001,24(8):257-277.
    [26]李军,张帅等.基于折流板反应器的污泥水解酸化研究[J]中国给水排水2009,25(19):5-11.
    [27]王佳伟,周军等.溶解氧对A2/O工艺脱氮除磷效果的影响及解决方法[J].给水排水.1(35),2009:35-37.
    [28]沈连峰,施琪,李有等.水解—酸化法在味精废水处理中的应用[J].环境污染与防治,2006,28(5):391-392.
    [29]马溪平.厌氧微生物学与污水处理[M].北京:化学工业出版社.2005,2.
    [30]贺延龄.废水的厌氧生物处理[M].中国轻工业出版社,1998.1
    [31]任南琪,王爱杰.厌氧生物技术原理与应用[M].北京:化学工业出版社.2004,3.
    [32]Qingbiao Li, Haitao Wang, Ning He, et al. High efficiency of batch operated biofilm hydrolytic-aerobic recycling process in degradation of 2,4-dichloroph-enol. Journal of Hazardous Materials.152(2008)536-544.
    [33]Ye Shengquana, b, Wu Huib,Zhang Chaohuaa, et al. Study of the hydrolytic acidification—SBR process in aquatic products processing wastewater treatment. Desalination.222(2008):318-322.
    [34]翟小蔚,潘涛,GhyootW,等.利用原生动物削减剩余活性污泥产量[J].中国给水排水,2000,16(11):6-9.
    [35]Robert Y. Ning, Jeffrey P.Netwig. Complete elimination of acid injection in reverse osmosis plants. Desalination.143(2002)29-34.
    [36]Dong-Qing Zhang, Pin-Jing He, Lin-Zhong Yu, et al. Effect of inoculation time on the bio-drying performance of combined hydrolytic--aerobicpro--cessBioresourceTechnology.100(2009) 1087-1093.
    [37]李宇伟.水解酸化工艺在低浓度城市废水中的应用[J].化学与化工.2008(2):69-69.
    [38]王凯军,Last A. R. M. Van der, G. Lettinga.水解与颗粒污泥膨胀床串联工艺处理城市污水[J].中国给水排水,1999,15(8):19-23.
    [39]Eastman J.A. and Ferguson J.F. Solubilization of particulate organic carbon during the acid-phase of anaerobic digestion[J]. Journal WPCF.1981,53(3):352-366.
    [40]Desimone L A. Nitrogen transport and transformations in a shallow aquifer receiving waste discharge:A mass bal-alice approach[J]. Water Resour Res,1998,34(2):271-285.
    [41]王强,肖帅,宋伟.水解酸化工艺处理城市污水的效果[J].中国给水排水.2011.27(18):87-89.
    [42]刘军,郭茜,瞿永.厌氧水解生物法处理城市污水的研究[J].给水排水.2000(7):10-13.
    [43]贾雅漪,金腊华,李文松,刘媚媚.水解酸化-混凝土生态膜法处理生活污水试验研究[J].工业用水与废水.2010(1):65-68.
    [44]张自杰,林荣忱,金儒霖.排水工程(下册).第4版.中国建筑工业出版社,2004:143-162,106-113.
    [45]王晋,孙晓娟,傅飞云.同步硝化反硝化脱氮影响因素探讨[J].江苏工业学院学报.2003, 15(3):24-26.
    [46]刘艳臣,范茏,王志强等.Carrousel氧化沟内特性参数分布的研究[J].中国环境科学,2007,27(6):792-796.
    [47]陈华.CARROUSEL氧化沟DO运行控制的研究[D].贵州,贵州大学,2007:24-25.
    [48]Poehana K, Keller J. Study of faetors affecting simultaneous nitrifieation and denitrifieation(SND)[J]. Wat. Sei. Teen.,1999,39 (6):61-68.
    [49]高廷耀,周增炎,朱晓君.生物脱氮工艺中的同步硝化反硝化现象[J].城市给排水,1998,24(12):6-9.
    [50]张小玲,刘斌,杨永哲等.低DO下的短程硝化及同步硝化反硝化[J].中国给水排水,2004,20(5):13-16.
    [51]Li B K, Bishop B L. Modeling of the microenvironment of activated sludge floc with experimental and theoretical methods[J]. J. of Environ. Eng. Sci.,2003,2 (1):27-37.
    [52]刘艳臣,施汗昌,王志强等.Carrousel氧化沟内DO变化规律及其优化控制条件[J].中国环境科学,2008,28(9):834-846.
    [53]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998.
    [54]邹联沛,刘旭东,王宝贞.MBR影响同步硝化反硝化的生态因子[J].环境科学,2001,22(4):51.55.
    [55]袁林江,彭党聪,王志盈等.短程硝化—反硝化生物脱氮[J].中国给水排水,2000,16(2):29-31
    [56]周毅,杨开,杨德勇.污水生物处理过程中的同步硝化反硝化研究概况[J].环境科学与技术,2001,11(6):6-8.
    [57]郭劲松,黄天寅等.生物脱氮除磷jI:艺中的微生物及其相互关系[J].环境污染治理技术及设备,2000,1(1):9-14.
    [58]Zhao H W, Mavinic D S, Oldham W K, al.Controlling faetors for simultaneous nitrifieation and denitrifieation in a two-stage intermittent aeration process treating domestic sewage[J]. Wat. Res,1999,33(4):961-970.
    [59]于丹.氧化沟同步硝化反硝化脱氮及化学除磷工艺研究[D].长安大学.2008:25.
    [60]郭劲松,黄天寅等.生物脱氮除磷jI:艺中的微生物及其相互关系[J].环境污染治理技术及设备,2000,1(1):9-14.
    [61]赵庆良,刘雨.废水处理与资源化新工艺(附光盘)[M].北京:中国建筑工业出版社,2006.
    [62]万金保,王敬斌等.同步硝化反硝化脱氮机理分析及影响因素研究[J].江西科学,2008,26(2):345-349.
    [63]张自杰.排水工程下(第四版).中国建筑工业出版社.2000.
    [64]闫骏Orbal氧化沟处理实际生活污水脱氮除磷中试研究[D].北京工业大学.2007:42.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700