改良型氧化沟流体力学特性与运行优化控制研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
为解决邯郸市西污水处理厂采用的改良型氧化沟系统存在的沟底积泥、脱氮率低等问题,本研究进行了氧化沟流体力学特性及运行优化控制的生产性试验研究。
     以氧化沟缺氧区为测试沟,进行曝气转碟[单速/双速(高、低速)]、水下推动器单独运行及两者联合运行时沟内流速测试,得出了其在各运行工况下的流速分布规律。直沟道流速存在着上中部高、下底部低的规律;各弯道流态非常复杂,其流速均存在着外侧高、内侧低及中部高、上下部低的规律。在测试沟内的直沟道和弯道处均发现存在不同程度的污泥沉积现象,基于此,根据沟内设备布置及前期试验情况,以水下推动器为分界点将测试沟分为三个区:RD04~RD11(东)、RD11~RS09(东)、RS09~RD04(西),通过试验设计得出各区段的转碟和推动器的优化组合方式,并进行了验证试验,其结果表明,经调整后,直沟道、弯道的总体流态明显得到好转,虽仍存在部分积泥,分别为0.3~0.8m、0.4~1.2m(主要在第四弯道),但这主要是因前期氧化沟一直靠经验调度而致使存留的部分死泥,一时还难以完全去除,这由其底部流速分别为0.14~0.27m/s、0.11~0.23m/s可看出。
     在此基础上,通过氧化沟系统的同步脱氮除磷试验研究及分析可知,工况调整前后系统对COD_(Cr)的去除变化不大且均较为稳定,分别为90.78%、91.04%,出水均能保持在70mg/L以下;对NH_4~+-N、TN的去除率分别比调整前提高了11.57%、11.28%;调整后对应的出水TP浓度平均值为0.50mg/L,其去除率为93.93%,进行了良好的厌氧释磷、缺氧及好氧吸磷过程。通过正交试验及多指标试验结果的直观及方差分析得出,系统对COD_(Cr)、TN、TP去除的显著影响因素分别为:DO和MLSS、DO、MLSS和污泥回流比R;其最佳的运行参数:氧化沟缺、好氧区的DO分别为0.3~0.5 mg/L、2.0~2.5mg/L,MLSS=5000mg/L,R=65%。
     该系统的脱氮除磷效果很大程度上取决于DO值的控制,运行中保持缺、好氧区的DO浓度分别为0.3~0.7mg/L、2.0~3.2mg/L;要严格控制沟内的MLSS,其最佳范围为4600~5400mg/L;氧化沟工艺F/M的控制在0.06~0.13[kgBOD/(kgMLSS·d)],通过排泥将泥龄控制在16~20d。
In order to solve sludge deposit in the bottom,low nitrogen removal efficiency of the modified oxidation ditch in Western Wastewater Treatment Plant in Handan city,the hydrodynamic characteristics and optimal operation and control in full-scale were studied in this paper.
     Considered anoxic zone of the oxidation ditch as the experimental ditch,the velocity were tested at the different conditions such as when only the aerating dish[single speed/double speed(with high or low velocity) or submersed flow driver and both of them running,results of velocity distribution figures in kinds of states were gained. There all existed high velocity in upper and intermediate,low velocity in below and bottom.And the flow pattern in crook ditches were very complex,there all existed high velocity outside and low inside,intermediate high,both upper and below low in kinds of crook ditch.And meanwhile there all existed sludge deposit in straight and crook ditches,on the basis of which,according to the devices arrangement and test results,the experimental ditch was divided into three parts by the submersed flow driver,as follows: RD04~RD11(east),RD11~RS09(east),RS09~RD04(west),and then the optimal combination modes of aerating dishes and submersed flow driver were obtained by experiment design,and the feasibility was proved by experiment finally.The results revealed that the flow pattern in straight and crook ditches both had been improved obviously after the states adjusted,although there existed sediment 0.3~0.8m,0.4~1.2m (mainly existing in the forth crook ditch),respectively,which made it exist dead sludge because of the previous scheduling by experience and not removed in short time,and it can be inferred that the below velocity were 0.14~0.27m/s,0.11~0.23m/s,respectively.
     On the basis of the above work,according to the experimental study and analysis of synchronous nitrogen and phosphorus removal by the oxidation ditch,it can be concluded that COD_(Cr) removal efficiency changed slightly before and after the states adjusted,90.70%,91.04%,respectively,COD_(Cr) concentration in effluent were always below 70mg/L.Compared to the states before adjusting,NH_4~+-N and TN removal efficiency after adjusting were both increased by 11.57%,11.28%,respectively,and after adjusting average TP concentration in the effluent is 0.50mg/L,the TP removal efficiency was 93.93%,the processes of anaerobic phosphorus release,anoxic and aerobic phosphorus adsorption occurred.The optimal control parameters for COD_(Cr),TN and TP removal were determined through orthogonal experiment of intuitive and variance analysis.The significant factors of COD_(Cr) and TN and TP removal by the modified oxidation ditch were DO and MLSS,DO,MLSS and R,respectively.The optimal operation parameters were determined as follows:DO concentration of anoxic and aerobic zone of 0.3~0.5 mg/L,2.0~2.5mg/L,respectively,MLSS concentration of 5000mg/L,sludge recycle flow rate of 65%.
     The nitrogen and phosphorus removal by the modified oxidation ditch depended on the control on DO concentration,DO concentration in anoxic and aerobic zone of oxidation ditch were 0.3~0.7,2.0~3.2mg/L,respectively.MLSS in the oxidation ditch should be controlled seriously,optimal MLSS concentration of 4600~5400mg/L,the control range of F/M was 0.06~0.13[kgBOD/(kgMLSS·d)],and sludge age was 16~20d through the discharge of residual waste.
引文
[1]乌邦信,陈天祥,孙海健.循环经济—我国可持续发展水资源战略的必然选择[J].贵州工业大学学报(社会科学版),2004,16(4):21-25
    [2]Yuyizheng.China's textiles pollution burden[J].Water21,2006:16-20
    [3]甘萍.浅析我国水资源污染状况及处理技术[J].江西化工,2006,(4):82-83
    [4]钱正英,张光斗.中国可持续发展水资源战略研究[M].北京:中国水利水电出版社,2001:28-31
    [5]段永红,李曦,杨名远.我国城市污水处理市场化问题探讨[J].中国农村水利水电,2003,(5):11-14
    [6]李雪英.我国应开发利用废水这一“第二水资源”[J].广东水利电力职业技术学院学报,2004,2(1):28-30
    [7]王学东,王殿武,利贵宝,等.国内外水资源状况及存在的问题与对策[J].河北农业大学学报,2003,26(增刊):238-241
    [8]王小芳,杨玲娟.从我国水资源的现状论水污染治理的策略[J].天水师范学院学报,2001,21(5):41-43
    [9]钱易.人与环境的协调发展一来自科学前沿的报告[M].北京:清华大学出版社,1996
    [10]王占生,刘文君.微污染水源饮用水处理[M].北京:中国建筑工业出版社,1999
    [11]2006年中国环境状况公报(淡水环境)[DBPOL].新华网,2007-06-13
    [12]国家环境保护总局.2005中国环境状况公报.环境保护,2006,6B:10-19
    [13]李喜梅.关于城市污水处理方法的探讨[J].杭州师范学院学报,2005,(1):70-72
    [14]孙小平.我国城市污水处理的现状及发展对策[J].中国科技信息工程论坛,2006,4:89
    [15]王凯军.可持续发展的新型高效城市污水处理技术探讨[J].给水排水,2005,31(2):32-34
    [16]邓荣森,李伟民,王涛,等.从运行方式看氧化沟技术的发展[J].给水排水,2000,26(3):19-21
    [17]区岳州,胡勇有.氧化沟污水处理技术及工程实例[M].北京:化学工业出版社,2005
    [18]沈耀良等.废水生物处理新技术理论与应用[M].北京:中国环境科学出版社,1999
    [19]邓荣森,许俊仪,谭显春.城市污水处理与一体化氧化沟技术[J].给水排水,2000,26(11):28-31
    [20]张自杰,林荣忱,金儒林.排水工程(下册)(第四版)[M].北京:中国建筑工业出版社,2003
    [21]邓荣森.氧化沟污水处理理论与技术[M].北京:化学工业出版社,2006
    [22]陈学群,俞爱媚,吕斌.Carrousel氧化沟技术演变规律的探究[J].给水排水,2002,28(2):19-21
    [23]颜树青.奥贝尔氧化沟中溶解氧的分布特征[J].中国给水排水,2001,17(3):29-31
    [24]沈云新,唐耀武.Orbal氧化沟的评价与改进设想[J].工业用水与废水,1998,4:23-27
    [25]Lewis E.Ritter.Case Histories of Start up and Operation of The Envirex Orbal Aeration Process[C].Water Pollution Control Association of Pennsyl vania 61st Annual Conference,1989
    [26]Mikkel G.Mandt,Bruce A.Bell.Oxidation Ditches in Wastewater Treatment[J].Water Sci Tech.,1982
    [27]吕守维.侧沟式一体化氧化沟生产性试验研究[D].西安:西安建筑科技大学,2004
    [28]刘祖文,宋存义.我国节能型氧化沟处理工艺研究思路[J].环境工程,2005,23(2):85-87
    [29]邓荣森,俞天明,王涛,等.新型一体化氧化沟工艺的节能特点[J].中国给水排水,2001,17(10):44-46
    [30]B.Y.Ammary,J.A.Radaideh.Simultaneous nitrification and denitrification in an oxidation ditch plant[J].Chem.Biochem.Eng.,2005,19(2):207-212
    [31]M.Fiter,J.Colprim,M.Poch,et.al.Enhancing biological nitrogen removal in a small wastewater treatment plant by regulating the air supply[J].Wat.Sci.Tech.,2003,48:445-452
    [32]G.Insel,N.Artan,D.Orhon.Effect of aeration on nutrient removal performance of oxidation ditch systems[J].Environ.Eng.Sci.,2005,22(6):802-815
    [33]黄红旗.长沙经济技术开发区污水净化中心氧化沟工艺的改进[J].湖南农业大学学报(自然科学版),2006,32(5):548-551
    [34]许建红,曾严.改良型DE氧化沟工艺的处磷脱氮探讨[J].中国给水排水,2005,21(10):70-72
    [35]S.H.Lim,K.B.KO,K.E.RHO.Biological nutrient removal using an IACOD process:determining the combined effects of low temperature and long solids retention [J].Environmental Technology,2006,27:467-475
    [36]曹瑞钰,付见中.改善氧化沟流速分布的措施[J].中国给水排水,2001,17(2):16-18
    [37]吴庆成,曹国凭,张玉梅.氧化沟中导流板的调整以增加曝气效率减少池底沉泥厚度的实践[J].环境科学与管理,2006,31(8):92-94
    [38]刘广立,种云霄,樊青娟,等.氧化沟水力特性对处理效果和能耗的影响[J].环境科学,2006,27(11):2323-2326
    [39]邓荣森,张景波,王涛,等.新型一体化氧化沟工艺及其运行方式的探讨[J].给水排水,2002,28(8):4-7
    [40]何睦盈.微孔曝气氧化沟在城市生活污水处理中的工程应用[D].广州:华南理工大学,2004
    [41]Ki-Ho Hong,Duk Chand,Joon-moo hur,et.al.Novel Phased Isolation Ditch System for Enhanced Nutrient Removal and Its Optimal Operating Strategy[J].Journal of Environmental science and Health,2003,A38(10):2179-2189
    [42]何太江,陈吕军,钱易.生物膜氧化沟污水处理性能的研究[J].环境污染与防治,1996,18(2):7-11
    [43]Qi-Tang Wu,Ting Gao,Shucai Zeng,et.al.Plant-biofilm oxidation ditch for in situ treatment of polluted waters[J].Ecological Engineering,2006,28:124-130
    [44]Metcalf & Eddy,Inc..Wastewater Engineer Treatment and Reuse(Fourth Edition)[M].New York:McGraw-Hill,2003,776-779
    [45]Furukawa S,Tokimori K,Hirotsuji J,et al..New Operational Support System for High Nitrogen Removal in Oxidation Ditch Process[J].Wat.Sci.Tech.,1998,37(12):63-68
    [46]B.Y.Ammary,J.A.Radaideh.Simultaneous nitrification and Denitrification in an Oxidation Ditch Plant[J].Chem.Biochem.Eng.Q,2005,19(2):207-212
    [47]王洪波,李梅,于军亭,等.济南市水质净化二厂的设计与运行[J].中国给水排水,2006,22(14):89-92
    [48]M.Fiter,J.Colprim,M.Poch,et.al.Enhancing biological nitrogen removal in a small wastewater treatment plant by regulating the air supply[J].Wat.Sci.Tech.,2003,48(11-12):445-452
    [49]潘江浚.侧沟式一体化氧化沟污水处理技术研究[D].重庆:重庆大学,1996
    [50]邓荣森,张贤彬,潘江浚,等.一体化氧化沟混合液循环流动情况试验研究[J].给水排水,1998,24(2):12-17
    [51]李伟民.中试一体化氧化沟流态及规模型合建式氧化沟试验研究[D].重庆:重庆大学,2000
    [52]李伟民,邓荣森,王涛,等.水下推进器单独运行时一体化氧化沟流态试验研究[J].给水排水,2001,27(12):19-22
    [53]李伟民,邓荣森,王涛,等.水下推动器对氧化沟混合液的循环作用[J].中国给水排水,2003,19(9):45-47
    [54]尚应奇.深沟转刷型一体化氧化沟水力特性试验研究[D].成都:西南交通大学,2004
    [55]俞天明.合建式一体化氧化沟水力性能和节能特点研究[J].重庆:重庆大学,2001
    [56]杨华展.单池流态特性研究与模拟及混合能量配置优化[D].重庆:重庆大学,2006
    [57]冯生华.城市中小型污水处理厂的建设与管理(M].北京:化学工业出版社,2001
    [58]周斌.华东地区城市污水处理厂运行成本分析[J].中国给水排水,2001,117(8):30-31
    [59]龙腾锐,高旭.污水生物处理单元能量平衡与分析方法研究与应用[J].环境科学学报,2002,22(5):683-688
    [60]E.J.Middlebrooks,C.H.Middlebrooks,S.C.Reed.Energy requirement for small wastewater treatment system[J].Joumal WPCF,1981,53(7):1172-1197.
    [61]A.Jacobs.Reduction and recovery:keys to energy self-sufficiency[J].Water & Sewage Works,1977,Ref:24-37.
    [62]Klaus R.Imhoff.Energy optimization in sewage and sludge treatment[J].Wat.Sci.Tech., 1983.15:103-114
    [63]羊寿生.城市污水厂的能源消耗[J].给水排水,1984,(60):15-19
    [64]W.EOwen著,章北平等译.污水处理能耗与能效[M].北京:能源出版社,1989
    [65]杨斌.一体化氧化沟能量供给优化试验研究[D].重庆:重庆大学,2006
    [66]Kotsovinos N E,Gratziou M and Isalkatidou M.Cost analysis and evaluation of conventional urban sewage processing units In:Ecological Protection of the Planet Earth.Proceedings of the 3~(nd) International Conference.Istanbul,turkey,2005
    [67]黄祖安.Carrousel氧化沟脱氮除磷工艺的运行控制[J].中国给水排水,2003,19(12):101-102
    [68]黄中华.提高氧化沟法城市污水处理系统除磷效果探讨[J].云南环境科学,2005,24(4):44-46
    [69]曹叔尤.水力学及河流动力学基本问题研究的现状与任务[J].四川大学学报(工程科学版),2002,34(1):1-5
    [70]杨晓,李红利.城市污水处理厂总氮去除的可行性研究[J].平顶山工学院学报,2004,13(3):56-58.
    [71]郑兴灿,李亚新.污水除磷脱氮技术[M].北京:中国建筑工业出版社,1998
    [72]王涛,邓荣森,廖日红,等.氧化沟曝气转刷提升水头与水头损失的关系及应用[J].给水排水,1999,25(1):5-7
    [73]李云雁,胡传荣.试验设计与数据处理[M].北京:化学工业出版社,2005,03
    [74]Y.H Chen.et.al.Dynamic Behavior of Ozonation with Pollution in a Countercurrent Column with Oxygen Mass Transfer[J].Water Research,2003,37:2583-2594
    [75]陈学俊等.气液两相流与传热基础[M].科学出版社,1995.
    [76]陈敏恒,从德滋,方图南,等.化工原理(下册)(第二版)[M].北京:化学工业出版社,1998
    [77]Harrenmoes P.,et al.Teoretisk vandhygiejne(Water Chemistry)(Third edition)[M].Polyteknisk Forlag,Lyngby,Demark,1989
    [78]W Verstraete,S Philips.Nitrification Processes and Technologies in New Ammonium-Rich Wastewater[J].Wat.Sci.Tech.,1998,9
    [79]姚建新,李思敏,张胜,等.T型氧化沟的生物除磷脱氮机理及效果分析[J].宁夏工程技术,2004,3(1):55-60
    [80]P.M.J.Janssen等著,祝贵兵,彭永臻译.生物除磷设计与运行手册[M].北京:中国建筑工业出版社,2005
    [81]Baker P S,Dold P L.Denitrification behavior in biologicalexcess phosphorus removal activated sludge system[J].Water Research,1996,30:769-780.
    [82]Kubat T,van Loosdrecht,MCM,et al.Occurrence of denitrifying phosphorus removing bacteria in modified UCT-type wastewater treatment plants[J].Water Research,1997,31(4):777-786
    [83]Carucci A,Kuhni M,Brun R,et al.Microbial competition for the organic substrates and its impact on Ebpr system under conditions of changing carbon feed[J].Water Science &Technology,1997,36(12):19-27
    [84]林燕,杨永哲,袁林江,等.生物脱氮除磷技术的研究动向[J].中国给水排水,2002,18(7):20-22
    [85]高廷耀,夏四清,周增炎.城市污水生物脱氮除磷机理研究进展[J].上诲环境科学,1999,18(1):16-18
    [816]邓荣森,郎建,王涛,等.城市污水生物除磷脱氮机理研究探讨[J].重庆建筑大学学报,2002,24(3):106-111
    [87]徐乐中.生物除磷效率的确定[J].给水排水,1995,11:5-8
    [88]张波,高廷耀.生物脱氮除磷工艺厌氧/缺氧环境倒置效应[J].中国给水排水,1997,12(2):29-31
    [89]RensinkJ H,Donker HJ GW and Simons SJ.Phosphorus Removal at Low Sludge Loadings[J].Wat.Sci.Tech.,1985,17(11/12):177-186
    [90]Botho Bohnke,Das Adsorptions-Belebungsverfahren(AB-Verfahren),DASAB-VERFAHREN ZUR BIOLOGISCHEN ABWASSER-REINIGUNG,AUSGABE,1992
    [91]李军,杨秀山,彭永臻编著.微生物与水处理工程[M].北京:化学工业出版社,2002:376
    [92]田淑媛,杨睿,王景峰,等.生物除磷及其生化机理研究[J].中国给水排水,2001,17(1):71-73
    [93]朱怀兰,史家梁,徐亚同,等.SBR生物除磷工艺的研究[J].上海环境科学,1993,12(8):8-13
    [94]郑兴灿.污水生物除磷技术的工作机理述评[J]_环境科学,1990,11(1):50-55
    [95]邱慎初,丁堂堂.探讨城市污水生物处理出水的总磷达标问题[J].中国给水排水,2002,18(9):23-25
    [96]Randall C W.Design and retrofit of wastewater treatment plants for biological nutrient removal M.Lancaster:Technomic Publishing Co,1992
    [97]陈欣燕,程晓如,陈忠正.从微生物学探讨生物除磷脱氮机理[J].中国给水排水,1996,12(5):32-33
    [98]徐亚同.废水生物除磷系统的运行与管理[J].给水排水,1994,(6):20-22
    [99]Fukase T,Shibata M,Miyaji Y.The role of an anaerobic stage on biological phosphorus removal[J].Wat.Sci.Tech.,1985,(17):68-80
    [100]周岳溪,钱易.循序间歇式生物脱氮除磷工艺[J].环境T程,1993,11(1):3-7
    [101]汪永红,何睦盈,区岳州.采用微孔曝气器的氧化沟实例分析[J].中国给水排水,2003,19(2):75-76
    [102]彭永臻,侯红勋,乔海兵,等.改良型Carrousel氧化沟工艺生物脱氮除磷效果研究[J].环境污染治理技术与设备,2006,7(12):42-45
    [103]侯红勋,陈伦强,王淑莹,等.用0RP作为氧化沟同步硝化反硝化控制参数[J].北京工业大学学报,2006,32(12):1093-1096
    [104]焦斌权,李伟民.HRT、缺氧时间、好氧时间对碳、氮去除的影响研究[J].重庆建筑大学学报,2003,25(5):78-86
    [105]乔海兵,王淑莹,姚学同,等.污泥回流和前置区THR对氧化沟N、P去除的影响[J].北京工业大学学报,2007,33(4):408-412
    [106]徐亚同,黄民生.废水生物处理的运行管理与异常对策[M].北京:化学_[业出版社,2003
    [107]任周鸣.活性污泥法的工艺参数控制(下)[J].给水排水,2007,33(12):44-49
    [108]王夏慧.城市污水生物强化处理短时曝气试验研究[D].武汉:武汉理工大学,2004
    [109]陈华.Carrousel2000氧化沟DO运行控制的研究[D].贵州:贵州大学,2007
    [110]王显,吕庆兴.曝气池溶解氧浓度控制与节能[J].给水排水,1996,22(12):22-24
    [111]J.Fewer,M.A.R.,A.Seco and J.M.Penya-roja.Energy saving in the aeration process by furry logic control[J].Wat.Sci.Teclanol,1998,38(3):209-217
    [112]林荣忱,李金河,林文波.污水处理厂泵站与曝气系统的节能途径[J].中国给水排水,1999,15(1):21-23
    [113]TANAKA T,KITAGAWA M,OHKUBO E.Energy saving high biological phosphorus removal and improvement of sludg settleability on full-scale anaerobic-aerobic activated sludg process[J].Wat.Sci.Tech.,1991,23(Kyoto):801-810
    [114]IP S Y,BRIDGER J S,MILLS E Effect of alternating aerobic and anaerobic conditions on the economics of the activate sludge system[J].Wat.Sci.Tech,1987,19:911-918
    [115]NEIVA M R,GALDINO L A,CATUNDA P F C,eta.Reduction of operation costs by planned interruption aeration in activated sludge plants[J].Wat.Sci.Tech.,1996,33(3):17-27
    [116]G.Olsson,J.F Andrews.Dissolved Oxygen control in the activated sludge process [J].Wat.Sci.Tech.,1981,13(10):341-347
    [117]CHARPENTIER J,FLORENTZ M,DAVID G.Oxidation-reduction potential(ORP)regulation:a way to optimize pollution removal and energy savings in the low load activated sludge process[J].Wat.Sci.Tech.,1987,19(Rio):645-655
    [118]CHARPENTIER J,GODART H,MARTIN G,et.al.Oxidation-reduction potential(ORP)regulation as a way to optimize aeration and C,N and P removal:experimental basis and various full-scale examples[J].Wat.Sci.Tech.,1989,21(Brighton):1209-1223
    [119]Water Environment Federation.Energy Conservation in Wastewater Treatment Facilities.Alexandia,USA,1997
    [120]彭永臻,王淑莹,周利,等.生物电极脱氮的在线模糊控制—Ⅰ模糊控制系统的组成与基本思想[J].中国给水排水,1999,15(2):5-9
    [121]彭永臻,王淑莹,周利,等.生物电极脱氮的在线模糊控制—Ⅱ模糊控制系统的组成与基本思想[J].中国给水排水,1999,15(4):5-10
    [122]高景峰,彭永臻,王淑莹,等.以DO、ORP、pH控制SBR法的脱氮过程[J].中国给水排水,2001,17(4):6-11
    [123]梁宝强.氧化沟法污水处理过程计算机控制系统的设计与开发[D].沈阳:东北大学,2002
    [124]郭劲松,龙腾锐,高旭.间歇曝气活性污泥系统神经网络水质模型[J].中国给水排水,2000,16(11):15-18
    [125]苏敏,涂源钊.城市废水生物处理过程的模糊神经网络控制[J].四川联合大学学报(工程科学版),1998,2(1):40-45
    [126]Stimson K R.Activated sludge control adviser.Water Science & Technology,1993,28(12):295-302
    [127]Nam S W,Myung N J,Lee K S.On-line integrated control system for an industrial activated sludge process[J].Water Environment Research,1996,68(1):70-75
    [128]杜英豪,杨小文.三沟式氧化沟脱氮的运行管理[J]_中国给水排水,2003,19(12):94-96
    [129]张建丰.活性污泥法工艺控制[M].北京:中国电力出版社,2007

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700