外源性硫化氢对大鼠脑缺血—再灌注损伤的保护作用及机制探讨
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
第一部分不同浓度外源性硫化氢对大鼠脑缺血再灌注损伤的影响
     目的:探讨不同浓度外源性硫化氢对脑缺血再灌注大鼠神经功能的作用及其机制。
     方法:将288只雄性SD大鼠通过随机数字表法分为4组:假手术组,模型组,小剂量NaHS(3.2mg/kg)组,大剂量NaHS(6.4mg/kg)组,每组72只;线栓法制备大鼠大脑中动脉栓塞模型,2h后再灌注,灌注前20min给予生理盐水或NaHS腹腔注射,术后6h、24h、48h、7d分别行神经功能缺损评分。四氮唑红染色观察脑梗死体积、免疫组化和免疫印迹检测缺血周边区肿瘤坏死因子-α (TNF-α)与热休克蛋白20(HSP20)表达。
     结果
     ①模型组各时刻点均有明显的神经功能缺损症状,随着再灌注时间的延长,神经功能缺损症状逐渐减轻。右侧大脑中动脉供血区可见大小不一苍白色梗死脑组织,NaHS干预后神经功能缺损改善(P<0.05),脑梗死体积减少(P<0.05),以大剂量NaHS组改善效果更明显(P<0.05)。
     ②免疫组化显示在缺血再灌注后6h~7d,与假手术组相比,缺血周边区模型组TNF-α阳性细胞数增加,分别为17.2±3.2、29.5±3.1、16.1±3.5、4.3±1.5,NaHS干预后TNF-α阳性细胞数减少;小剂量组分别为15.1±2.9、26.2±2.7、15.8土4.1、4.5±1.1(P<0.05),大剂量组减少更明显,分别为13.3士2.6、20.1±2.0、12.2±2.7、4.2±0.6(P<0.05),模型组和干预组比较差异有统计学意义(P<0.05),大剂量组和小剂量组比较差异有统计学意义(P<0.05)。同期与假手术组相比,缺血周边区模型组HSP20阳性细胞数增加,分别为30.2±5.2、52.6±7.0、70.2±7.3、40.2±3.9,NaHS干预后HSP20阳性细胞数较模型组增加,小剂量组分别为40.2±3.7、61.1±7.3、75.4±4.0、40.5±2.1,大剂量组增加更明显,分别为45.3±5.6、67.6±5.1、81.8士6.5、49.6±4.8(P<0.05)。
     ③免疫印迹检测缺血周边区缺血再灌注各个时刻点TNF-α表达显示,与假手术组相比,模型组各时刻点(7d组除外)TNF-α表达增加,分别为0.74±0.13、1.13±0.19、0.87±0.26(均P<0.05)、0.19±0.03(P>0.05),干预组脑各时刻点较模型组表达均降低,小剂量组为0.32±0.19、0.61±0.14、0.40±0.12、0.23±0.03(均P<0.05),大剂量组更降低,为0.31±0.16、0.444±0.18、0.26±0.13、0.19±0.05(均P<0.05),模型组和干预组相比差异有统计学意义(P<0.05),大剂量组和小剂量组相比差异有统计学意义(P<0.05)。同期与假手术组相比,模型组HSP20表达增加,分别为3.51±0.72、5.13±0.41、7.52±1.31、3.48±0.87(均P<0.05),应用NaHS干预后HSP20表达较模型组增加,小剂量组为4.31±0.91、7.47±0.29、9.144±1.22、3.45±1.07(P<0.05),大剂量组为4.41±0.61、7.56±0.35、10.3±1.03、3.92±1.09(均P<0.05),上述改变以大剂量NaHS组更明显(P<0.05)。
     结论:NaHS可能通过抑制TNF-α表达,诱导HSP20表达上调,减少脑梗死体积,从而起到神经保护作用,改善神经功能缺损评分,此作用与剂量相关。图12幅,表5个,参考文献23篇。
     第二部分外源性硫化氢对大鼠局灶性脑缺血再灌注损伤的保护机制探讨
     目的:通过MAPKs通路探讨外源性硫化氢对局灶性脑缺血再灌注损伤大鼠的神经保护作用机制。
     方法:将360只雄性SD大鼠随机分为3组:假手术组,模型组,NaHS (6.4mg/kg)干预组,每组120只,线栓法制备大鼠大脑中动脉栓塞模型,2小时后再灌注,灌注前20分钟给予生理盐水或NaHS腹腔注射,术后6h、24h、48h、3d、7d后行神经功能评分,TTC染色观察脑梗死体积,RT-PCR检测ERK1/2mRNA、P38mRNA和Nrf2mRNA表达,免疫组化与免疫荧光检测p-P38和Nrf2表达,免疫印迹检测海马p-ERK1/2、t-ERK1/2、p-P38、t-P38和Nrf2蛋白表达。
     结果:NaHS干预组脑梗死体积和神经功能缺损评分相对于模型组显著减少(P<0.05);各时刻点ERK1/2mRNA、P38mRNA和Nrf2mRNA的表达干预组较模型组升高(P<0.05);各时刻点ERK1/2和P38蛋白磷酸化、Nrf2蛋白表达干预组较模型组均升高(P<0.05)。
     结论:大鼠脑缺血再灌注损伤后NaHS可能通过诱导ERK1/2和P38蛋白磷酸化,激活下游Nrf2蛋白表达,起到抗氧化应激作用,从而减少脑梗死体积,发挥神经保护作用,改善神经功能缺损。图32幅,表12个,参考文献33篇
Part Ⅰ Neuroprotective mechanism of different concentration of hydrogen sulfide on cerebral ischemia-reperfusion injury in rats
     Objective:To investigate the neuro-protective mechanism of exogenous hydrogen sulfide on cerebral ischemia-reperfusion (I/R) in rats.
     Methods:A total of288male Sprague-Dawley rats were randomly divided into4groups (n=72),including a sham-operation group (group Ⅰ),an I/R model group (group Ⅱ),a low dose NaHS group (group Ⅲ) and a high dose NaHS group (group Ⅳ). Reversible middle cerebral artery occlusion(MCAO) model was established by intraluminal suture method. However, the rats in sham-operation group were operated on without blockage of the middle cerebral artery. The occlusions in other groups were removed after2h, and20min before the removal of the occlusion,NS,3.2mg/kg NaHS, and6.4mg/kg NaHS were injected into the abdomens of rats in group Ⅱ, Ⅲ, and Ⅳ, respectively. At6h,24h,48h,and7d after the reperfusion,behavioral test was used to evaluate the neurological deficiency, and TTC staining was used to observe volume of cerebral infarction. In addition, the protein expression of heat shock protein20(HSP20) and tumor necrosis factor-alpha(TNF-α) in ischemic cortex were measured by immuno-histochemical method and Western blot.
     Results:Compared with I/R group, the neurological deficiency scores and volume of cerebral infarction of the group Ⅲ and Ⅳ were significantly decreased. Furthermore, the protein expression of HSP20in the group Ⅲ, and IV were markedly up-regulated while TNF-a markedly down regulated after the reperfusion.
     Conclusion:NaHS may exert anti-necrotic and anti-inflammatory function by inducing the expression of HSP20, inhibiting the expression of TNF-a, and reducing the size of cerebral infarction, and therefore, protecting the neuron after I/R injury.
     Part Ⅱ Neuroprotective mechanism of hydrogen sulfide on rats after cerebral ischemia-reperfusion by MAPKs pathway
     Objective:To investigate the neuroprotective mechanism of exogenous hydrogen sulfide on rats after cerebral ischemia-reperfusion by MAPKs pathway.
     Methods:A total of360Sprague-Dawley male rats were randomly divided into three groups (n=90), including a sham-operation group, an ischemia-reperfusion(I/R) model group, NaHS (6.4mg/kg) group. Reversible middle cerebral artery occlusion(MCAO) model was established by intraluminal suture technique. The rats of sham-operation group were operated on while the middle cerebral artery was not blocked. At6h,24h,48h,3d and7d after the reperfusion, TTC staining was used to observe volume of cerebral infarction. The gene expression of ERK1/2、 P38and Nrf2in the hippocampus was measured by RT-PCR,while the protein expression of p-ERK1/2、t-ERK1/2、p-P38、t-P38and Nrf2was measured by Western blot or immunohistochemical method.
     Results:Compared with the I/R group, the volume of cerebral infarction and apoptosis of neurons of NaHS group was significantly lower. The Nrf2protein expression and phosphorylation of ERK1/2and P38in NaHS group increased significantly.
     Conclusion:Our animal data suggested that the Nrf2protein expression and the phosphorylation of ERK1/2and P38in the rat ischemic/reperfusion injury brain were decreased strongly after MCAO, NaHS supplement induced and increased significantly relieve the focal cerebral I/R injury, which has anti-oxidative stress effect on the cerebral ischemia-reperfusion injury.
引文
[1]Lopez AD,Mathers CD,Ezzati M,et al. Global and regional burden of disease and risk factors,2001:systematic analysis of population health data[J]. Lancet,2006:367(9524):1747-1757.
    [2]Adams HpJr,Ailams RJ,Brott T,et al.Guidelines for the early management of Patients with ischemic stroke[J].Stroke,2003,34:1056-1083.
    [3]Rha JH,Saver JL:The impact of recanalization on ischemic stroke outcome:a meta-analysis[J].Stroke,2007,38:967-973.
    [4]Adams HpJr,del Zoppo QAlberts MJ.et al.Guidelines for the early management of adults with ischemic stroke[J].Circulation,2007,115:e478-e534.
    [5]Hacke W, Kaste M, Bluhmki E, et al. Thrombolysis with alteplase 3 to 4.5 hours after acute ischemic stroke[J]. N Engl J Med,2008,359(13):1317-29.
    [6]del Zoppo QPoeck K,Pessin M.et al.Recombinant tissue Plasminogen aetivator in acute thrombotic and embolic stroke[J].Ann Neurol,1992,32:78-86.
    [7]耿彬,杜军保,唐朝枢.内源性H2S—一种新的气体信号分子[J].生理科学进展,2002,33:255-258.
    [8]刘祥琴,晏勇.神经系统中内源性硫化氢的研究进展[J].生理科学进展.2007,2:177-180.
    [9]金红芳,梁晨,梁嘉敏等.硫化氢对高肺血流性肺动脉高压大鼠血管炎症反应的调节作用[J].中华医学杂志,2008,88(32):2235-2239.
    [10]任彩丽,赵红岗,蔡德亮等.脑梗死患者血浆中内源性硫化氢含量的变化[J].中国神经精神疾病杂志,2010,1:43-45.
    [11]Qu K, Chen CP, Halliwell B, et al.Hydrogen sulfide is a mediator of cerebral ischemic damage[J]. Stroke,2006,37:889-893.
    [12]Wong PT,Qu K,Chimon GN,et al.High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke:possible involvement of hydrogen sulfide[J].J Neuropathol Exp Neurol.2006,65(2):109-115.
    [13]Ren C,Du A, Li D, et al.Dynamic change of hydrogen sulfide during global cerebral ischemia-reperfusion and its effect in rats[J]. Brain Res,2010,1345: 197-205.
    [14]Simao F, Matte A, Matte C, et al.Resveratrol prevents oxidative stress and inhibition of Na(+)K(+)-ATPase activity induced by transient global cerebral ischemia in rats[J].J Nutr Biochem,2011,22:921-928.
    [15]Li Z, Wang Y, Xie Y,et al.Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia[J].Neurochem Res, 2011,36:1840-1849.
    [16]Qipshidze N, Metreveli N, Mishra PK, et al. Hydrogen sulfide mitigates cardiac remodeling during myocardial infarction via improvement of angiogenesis[J]. Int J Biol Sci,2012,8:430-444.
    [17]Biermann J, Lagreze WA, Schallner N, et al. Inhalative preconditioning with hydrogen sulfide attenuated apoptosis after retinal ischemia/reperfusion injury[J].Mol Vis,2011,17:1275-1286.
    [18]Wang X, Yue TL, Barone FC, et al.Concomitant cortical expression of TNF-a and IL-lb mRNA follows early response gene expression in transient focal ischemia[J].Mol Chem Neuropathol,1994,23:103-114.
    [19]Elneihoum AM, Falke P, Axelsson L,et al. Leukocyte activation detected by increased plasma levels of inflammatory mediators in patients with ischemic cerebrovascular diseases[J]. Stroke,1996,27:1734-1738.
    [20]Smith CA, Farrah T, Goodwin RG. The TNF receptor superfamily of cellular and viral proteins:activation, costimulation, and death[J]. Cell,1994,76:959-962.
    [21]Latchman DS. HSP27 and cell survival in neurones[J].Int J Hyperthermia. 2005,21(5):393-402.
    [22]Leonardo P, Cristina S, Domenico I. Cytokines and cell Adhesion Molecules inCerebral Ischemia[J].Arteriosclerosis,Thrombosis,and Vascular Biology,1998, 18:503-513.
    [23]Cooper L,Uoshima K,Guo Z. Transcriptional regulation involving the intronic heat shock element of the rat HSP27 gene[J]. Bichem Biophy Acta,2000,1490: 348-354.
    [24]Golenhofen N,Perng MD,Quinlan RA,Drenekhahn D. Comparison of the small heat shock proteins alphaB-crystallin, MKBP, HSP25, HSP20, and cvHSP in heart and skeletal muscle[J].Histoehem Cell Biol,2004,122(5):415-425.
    [25]Longa EZ, Weinstein PR, Carlson S, et al. Reversible middle cerebral artery occlusion without craniectomy in rats[J]. Stroke,1989,20:84-91.
    [26]Ashwal S,Tone B,Tian HR,et al.Core and penumbral nitrc oxide synthase activity during cerebral ischemia and reperfusion[J]. Stroke,1998,29(5):1037-1046.
    [27]Acero N, Munoz-Mingarro D. Effect on tumor necrosis factor-a production and antioxidant ability of black alder, as factors related to its anti-inflammatory properties [J]. J Med Food,2012,17(2);188-194.
    [28]Intiso D, Zarrelli MM, Lagioia G, et al. Tumor necrosis factor alpha serum levels and inflammatory response in acute ischemic stroke patients[J].Neurol Sci,2004,24:390-396.
    [29]Barone FC, Arvin B, White RF, et al. Tumor necrosis factor-a:a mediator of focal ischemic brain injury[J]. Stroke,1997,28:1233-1244.
    [30]Bruce AJ, Boling W, Kindy MS, et al. Altered neuronal and microglial responses to excitotoxic and ischemic brain injury in mice lacking TNF receptors[J].Nat Med,1996,2:788-794.
    [31]Noda T, Kumada T, Takai S, et al. Expression levels of heat shock protein 20 decrease in parallel with tumor progression in patients with hepatocellular carcinoma[J]. Oncol Rep,2007,17:1309-1314.
    [32]Lipton P.Ischemic cell death in brain neurons[J]. Physiol Rev,1999,79:1431-1568.
    [33]Kahles T, Brandes RP. NADPH oxidases as therapeutic targets in ischemic stroke[J].Cell Mol Life Sci,2012,69(14):2345-63.
    [34]Sanderson TH, Reynolds CA, Kumar R, et al.Molecular mechanisms of ischemia-reperfusion injury in brain:pivotal role of the mitochondrial membrane potential in reactive oxygen species generation[J].Mol Neurobiol, 2013,47(l):9-23.
    [35]Cheng F, Zhong X, Lu Y, et al.Refined Qingkailing Protects MCAO Mice from Endoplasmic Reticulum Stress-Induced Apoptosis with a Broad Time Window[J].Evid Based Complement Alternat Med,2012;2012:567872.
    [36]Urikova A, Babusikova E, Dobrota D, et al.Impact of ginkgo biloba extract Egb 761 on ischemia/reperfusion induced oxidative stress produets formation in rat forebrain[J].Cell Mol Neurobiol,2006,26(5):541-552.
    [37]Liu R, Zhang L, Lan X, et al.Protection by borneol on cortical neurons against oxygen-glucose deprivation/reperfusion:involvement of anti-oxidation and anti-inflammation through nuclear transcription factor kappaB signaling pathway[J].Neuroscience,2011,176:408-419.
    [38]Wang X,Zhu C,Qiu L,Hagberg H,Sandberg M,Blomgren K.Activation of ERK1/2 after neonatal rat cerebral hypoxia-ischaemia[J].J Neurochem,2003,86 (2):351-362.
    [39]Kakimoto M,Kawaguchi M,Sakamoto T,et al.Evaluation of rapid ischemic preconditioning in a rabbit model of spinal cord ischemia[J]. Anesthesiology, 2003,99(5):1112-1117.
    [40]Schaller B,Graf R, Jacobs AH.Ischaemic tolerance:a window to endogenous neuroprotection[J].Lancet,2003,362(9389):1007-1008
    [41]Han BH,Holtzman DM.BDNF protects the neonatal brain from hypoxic-ischemic injury in vivo via the ERK pathway[J].J Neurosci,2000,20 (15):5775-5781.
    [42]Kovalska M, Kovalska L, Pavlikova M,et al.Intracellular signaling MAPK pathway after cerebral ischemia-reperfusion injury[J].Neurochem Res,2012,37 (7):1568-1577.
    [43]Nito C, Kamada H, Endo H, et al.Involvement of mitogen-activated protein kinase pathways in expression of the water channel protein aquaporin-4 after ischemia in rat cortical astrocytes[J]J Neurotrauma,2012,29(14):2404-2412.
    [44]Barros-Minones L, Orejana L, Goni-Allo B, et al.Modulation of the ASKl-MKK3/6-p38/MAPK signalling pathway mediates sildenafil protection against chemical hypoxia caused by malonate[J].Br J Pharmacol,2013,168 (8):1820-1834.
    [45]Dai J, Chen L, Qiu YM,et al.Activations of GABAergic signaling, HSP70 and MAPK cascades are involved in baicalin's neuroprotection against gerbil global ischemia/reperfusion injury [J].Brain Res Bull,2013,90:1-9.
    [46]李小娟。Nrf2-ARE通路对心肌缺血再灌注损伤的保护作用[J].遵义医学院学报,2012,35(03):258-261.
    [47]Li Y,Chopp M, Jiang N,et al.Induction of DNA fragmentation after 10 to 20 mintes of focal cerebral ischemia in rats [J]. Stroke,1995,26(1-2):1252.
    [48]Bruning CA, Prigol M, Luchese C, et al.Protective effect of diphenyl diselenide on ischemia and reperfusion-induced cerebral injury:involvement of oxidative stress and pro-inflammatory cytokines[J].Neurochem Res,2012,37(10):2249-58.
    [49]Zhang P, Li W, Li L, et al.Treatment with edaravone attenuates ischemic brain injury and inhibits neurogenesis in the subventricular zone of adult rats after focal cerebral ischemia and reperfusion injury[J].Neuroscience,2012,201: 297-306.
    [50]Yun X, Maximov VD, Yu J, et al.Nanoparticles for targeted delivery of antioxidant enzymes to the brain after cerebral ischemia and reperfusion injury [J].J Cereb Blood Flow Metab,2013.[Epub ahead of print].
    [51]Renic M, Kumar SN, Gebremedhin D,et al.Protective effect of 20-HETE inhibition in a model of oxygen-glucose deprivation in hippocampal slice cultures[J].Am J Physiol Heart Circ Physiol,2012,302(6):H1285-1293.
    [52]Hattori H, Shibata M, Sugaya T,et al.Delayed phosphorylation of p38 mitogen-activated protein kinase in the ATI a knock-out mouse striatal neurons during middle cerebral artery occlusion and reperfusion[J].Neurosci Lett,2003, 24,341(1):9-12.
    [53]Lennmyr F, Ericsson A, Gerwins P, et al.Increased brain injury and vascular leakage after pretreatment with p38-inhibitor SB203580 in transient ischemia[J]. Acta Neurol Scand,2003,108(5):339-345.
    [54]Chen J, Li C, Pei DS, et al.GluR6-containing KA receptor mediates the activation of p38 MAP kinase in rat hippocampal CA1 region during brain ischemia injury[J].Hippocampus,2009,19(1):79-89.
    [55]Yin J, Tu C, Zhao J, et al.Exogenous hydrogen sulfide protects against global cerebral ischemia/reperfusion injury via its anti-oxidative, anti-inflammatory and anti-apoptotic effects in rats[J].Brain Res,2013,1491:188-196.
    [56]Shamloo M, Rytter A, Wieloch T. Activation of the extracellular signal-regulated protein kinase cascade in the hippocampal CA1 region in a rat model of global cerebral ischemic preconditioning[J]. Neuroscience,1999,93(1):81-88.
    [1]Martelli A, Testai L, Breschi MC,et al.Hydrogen sulphide:novel opportunity for drug discovery[J].Med Res Rev,2012,32(6):1093-1130.
    [2]Ewelina TOWICKA, Jerzy BETTOWSKI. Hydrogen sulfide(H2S)-:the third gas of interest for pharmacologists[J]. Pharmacol Rep,2007,59(1):4-24.
    [3]Tang C, Li X, Du J. Hydrogen sulfide as a new endogenous gaseous transmitter in the cardiovascular system[J].Curr Vasc Pharmacol,2006,4 (1):17-22.
    [4]Li L, Moore P.K. Putative biological roles of hydrogen sulfide in health and disease:a breath of not so fresh air[J].Trends in Pharmacol Sci,2008,29 (2):84-90.
    [5]Taoka S, Banerjee R. Characterization of NO binding to human cystathionine beta-synthase:possible implications of the effects of CO and NO binding to the human enzyme[J]. J Inorg Biochem,2001,87:245-251.
    [6]Chad K, Nicholson, John W. Calvert. Hydrogen sulfide and ischemia-reperfusion injury[J]. Pharmacol Res,2010,62(4):289-297.
    [7]Magierowski M, Jasnos K, Kwiecien S,et al.Role of hydrogen sulfide in the physiology of gastrointestinal tract and in the mechanism of gastroprotection [J].Postepy Hig Med Dosw,2013,6(67):150-156.
    [8]KimuraH. Hydrogen Sulfide as a neuromodulator[J]. Mol Neurobiol,2002, 26(1):13-19.
    [9]Zhu XY, Gu H, Ni X.Hydrogen sulfide in the endocrine and reproductive systems[J].Expert Rev Clin Pharmacol,2011,4(1):75-82.
    [10]Russo CD, Tringali G, Ragazzoni E, et al. Evidence that hydrogen sulphide can modulate hypothalamo-pituitary-adrenal axis function:in vitro and in vivo studies in the rat[J]. J of Neuroendocrinol,2000,12:225-233.
    [11]Linden DR, Levitt MD, Farrugia G, et al. Endogenous production of H2S in the gastrointestinal tract:still in search of a physiologic function[J]. Antioxid Redox Signal,2010,12(9):1135-1146.
    [12]Ren YS, Wu SY, Wang XJ,et al.Multiple hemodynamic effects of endogenous hydrogen sulfide on central nervous system in rats[J].Chin Med J,2011, 124(21):3468-3475.
    [13]Zhao W, Zhang J, Lu Y, et al. The vasorelaxant effect of H2S as a novel endogenous gaseous KATP channel opener[J].EMBO J,2001,20(21):6008-6016.
    [14]Liang GH, Xi Q, Leffler CW,et al.Hydrogen sulfide activates Ca2□ sparks to induce cerebral arteriole dilatation[J].J Physiol,2012,590:2709-2720.
    [15]Wilinski B, Wilinski J, Somogyi E, et al.Vitamin D3 (cholecalciferol) boosts hydrogen sulfide tissue concentrations in heart and other mouse organs[J].Folia Biol,2012,60(3-4):243-247.
    [16]Jang JH, Aruoma OI, Jen LS, et al. Ergothioneine rescues PC 12 cells from β-amyloid-induced apoptotic death[J]. Free Radic Biol and Med,2010,36(3): 288-299.
    [17]Morrison LD, Smith DD, Kish SJ. Brain S-adenosylmethionine levels are severely decreased in Alzheimer's disease[J].J Neurochem,1996,67:1328-1331.
    [18]Eto K, Ogasawara M, Umemura K, et al. Hydrogen sulfide is produced in response to neuronal excitation [J]. J Neurosci,2004,24 (24):5649.
    [19]刘祥琴.阿尔茨海默和血管性痴呆患者内源性硫化氢及相关指标的变化与意义[D].重庆:重庆医科大学神经内科,2007,5-57.
    [20]陈秀琴,唐小卿,李景田,等.硫化氢对p-淀粉样蛋白诱导PC12细胞凋亡的影响[J].解剖学研究.2007,29(2):107-110.
    [21]Hu LF, Lu M, Tiong CX, et al. Neuroprotective effects ofhydrogen sulfide on Parkinson's disease rat models[J]. Aging Cell,2010,9:135-146.
    [22]Xie L, Hu LF, Teo XQ, et al.Therapeutic Effect of Hydrogen Sulfide-Releasing L-Dopa Derivative ACS84 on 6-OHDA-Induced Parkinson's Disease Rat Model[J].PLoS One,2013,8(4):e60200.
    [23]Tiong CX LM, Bian JS. Protective effect of hydrogen sulfide against 6-OHDAinduced cell injury in SH-SY5Y cells involves PKC/PI3K/Akt pathway [J]. Br J Pharmacol,2010,161(2):467-480.
    [24]Guo Q, Jin S, Wang XL,et al.Hydrogen sulfide in the rostral ventrolateral medulla inhibits sympathetic vasomotor tone through ATP-sensitive K+ channels[J].J Pharmacol Exp Ther,2011,338(2):458-465.
    [25]Wang PT, Qu K, Chimon GN, et al. High plasma cyst(e)ine level may indicate poor clinical outcome in patients with acute stroke:possible involvement of hydrogen sulfide[J]. J Neuropathol Exp Neurol.2006,65(2):109-115.
    [26]Qu K, Chen CP, Halliwell B, et al. Hydrogen sulfide is a mediator of cerebral ischemic damage[J]. Stroke.2006,37(3):889-893.
    [27]Luo Y, Liu X, Zheng Q,et al.Hydrogen sulfide prevents hypoxia-induced apoptosis via inhibition of an H2O2-activated calcium signaling pathway in mouse hippocampal neurons[J].Biochem Biophys Res Commun,2012,425 (2):473-477.
    [28]REN Cai-li, ZHAO Hong-gang, CAI De-liang, et al. Change in plasmic endogenous hydrogen sulfide of patients with cerebral infarction[J]. Chin J Nerv Ment Dis,2010,36(1):43-45.
    [29]Ren C, Du A, Li D, et al. Dynamic change of hydrogen sulfide during global cerebral ischemia-reperfusion and its effect in rats[J]. Brain Res,2010,1345(23): 197-205.
    [30]Li GF, Luo HK, Li LF, et al.Dual effects of hydrogen sulphide on focal cerebral ischaemic injury via modulation of oxidative stress-induced apoptosis[J].Clin Exp Pharmacol Physiol,2012,39(9):765-771.
    [31]韩颖,秦炯,常杏芝,等.反复热性惊厥前后硫化氢/胱硫醚-p-合成酶体系表达的改变[J].北京大学学报(医学版),2005,37(6):579-581
    [32]韩颖,秦炯,常杏芝,等.反复热性惊厥过程中气体信号分子硫化氢对一氧化氮/一氧化氮合酶体系的影响[J].中国病理生理杂志,2007,23(4):785-788
    [33]常杏芝,秦炯,吴希如.幼年大鼠反复热性惊厥脑损伤的研究[J].中国当代儿科杂志,2002,4(6):439-442.
    [34]Han Y, Qin J, Chang X, et al. Modulating effect of hydrogen sulfide on gamma-aminobutyric acid B receptor in recurrent febrile seizures in rats[J]. Neurosci Res,2005,53(2):216-2192
    [35]Kamoun P. Mental retardation in Down syndrome:a hydrogen sulfide hypothesis[J]. Med Hypotheses,2001,57(3):389-392.
    [36]Belardinelli MC, Chabli A, Chadefaux-Vekemans B, et al. Urinary sulfur compounds in Down syndrome[J]. Clin Chem,2001,47(8):1500-1501.
    [37]Jiang X, Huang Y, Lin W,et al.Protective effects of hydrogen sulfide in a rat model of traumatic brain injury via activation of mitochondrial adenosine triphosphate-sensitive potassium channels and reduction of oxidative stress[J].J Surg Res,2013,4804(13):286-292.
    [38]Li Z, Wang Y, Xie Y, et al.Protective effects of exogenous hydrogen sulfide on neurons of hippocampus in a rat model of brain ischemia[J].Neurochem Res, 2011,36(10):1840-1849.
    [39]Tang XQ, Fang HR, Zhou CF,et al.A novel mechanism of formaldehyde neurotoxicity:inhibition of hydrogen sulfide generation by promoting overproduction of nitric oxide[J].PLoS One,2013,8(1):e54829.
    [40]Jiang LH, Wang J, Wei XL, et al.Exogenous sodium hydrosulfide can attenuate naloxone-precipitated withdrawal syndromes and affect cAMP signaling pathway in heroin-dependent rat's nucleus accumbens[J].Eur Rev Med Pharmacol Sci,2012,16(14):1974-1982.
    [41]Jiang LH, Luo X, He Wa,et al.Effects of exogenous hydrogen sulfide on apoptosis proteins and oxidative stress in the hippocampus of rats undergoing heroin withdrawal [J].Arch Pharm Res,2011,34(12):2155-2162.
    [42]Wei X, Duan L, Bai L,et al.Effects of exogenous hydrogen sulfide on brain metabolism and early neurological function in rabbits after cardiac arrest[J]. Intensive Care Med,2012,38(11):1877-1885.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700