纳米二氧化钛引发小鼠肝脏损伤及其分子机制的研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
纳米二氧化钛(TiO2)是一种不易燃烧的无味白色粉末,以各种形式存在,如锐钛矿型、金红石型以及板钛矿型。该材料具有高度稳定、防腐蚀、高效光催化等特性,常被作为一种着色剂广泛应用于化妆品、医药以及涂料工业。随着纳米技术的发展,越来越多的纳米粒子被释放到环境中。其颗粒具有较大的比表面积,小尺寸效应导致纳米TiO2的生物毒性不同于常规粒子。近来,纳米粒子对人类和环境的影响已经引起科学研究者的关注。肝脏是机体主要的糖、脂肪、蛋白质、维生素和激素等物质的代谢器官,具有丰富的血液供应和储备以及独特的形态结构,而且还具有分泌、排泄和生物转化等重要功能。除此之外,肝脏在重金属解毒过程中也起着非常重要的作用。纳米TiO2对肝脏损伤的分子作用机制等问题尚未得到深入的研究。鉴于此,本文将分别以不同剂量连续腹腔注射两周,以及连续灌胃30天、60天、90天两种染毒方式研究纳米TiO2对ICR小鼠肝脏的作用,探讨引起肝脏炎症的分子机制。通过本文的研究,可从分子水平上深入地了解纳米材料的应用对人体健康可能带来的毒副作用,进一步推动纳米材料在生物医药领域的应用和发展。
     论文结果如下:
     1.对ICR小鼠进行连续两周腹腔注射纳米TiO2(5nm,0,10,50,100,150mg/kg BW)和体相TiO2(150mg/kg BW),实验结果如下:
     1.1在各器官中钛的累积量由高到低的顺序是肝>肾>脾>肺>脑>心脏(P <0.05),说明纳米TiO2主要积累于肝脏、肾脏和脾脏中。各器官中钛的积累与器体比的改变、器官的损伤密切相关。小鼠血清生化指标异常:中高剂量纳米TiO2(50,100,150mg/kg BW)处理后,肝碱性磷酸酶(ALP),丙氨酸转氨酶(ALT),亮氨酸氨基肽酶(LAP),假性胆碱酯酶(PChE),总蛋白(TP)和白蛋白(ALB)六项指标显著高于对照组(P <0.05或P <0.01);随着纳米TiO2处理剂量的增加,小鼠肾脏功能相关血清生化指标肌酐(Cr)逐渐增加,血清Ca和血清P含量与对照比未达显著差异(P>0.05), UA和BUN随处理剂量的增加逐渐下降;中高剂量处理组小鼠血清肌酸激酶(CK),乳酸脱氢酶(LDH),天冬氨酸转氨酶(AST)和-羟丁酸脱氢酶(HBDH)活性明显增加(P <0.05或P <0.01);总胆固醇(TCHO)、三酰甘油(TG),葡萄糖(GLU),高密度脂蛋白胆固醇(HDL-C)浓度逐渐增加(P <0.05),说明血糖及血脂代谢异常。
     1.2纳米TiO2可造成小鼠肝脏病理性改变,通过病理切片可以观察到炎症细胞浸润,肝细胞肿胀,空泡化,弥散性嗜酸性变,血管内有淤血。通过透射电镜可进一步观察到中高剂量处理组染色质固缩、分布不均匀,线粒体肿胀、空泡化,细胞内出现凋亡小体。
     1.3与同剂量微米级TiO2(10-15m)相比,纳米TiO2(5nm)引发的肝脏炎症更严重。出现的血清生化指标改变、病理和细胞亚结构变化、细胞因子表达的变化与对照组相比更明显。
     1.4纳米TiO2造成肝脏损伤的原因之一是体内氧化还原系统的失衡。中高剂量纳米TiO2处理后,ROS(如O2,H2O2)积累明显加快,膜脂过氧化明显加重(P <0.01);超氧化物歧化酶(SOD),过氧化氢酶(CAT),抗坏血酸过氧化物酶(APx),谷胱甘肽过氧化物酶(GSHPx)活性受到了显著的抑制,还原型谷胱甘肽(GSH)和抗坏血酸水平、GSH/GSSG和AsAH/AsA比值随处理剂量升高而降低(P <0.05或P <0.01)。由于抗氧化酶活性受到抑制,并减慢了抗氧化剂的氧化还原循环,肝脏对于ROS的清除能力下降,导致ROS大量积累,肝脏受到氧化胁迫而发生损伤。
     1.5纳米TiO2不仅可以随循环系统进入动物肝脏,还可以穿过核膜结合到肝DNA上。通过一系列的光谱检测,发现Ti4+可以插入到DNA碱基对中,结合到核苷酸上造成DNA收缩而产生减色效应,二级结构发生明显的改变。纳米TiO2可以与核酸中的O原子或者P原子结合,同时可以和DNA碱基对中的N原子配对,化学键长分别为1.87和2.38。纳米TiO2与DNA的结合可改变遗传信息的传递,在高剂量组还观察到了DNA的断裂。这些都可以造成肝脏的损伤。
     2对ICR小鼠进行连续30天灌胃(0,62.5,125,250mg/kg BW纳米TiO2),实验结果如下:
     纳米颗粒可以通过血液循环到达各大主要脏器,由于全身血液均需流经肝脏,导致肝脏所受影响最为明显。随着纳米TiO2处理浓度的逐步增加,各实验组小鼠血液中的下列指标:白细胞总数(WBC)、红细胞总数(RBC)、血红蛋白(HGB)、平均红细胞血红蛋白浓度(MCHC)、血小板压积(PCT)和网织红细胞(Ret)逐渐减少,而红细胞平均体积(MCV)、平均红细胞血红蛋白含量(MCH)、血小板总数(PLT)、红细胞比积(HCT)、血小板平均体积(MPV)逐渐增加。250mg/kgBW纳米TiO2处理组以上各参数与对照组相比均存在显著性差异(P <0.05或P <0.01)。血液指标的变化显示,长时间接触纳米TiO2可能使小鼠因急性反应出现内出血、骨髓造血功能低下,最终导致贫血。PLT、MPV的增加说明纳米TiO2对小鼠凝血功能有影响。RBC、HGB的减少使血液携氧量下降,可能降低小鼠的新陈代谢以及免疫反应。自然杀伤细胞(NK)的百分比、T淋巴细胞各亚群(包括CD3、CD4、CD8)百分比、B淋巴细胞百分比下降,CD4+/CD8+比值下降;IL-2分泌减少,血清中IgM水平明显下降,说明小鼠免疫功能受到了抑制。
     3对ICR小鼠进行连续60天灌胃(0,5,10,50mg/kg BW纳米TiO2),实验结果如下:
     纳米TiO2可以活化肝脏kupffer细胞,上调细胞因子如TNF-α从而激活NF-κB信号通路。多个促炎性细胞因子表达上调,如:巨噬细胞移动抑制因子(MIF),肿瘤坏死因子-α (TNF-α),白细胞介素-6(IL-6),白细胞介素-1β(IL-1β),C反应蛋白(CRP),白细胞介素-4(IL-4),白细胞介素-10(IL-10)的基因和蛋白表达量。促炎-抑炎平衡被打破,引发炎症级联效应。正是通过这样的信号通路(如改变TLRs以及炎性细胞因子的表达)降低了免疫能力,造成肝脏损伤。
     4对ICR小鼠进行连续90天灌胃(0,10mg/kg BW纳米TiO2)后,以全基因表达谱为背景,对小鼠肝RNA进行了微阵列分析测试,结果显示:
     1035个基因发生显著变化,其中745个基因涉及代谢过程、细胞通讯、免疫反应、细胞周期、凋亡和转运等等关键生理过程。代谢过程中差异化表达基因最为集中,为394个,所占百分比为52.2%,其中254个基因上调,140个基因下调。脂质代谢过程差异表达基因为96个,涉及“生物氧化”,“胆固醇生物合成”,“内源性固醇”,“脂类及脂蛋白代谢”等通路。免疫系统差异表达基因共98个,59个基因上调,39个基因下调。 Cfd是“固有免疫信号”通路差异表达的基因之一,它的显著下调可使补体激活下降,固有免疫应答下调。与细胞凋亡有关的基因也出现差异表达,28个上调,9个下调。上调的Axud1可以上调Axin的表达,从而激活凋亡相关的信号通路,开启细胞凋亡的过程。
     综上,肝脏是纳米TiO2进入小鼠机体后积累和损伤的主要器官,作用机制包括氧化胁迫,炎症瀑布级联效应,DNA损伤,免疫功能异常和多基因共同作用等。
Nano titanium dioxide (TiO2) is a noncombustible and odorless white powder,exists in different forms (such as anatase, rutile, and brookite) and is widely used in thecosmetics, pharmaceutical, and paint industries as a white pigment because of its highstability, anticorrosion, and photocatalysis. More nanoparticles (NPs) are released intothe environment with the increasing development of nanotechnology. The small size andlarge surface areas endow them with an active group or intrinsic toxicity. The impacts ofNPs on human and the environment have been concerned recently by some scientistsand organizations. Liver has a rich blood supply and unique morphological structure,which is a metabolic organ (such as sugar, fat, protein, vitamin and hormone substances).Meanwhile, liver has secretion, excretion, biotransformation and other importantfunctions. In the process of heavy metal detoxification, liver also plays a very importantrole. The toxicity effects between liver in mice and nano-anatase TiO2need to be furtherstudied. Therefore, we investigated the toxicic effects and related molecularmechanisms of liver in ICR mice by administration of nano-anatase TiO2, which wasinjected into abdominal cavity for two weeks and stomach for30,60or90consecutivedays. Our findings will be benefit to well understanding of biochemical toxicitiesinduced by NPs especially on human beings, and also arousing of nanomaterialsapplication in biomedicine area.
     Results are listed as follows:
     1. ICR mice were injected into abdominal cavity with nano-anatase TiO2(0,5,10,50,100and150mg/kg BW) and with bulk TiO2(150mg/kg) every day for14days.
     1.1In the experimental groups, the order of the titanium accumulation in theorgans was liver> kidney> spleen> lung> brain> heart (p <0.05), and the titaniumwas mainly accumulated in the liver, kidneys, and spleen. This phenomenon showed that the accumulation of titanium in the organs was closely related to the coefficients oforgans of mice. The serum biochemicalparameters with lower dose of nano-anataseTiO2showed little difference compared with the control mice, while with higherdose of nano-anatase TiO2, the indicators of liver function, such as alkalinephosphatase(ALP), alanine aminotransferase(ALT), leucine acid peptide,pseudocholinesterase(LAP), pseudocholinesterase (PChE), total protein (TP), albumin(ALB) level, were enhanced significantly (P <0.05or P <0.01); the indicators ofkidney function, such as uric acid (UA) and blood urea nitrogen (BUN), were decreased,wheareas creatinine (Cr) was increased(P>0.05); the activities of aspartateaminotransferase (AST), creatine kinase(CK), lactate dehydrogenase (LDH), andalpha-hydroxybutyrate dehydrogenase (-HBDH), were increased (P <0.05or P <0.01). The contents of total cholesterol (TCHO), triglycerides (TG), glucose (GLU), andhigh-density lipoprotein cholesterol (HDL-C) were significantly elevated from100to150mg/kg BW groups than the control group (P <0.05). It was concluded thatnano-anatase TiO2in higher dose had serious toxicity to the liver, kidney, andmyocardium of mice and caused inflammatory response of the liver, kidney, andmyocardium and the metabolism imbalance of blood sugar and lipid.
     1.2Histopathology of the liver tissue: inflammatory cell infiltration, hepatocyteswelling, vacuolization, congestion of vascellum and prominent vasodilatation,wide-bound eosinophilic and focal ischemia were observed. Ultrastructure of hepatocyte:changes like chromatin pyknosis, mitochondria swelling, vacuolization and apoptoticbody were observed in the liver tissue.
     1.3The toxicities of titanium in100to150mg/kg BW nano-anatase TiO2(5nm)groups were more severe than bulk TiO2(15μm), such as histopathology, ultrastructure,and alterations of cytokine expression in the liver.
     1.4We convinced that oxidative stress was one of the toxic mechanisms due tonano-anatase TiO2. Our data showed that over production of reactive oxygen species(ROS)(such as O2and H2O2) occurred in liver of mice with increased nano-TiO2dose,indicating that the liver underwent oxidative stress. Enhancement in malondialdehyde(MDA) levels evidenced peroxidation of liver (P <0.01). The activities of superoxide dismutase (SOD), catalase (CAT), ascorbic acid peroxidase (APx) and glutathioneperoxidase (GSHPx) were significantly inhibited (P <0.05or P <0.01). The ratios ofantioxidants (ascorbate and glutathione) in the50,100and150mg kg BW nano-TiO2groups decreased significantly (P <0.05or P <0.01). Data showed that ROSaccumulation, lipid peroxidation, and decreases of hepatic antioxidative systems had allcontributed to the oxidative damage of liver caused by nano-TiO2.
     1.5Nano-anatase TiO2could not only enter into the liver of mouse, but alsoaccumulate in liver DNA by inserting itself into DNA base pairs or binding to DNAnucleotide with three oxygen or nitrogen atoms and two phosphorous atoms of DNAwith the Ti–O (N) and Ti–P bond lengths of1.87and2.38, respectively, altering theconformation of DNA as well. And gel electrophoresis showed that higher dose ofnano-anatase TiO2could cause liver DNA cleavage in mice. By various spectralmethods, we demonstrated that nano-TiO2may alter the transduction of geneticinformations and induce liver DNA cleavage.
     2. Nano-anatase TiO2(0,62.5,125,250mg/kg BW) suspensions were given toICR mice by an intragastric administration every day for30days.
     We observed that white blood cells (WBC), red blood cells (RBC), haemoglobin(HGB), mean corpuscular haemoglobin concentration (MCHC), thrombocytocrit (PCT)and reticulocytes (Ret) of these nano-TiO2-treated mice decreased, while meancorpuscular volume (MCV), mean corpuscular haemoglobin (MCH), red celldistribution width (RDW), platelets (PLT), hematocrit (HCT) and mean platelet volume(MPV) increased (P <0.05or0.01). The reductions of RBC, RBC, WBC, Ret and HGBsuggested that NPs could affect red blood cell production and lead to anemia. Theincrease of PLT and MPV showed a possible effect of nano-TiO2on blood coagulation.The significant decreases of RBC count and HGB concentration caused by higher dosenano-TiO2could cause a marked decrease in O2content in the blood, which mightdecrease metabolism and immune response of mice. Our data suggested that nano-TiO2decreased the percentage of T lymphocytes (including CD3, CD4and CD8), Blymphocytes and NK lymphocytes, as well as the ratio of CD4to CD8, IL-2activity andIgM of the mouse serum. These results indicated that the damage of liver function may be involved in the reduction of immune response of mice.
     3. Nano-anatase TiO2(0,5,10,50mg/kg BW) suspensions were given to ICRmice by an intragastric administration every day for60days.
     Nano-anatase TiO2could activate kupffer cells of liver. NPs increased both mRNAand protein expression levels of several inflammatory cytokines, including nucleicfactor-kappa B (NF-κB), tumor necrosis factor-α (TNF-α), macrophage migrationinhibitory factory (MIF), interleukin-6(IL-6), IL-1β, cross-reaction protein (CRP), IL-4,and IL-10. The present study indicates that the hepatitis of mice is triggered by TiO2NPs, as evidenced by alterations of expression levels of the genes and their proteinsinvolved in the signaling pathway (such as TLRs and inflammatory cytokines), and byreduction of immune capacity.
     4. In this section, we used the whole-genome microarray analysis technique todetermine the gene expression profile in the livers of mice exposed to10mg/kg bodyweight TiO2NPs for90consecutive days.
     The results showed that more than2.3%(1035genes) of the total genes (45,000genes) were significantly changed following long-term exposure to10mg/kg TiO2NPs.Microarray data showed striking changes in the expression of745genes related tometabolic process, cell communication, immune/inflammatory response, cell cycle,apoptosis, transport, and so on. Of these394genes of metabolic process,254geneswere up-regulated and140genes were down-regulated. The number of differentexpressed genes in lipid metabolism process is96. These genes were included in manymetabolic processes, like “biological process”,“cholesterol biosynthesis”,“endogenoussterols”, and “metabolism of lipids and lipoproteins”. We analyzed the immune genesand found that98genes were significantly altered by exposing to TiO2NPs. Of these98genes,59were up-regulated and39were down-regulated. The obvious reduction in theexpression of Cfd following exposure to TiO2NPs may trigger signaling cascades toactivate inflammatory programs, like the reduction of complement activation andinhibition of innate immunology. In this section, microarray data suggested thatapproximately37genes related to appotosis were significantly changed in the TiO2NP–exposed liver. Of these37genes,28were up-regulated and9were down-regulated. The over expression of Axud1could up-regulate Axin’s expression, which mightactivate the apoptotic process.
     In conclusion, liver is a central organ to the accumulation and damages ofnano-anatase TiO2NPs, these damages are closely associated with oxidation stress,inflammatory cascade effect, DNA damage, immune dysfunction, and molecularmechanisms of multiple genes working together.
引文
1. Mccullagh C, Robertson J M C, Bahnemann D W, Roberton P K J. The applicationof TiO2photocatalysis for disinfection of water contaminated with pathogenicmicro-organisms: a review.Res Chem Intermed,2007,33(3-5):359-375.
    2.夏,章非敏,徐丽,等.米TiO2增韧牙复合树脂构和性.南大:医版,2011,30(1):57-62.
    3. Park J H,Kim S,Bard A J.Novel carbon-doped TiO2nanotube arrays with highaspect ratios for efficient solar water splitting.Nano Lett,2006,6(1):24-28.
    4.莫,敏,陈春英.二钛米生物效应全应.北京:出版,2010.
    5. Maynard A D, WarheitD B, Philbert M A. The New Toxicology of SophisticatedMaterials: Nanotoxicology and Beyond. Toxicol Sci.2011,120(Suppl1):S109-S129.
    6. Wang H, Du L J, Song Z M, Chen X X. Progress in the characterization and safetyevaluation of engineered inorganic nanomaterials in food. Nanomedicine (Lond).2013,8(12):2007-25.
    7. Liu K, Lin X, Zhao J. Toxic effects of the interaction of titanium dioxidenanoparticles with chemicals or physical factors. Int J Nanomedicine.2013,8:2509-20.
    8. Warheit D B. How to measure hazards/risks following exposures to nanoscale orpigment-grade titanium dioxide particles. Toxicol Lett.2013,220(2):193-204.
    9. Sayes C M, Wahi R, Kurian P A, Liu Y P, West J L, Ausman K D, Warheit D B,Colvin V L. Correlating nanoscale titania structure with toxicity: a cytotoxicity andinflammatory response study withhuman dermal fibroblasts and human lungepithelial cells. Toxicol Sci,2006,92:174–185.
    10. Yi J, Chen B T, Schwegler-Berry D, Frazer D, Castranova V, McBride C, KnucklesT L, Stapleton P A, Minarchick V C, Nurkiewicz T R. Whole-body nanoparticleaerosol inhalation exposures. J Vis Exp.2013,7(75): e50263.
    11. Chen Z, Meng H, Xing G M, Chen C Y, Zhao Y L, Jia G, Wang T C, Yuan H, YeC, Zhao F, Chai Z F, Zhu C F, Fang X H, Ma B C, Wan L J. Acute toxicologicaleffects of copper nanoparticles in vivo. Toxicol Lett,2006,163:109–120.
    12. Zhu R R, Wang S L, Yao S D. Effects nano-TiO2on biology. Life Chem,2005,25(4):344–346.
    13. Wang B, Feng W Y, Wang T C, Jia G, Wang M, Shi J W, Zhang F, Zhao Y L, ChaiZ F. Acute toxicity of nano-and micro-scale zinc powder in healthy adult mice.Toxicol Lett.2006,161:115–123.
    14. Yoshida T, Yoshioka Y, Tsutsumi Y. The safety assessment of nanomaterials fordevelopment of nano-cosmetics. Yakugaku Zasshi,2012,132(11):1231-6.
    15. Skocaj M, Filipic M, Petkovic J, Novak S. Titanium dioxide in our everyday life; isit safe? Radiol Oncol.2011,45(4):227-47.
    16. Wang J X, Zhou G Q, Chen C Y, Yu H W, Wang T C, Ma Y M, Jia G, Gao Y X,Li B, Sun J, Li Y F, Jiao F, Zhao Y L, Chai Z F. Acute toxicity and biodistributionof different sized titanium dioxide particles in mice after oral administration.Toxicol Lett,2007,168(2):176-185.
    17. Sweet L, Strohm B. Nanotechnology: Life-cycle risk management. Hum Ecol RiskAssess,2006,12(3):528-551.
    18. Service R F. American Chemical Society meeting: nanomaterials show signs oftoxicity. Science,2003,300:243.
    19.黄飚,,冰,麻懿馨,和, Shima K,部隆,齐藤宪. TiO2体对要脏器中微量元素响.中公共卫生,2007,23(6):739-740.
    20. Nemmar A, Melghit K, Ali B H. The acute proinflammatory and prothromboticeffects of pulmonary exposure to rutile TiO2nanorods in rats. Exp Biol Med,2008,233:610-619.
    21. Fabian E, Landsiedel R, Ma-Hock L, Wiench K, Wohlleben W, van Ravenzwaay B.Tissue distribution and toxicity of intravenously administered titanium dioxidenanoparticles in rats. Arch Toxicol,2008,82(3):151–157.
    22. Chang X, Fu Y, Zhang Y, Tang M, Wang B. Effects of Th1and Th2cells balancein pulmonary injury induced by nano titanium dioxide. Environ Toxicol Pharmacol.2013,13,37(1):275-283.
    23. Kwon S, Yang Y S, Yang H S, Lee J, Kang M S, Lee B S, Lee K, Song C W. Nasaland pulmonary toxicity of titanium dioxide nanoparticles in rats. Toxicol Res.2012,28(4):217-24.
    24. Guadagnini R, Moreau K, Hussain S, Marano F, Boland S. Toxicity evaluation ofengineered nanoparticles for medical applications using pulmonary epithelial cells.Nanotoxicology.2013[Epub ahead of print].
    25. Grabowski N, Hillaireau H, Vergnaud J, Santiago L A, Kerdine-Romer S, PallardyM, Tsapis N, Fattal E. Toxicity of surface-modified PLGA nanoparticles towardlung alveolar epithelial cells. Int J Pharm.2013,454(2):686-94.
    26. Ambalavanan N, Stanishevsky A, Bulger A, Halloran B, Steele C, Vohra Y,Matalon S. Titanium oxide nanoparticle instillation induces inflammation andinhibits lung development in mice. Am J Physiol Lung Cell Mol Physiol,2013,304(3): L152-61.
    27. Roursgaard M, Jensen K A, Poulsen S S, Jensen N E, Poulsen L K, Hammer M,Nielsen G D, Larsen S T. Acute and subchronic airway inflammation afterintratracheal instillation of quartz and titanium dioxide agglomerates in mice.Scientific World Journal,2011,11:801-25.
    28.赵亮,柴.米毒.北京:出版,2010.
    29.江,玉峰,强,,,陈春英,高愈,赵亮,柴.同间TiO2米粒对雌性脑单类经质响.中华预防医杂,2007,41(2):91-95.
    30. Wang J X, Liu Y, Jiao F, Lao F, Li W, Gu Y Q, Li Y F, Ge C C, Zhou G Q, Li B,Zhao Y L, Chai Z F, Chen C Y. Time-dependent translocation and potentialimpairment on central nervous system by intranasally instilled TiO2nanoparticles.Toxicol,2008,254(1-2),82-90.
    31.天成,江,陈春英,贾,惠麒,赵亮.大剂量米二钛染毒对清生指标响.工业卫生业,2007,33(3):129-131.
    32. Zhu M T, Feng W Y, Wang B, Wang T C, Gu Y Q, Wang M, Wang Y, Qu Y H,Zhao Y L, Chai Z F. Comparative study of pulmonary responses to nano-andsubmicron-sized ferric oxide in rats. Toxicol,2008,247(2-3):102-111.
    33. Baker G L, Gupta A, Clark M L, Valenzuela B R, Staska L M, Harbo S J. Pierce JT, Dill J A. Inhalation Toxicity and Lung Toxicokinetics of C60FullereneNanoparticles and Microparticles. Toxicol Sci,2008,101(1):122-131.
    34. Jain T K, Reddy M K, Morales M A, Leslie-Pelecky D L, Labhasetwar V.Biodistribution, clearance, and biocompatibility of iron oxide magneticnanoparticles in rats. Mol Pharm,2008,5(2):316-327.
    1. Crabtree R H. A new type of hydrogen bond. Science,1998,282:2000-2001.
    2. Hu L, Flanders P M, Miller P L, Strathmann T J. Oxidation of sulfamethoxazoleand related antimicrobial agents by TiO2photocatalysis. Water Res.2007,41(12):2612-26.
    3. Kayano S, Toshiya W, Kazuhito H. Studies on photokilling of bacteria on TiO2thinfilm. J Photochem Photobiol A: Chem,2003,156:227-233.
    4. Reeves J F, Davies S J, Dodd N J, Jha A N. Hydroxyl radicals (*OH) are associatedwith titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidativeDNA damage in fish cells. Mutat Res.2008,640(1-2):113-22.
    5. Dodd N J, Jha A N. Titanium dioxide induced cell damage: a proposed role of thecarboxyl radical. Mutat Res.2009,660(1-2):79-82.
    6. Dodd N J, Jha A N. Photoexcitation of aqueous suspensions of titanium dioxidenanoparticles: an electron spin resonance spin trapping study of potentiallyoxidative reactions. Photochem Photobiol.2011,87(3):632-40.
    7. Pinto A V, Deodato E L, Cardoso J S, Oliveira E F, Machado S L, Toma H K, Leit oA C, de Pádula M. Enzymatic recognition of DNA damage induced byUVB-photosensitized titanium dioxide and biological consequences inSaccharomyces cerevisiae: evidence for oxidatively DNA damage generation.Mutat Res.2010,688(1-2):3-11.
    8. Chen T H, Scaiano J C. Enzyme inactivation by TiO2photosensitization. Journal ofPhotochemistry and Photobiology, B: Biology,2000,57(2-3):193-196.
    9. Muszkat L, Feigelson L, Bir L, Muszkat K A. Titanium dioxide photocatalyzedoxidation of proteins in biocontaminated waters. Journal of Photochemistry andPhotobiology, B: Biology,2001,60(1):32-36.
    10. Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora S J. Effects of sub-acuteexposure to TiO2, ZnO and Al2O3nanoparticles on oxidative stress and histologicalchanges in mouse liver and brain. Drug Chem Toxicol.2013Dec17.[Epub aheadof print]
    11. Oberd rster G, Finkelstein J N, Johnston C. Acute pulmonary effects of ultrafineparticles in rats and mice. Res Rep Health EffInst,2000,96:5-74.
    12. Long T C, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry G V,Veronesi B. Nanosize titanium dioxide stimulates reactive oxygen species in brainmicroglia and damages neurons in vitro. Environ Health Perspect,2007,115(11):1631-1637.
    13.胡启. GHS性毒性验单性别物选.毒杂,2008,22(4):297-298.
    14. Oliveira C P, Lopasso F P, Laurindo F R, Leitao R M, Laudanna A A. Protectionagainst liver ischemia-reperfusion injury in rats by silymarin or verapamil.Transplantation Proc,2001,33:3010–3014.
    15. Asatiani N, Sapojnikova N, Abuladze M, Kartvelishvili T, Kulikova N, Kiziria E,Namchevadze E, Holman H.Y. Effects of Cr(VI) long-term and low-dose action onmammalian antioxidant enzymes (an in vitro study). J Inorg Biochem,2004,98:490–496.
    16. Buege J A, Aust S D. Microsomal lipid peroxidation. Methods in Enzymology,1978,52:302–310.
    17. Beauchamp C and Fridovich I. Superoxide dismutase: Improved assays and assayapplicable to acrylamide gels. Anal Biochem,1971,44:276–286.
    18. Claiborne, A.1985. Catalase activity. In Handbook of methods for oxygen freeradical research, ed. R.A. Greenwaid, Boca Raton, FL: CRC Press.
    19. Reuveni R M, Shimoni Z, Karchi and J Kuc. Peroxidase activity as a biochemicalmarker for resistance of muskmelon (Cucumis melo) to seudoperno spora cubensis.Phytopathol,1992,82:749–753.
    20. Paglia D E and Valentine W N. Studies on the quantitative and qualitativecharacterization of erythrocyte glutathione peroxidase. J Lab Clinl Med,1967,70:158–169.
    21. Hissin P J and R Hilf. A fluorometric method for determination of oxidized andreduced glutathione in tissues. Anal Biochem,1976,74:214–226.
    22. Jacques-Silva M C, Nogueira C W, Broch L C, Flores E M and Rocha J B T.Diphenyl diselenide and ascorbic acid changes deposition of selenium and ascorbicin liver and brain of mice. Pharmacol Toxicol,2001,88:119–125.
    23. Lowry O H, Rosebrough N J, Farr A L andRandall R J. Protein measurement withthe folin phenol reagent. J Biol Chem,1951,193:265–275.
    24. Wang J X, Zhou G Q, Chen C Y, Yu H W, Wang T C, Ma Y M, Jia G, Gao Y X, Li B,Sun J, Li Y F, Jia F, Zhao Y L, Chai Z F. Acute toxicity and biodistribution ofdifferent sized titanium dioxide particles in mice after oral administration. Toxicol.Lett,2006,168:176–185.
    1.宋爱.内钛应、生产工和市场.中氯碱,2005,8:18-20.
    2. Zhu R R, Wang S L, Chao J, Shi D L, Zhang R, Sun X Y, Yao S D. Bio-effects ofnano-TiO2on DNA and cellular ultrastructure with different polymorph and size.Mater Sci Eng,2009, C29:691–696.
    3. Oberd rster G, Oberd rster E, Oberd rster J. Nanotoxicology: an emergingdiscipline evolving from studies of ultrafine particles. Environ Health Perspect,2005,113:823–839.
    4. Anne Thoustrup Saber, Nicklas Raun Jacobsen, Alicia Mortensen, Józef Szarek,Petra Jackson, Anne Mette Madsen, Keld Alstrup Jensen, Ismo K Koponen, GunnarBrunborg, Kristine Bjerve Gützkow, Ulla Vogel, H kan Wallin. Nanotitaniumdioxide toxicity in mouse lung is reduced in sanding dust from paint. Part FibreToxicol.2012,9:4.
    5. Gui S X, Sang X Z, Zheng L, Ze Y G, Zhao X Y, Sheng L, Sun Q Q, Cheng Z,Cheng J, Hu R P, Wang L, Hong F S, Tang M. Intragastric exposure to titaniumdioxide nanoparticles induced nephrotoxicity in mice, assessed by physiologicaland gene expression modifications. Part Fibre Toxicol.2013,10:4.
    6. Oberd erster G, Sharp Z, Atudorei V, Elder A, Gelein R, Kreyling W, Cox C.Translocation of inhaled ultrafine particles to the brain. Inhal. Toxicol.2004,16:437-445.
    7. Carolina Maciel Nogueira, Walter Mendes de Azevedo, Maria Lucia Zaidan Dagli,Sérgio Hiroshi Toma, AndréZonetti de Arruda Leite, Maria Laura Lordello, IêdaNishitokukado, Carmen Lúcia Ortiz-Agostinho, Maria Irma Seixas Duarte, MarceloAlves Ferreira, and Aytan Miranda Sipahi. Titanium dioxide induced inflammationin the small intestine. World J Gastroenterol.2012,18(34):4729–4735.
    8. Chen H W, Su S F, Chien C T, Lin W H, Yu S L, Chou C C, Chen Jeremy J W,Yang P C. Titanium dioxide nanoparticles induce emphysema-like lung injury inmice. FASEB J,2006,20:1732-1741.
    9. Tin-Tin-Win-Shwe, Mitsushima D, Yamamoto S, Fukushima A, Funabashi T,Kobayashi T, Fujimaki H. Changes in neurotransmitter levels and proinflammatorycytokine mRNA expressions in the mice olfactory bulb following nanoparticleexposure. Toxicol Appl Pharm,2008,226:192-198.
    10. Wang J X, Zhou G Q, Chen C Y, Yu H W, Wang T C, Ma Y M, Jia G, Gao Y X, LiB, Sun J, Li Y F, Jia F, Zhaso Y L, Chai Z F. Acute toxicity and biodistribution ofdifferent sized titanium dioxide particles in mice after oral administration. ToxicolLett,2007,168:176-185.
    11. Sayes C M, Wahi R, Kurian P A, Liu Y, West J L, Ausman K D, Warheit D B,Colvin V L. Correlating Nanoscale Titania Structure with Toxicity: A Cytotoxicityand Inflammatory Response Study with Human Dermal Fibroblasts and HumanLung Epithelial Cells. Toxicol Sci,2006,92(1):174-185.
    12. Liu H T, Ma L L, Zhao J F, Liu J, Yan J Y, Ruan J, Hong F S. Biochemical toxicityof mice caused by nano-anatase TiO2particles. Biol Trace element Res,2009,129(1):170-180.
    13. Liu H T, Ma L L, Liu J, Zhao J F, Yan J Y, Hong F S. Toxicity of nano-anataseTiO2to mice: liver injury, oxidative stress. Toxicol Environ Chem,2010,92(1):175-186.
    14. Ghosh S, May M J, Kopp E B. NF-κB and Rel proteins: evolutionarily conservedmediators of immune responses. Annu Rev Immunol,1998,16:225-260.
    15. Brown K D, Clandio E, Siebenlist U. The roles of the classical and alternativenuclear factor-κB pathways: potential implications for autoimmunity andrheumatoid arthritis. Arthritis Res Ther,2008,10(4):212-225.
    16.徐宝.体内抗炎其义.生展,1994,24(4):305-308.
    17. Karin M, Greten F R. NF-kappaB: linking inflammation and immunity to cancerdevelopment and progression. Nat Rev Immunol,2005,5(10):749-759.
    18. Sarkar F H, Li Y, Wang A, et al. NF-kappaB signaling pathway and its therapeuticimplications in human diseases. Int Rev Immunol,2008,27(5):293-319.
    19. Naugler W E, Karin M. NF-kappaB and cancer identifying targets and mechanisms.Curt Opin Genet Dev,2008,18(1):19-26.
    20. Robert A. Mitchell. Mechanisms and effectors of MIF-dependent promotionoftumourigenesis. Cellular Signalling2004,16:13-19.
    21. Yi Ren, Hong-Teng Tsui, Ronnie Tung-Ping Poon, et al. Macrophage migrationinhibitory factor: roles in regulating tumor cell migration and expression ofangiogenic factors in hepatocellular carcinoma. Int J cancer.2003,107(1):22-29.
    22. Livak K J and Schmittgen T D. Analysis of relative gene expression data usingreal-time quantitative PCR and the2(-Delta Delta C(t)) Method. Methods,2001,25:402-408.
    23. Ke L D and Chen Z. A reliability test of standard-based quantitative PCR:exogenous vs endogenous standards. Mol Cell Probes,2000,14(2):127-35.
    24. Liu W H and David A. Saint Validation of a quantitative method for real time PCRkinetics. Biochem. Biophys Res,2002,294:347-353.
    25. Thiele L, Rothen-Rutishauser B, Jilek S, Wunderli-Allenspach H, Merkle HP,Walter E. Evaluation of particle uptake in human blood monocyte-derived cells invitro. Evaluation of particle uptake in human blood monocyte-derived cells in vitro.Does phagocytosis activity of dendritic cells measure up with macrophages? JControl Release.2001,76(1-2):59-71.
    26. Long T C, Saleh N, Tilton R D, Lowry G V, Veronesi B. Titanium dioxide (P25)produces reactive oxygen species in immortalized brain microglia (BV2):implications for nanoparticle neurotoxicity. Environ Sci Technol.2006,40(14):4346-52.
    27. Gerlich W H. Medical Virology of Hepatitis B: how it began and where we are now.Virol J.2013,10:239.
    28. Oeckinghaus A, Ghosh S. The NF-κB Family of Transcription Factors and ItsRegulation. Cold Spring Harb Perspect Biol.2009,1(4): a000034.
    1. Vinzents P S, Mfiler P, Sfiensen M, Knudsen L E, Hertel O, Jensen F P, Schibye B,Loft S. Personal exposure to ultrafine particles and oxidative DNA damage.Environ Health Perspect,2005,113:1485–1490.
    2. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowl J.Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients.FEBS Lett,1997,418:87–90.
    3. Reeves J F, Davies S J, Dodd N J, Jha A N. Hydroxyl radicals (*OH) are associatedwith titanium dioxide (TiO(2)) nanoparticle-induced cytotoxicity and oxidativeDNA damage in fish cells. Mutat Res.2008Apr,640(1-2):113-22.
    4. Wamer W G, Yin J J, Weiet R R. Oxidative damage to nucleic acids photosensitizedby titanium dioxide. Free Radic Biol Med,1997,23(6):851–858.
    5. Ashikaga T, Wada M, Obayashi H K, Mori M, Katsumura Y K, Fukui H, Kato S,Yamaguchi M, Takamatsu T. Effect of the photocatalytic activity of TiO2onplasmid DNA. Mutat Res,2000,466:1–7.
    6. Hirakawa K, Mori M, Yoshida M, Oikawa S, Kawanishi S. Photoirradiated titaniumdioxide catalyzes site specific DNA damage via generation of hydrogen peroxide.Free Radic Res,2004,38(5):439–447.
    7. Hidaka H, Horikoshi S, Serpone N, Knowland J. In vitro photochemical damage toDNA, RNA and their bases by an inorganic sunscreen agent on exposure to UVAand UVB radiation. J Photochem Photobiol A: Chemistry.1997,111,205-213.
    8. Gurr J R, Wang A S, Chen C H, Jan K Y. Ultrafine titanium dioxide particles in theabsence of photoactivation can induce oxidative damage to human bronchialepithelial cells. Toxicol,2005,213:66~73.
    9.、恒、海瑛.羟丙甲基纤维素在药剂学中的应用.安徽医学,2004,8(3):173-174.
    10. Xu Y, Zhang J, Ma Y, Han Y, Min J, Liang Y, Zhao D, Qiu J. The role ofadipose-derived stromal cells and hydroxypropylmethylcellulose in engineeringcartilage tissue in vivo. Cytotechnology.2013Nov28.[Epub ahead of print]
    11. Tokuyama H, YamagoS, Nakamura E. Photoinduced biochemical activity offullerene carboxylic acid. Journal of the American Chemical Society,1993,24(4):7918-7919.
    12. Sera N, Tokiwa H, Miyata N. Mutagenicity of the fullerene C60-generated singletoxygen dependent formation of lipid peroxides. Carcinogenesis,1996,17(10):2163-2169.
    13. Boutorine A S, Tokuyama H, Takasugi M, Isobe H,Nakamura E, Helene C.Fullerene-oligonucleotide conjugates: Photo-induced sequence-specific DNAcleavage. Angew Chem Internat Edit,1994,33:2462-2463.
    14. Stein C A, Krieg A M. Applied oligonucleotide technology. New York: Wiley-Liss,1998.
    15. An Y Z, Chen C B, Anderson J L, Sigman D S, Foote C S, Rubin Y.Sequence-specific modification of guanosine in DNA by a C60-linkeddeoxyoligonucleotide: evidence for a non-singlet oxygen mechanism. Tetrahedron,1996,52(14):5179-5189.
    16. Yoshioka M N, Inoue H. DNA binding of iron (II) mixed-ligand complexescontaining1,10-phenanthroline and4,7-diphenyl-1,10-phenanthroline. J InorgBiochem,1999,77:239-247.
    17.卢继新,张贵珠,黄,赵鹏.巯嘌呤合物牛胸腺DNA作..2002,60(6):967-972.
    18. Widom J, Baldwin R L. Cation-induced toroidal condensation of DNA studies withCo3+(NH3)6. J of Mole Biol,1980,144,431-453.
    19. Jose M P, Ana I M, Alfonso M A, Paloma N, Carlos A, Pilar S. Synthesis andcharacterization of complexes of p-isopropyl benzaldehyde and methyl2-pyridylketone thiosemicarbazones with Zn(II) and Cd(II) metallic centers. Cytotoxicactivity and induction of apoptosis in Pam-ras cells. J.Inorg Biochem,1999,75:255–261.
    20. Hong F S, Wu C, Liu C, Wu K, Gao F Q, Yang F. Interaction mechanism betweenCd2+ions and DNA from kidney of silver crucian carp. Biol Trace Elem Res,2006,110:33–44.
    21. Hong F S, Wu C, Liu C, Gao F Q, Yang F, Xu J H, Liu T, Xie Y N, Li Z R. Directinteraction between lead ions and DNA from kidney of silver crucian carp.Chemosphere,2007,69:1442–1446.
    22. Hong F S, Wang L, Wu K, Wang X F, Tao Y. Effect of Pb2+on RNase activity andits structure. Acta Chimica Sinica,2003,61(1):117–121.
    23. Hong F S, Wang L, Wu K, Ma H B, Zhang X G, Hong C J, Wu C, Gao F Q, Yang, F,Zheng L. Mechanism of Nd3+ion on increasing carboxylation activity of ribulose-1,5-bisphosphate carboxylase/oxygenase of spinach. Biochem. Biochem Biophys ResCommun,2006,342(1):36–43.
    24. Clarke MJ, Jansen B, Marx K. Biochemical effects of binding [(H2O)(NH3)5RuⅡ]2+to DNA and oxidation to [(H2O)(NH3)5RuⅡ]n-DNA. Inorg Chim Acta,1986,124:13.
    25.鲁贤编.圆二色和旋色在分生物中应.北京:出版,1987:92~115.
    26. Zheng H, Maness P C, Blake D M, Wolfrum J, Edward J. Bactericidal mode oftitanium dioxide photocatalysis. J Photochem Photobiol A,2000,130:163–170.+1
    27. Kayano S, Toshiya W, Kazuhito H. Studies on photokilling of bacteria on TiO2thinfilm. J Photochem Photobiol A,2003,156:227–233.
    28. Ankudinov A L, Ravel B, Rehr J J, Conradson S D. Real-spacemultiple-scatteringcalculation and interpretation of x-ray-absorption near-edge structure. PhysicalReview B: Condensed Matter,1998,58:7565.
    29. Liu H T, Ma L, Zhao J F, Liu J, Yan J Y, Ruan J, Hong F S. Toxicity of nano-anataseTiO2to mice: liver injury, oxidative stress. Toxicol Environ Chem,2010,92:175-186.
    1. Liu H T, Ma L L, Zhao J F, Liu J, Yan J Y, Ruan J, Hong F S. Biochemical toxicityof mice caused by nano-anatase TiO2particles. Biol Trace Elem Res,2009,129(1):170–80.
    2. Liu H T, Ma L L, Liu J, Zhao J F, Yan J Y, Hong F S. Toxicity of nano-anatase TiO2to mice: liver injury, oxidative stress. Toxicol Environ Chem,2010,92:175-186.
    3. Racanelli V, Rehermann B. The liver as an immunological organ. Hepatology,2006,43(2Suppl1): S54-62.
    4. Crispe I N. Hepatic T cells and liver rolerance. Nat Rev Immunol.2003,3(1):51-62.
    5. Wilson A D, Stokes C R, Bourne F J. Response of intraepithelial lymphocytes toT-cell mitogens: a comparison between murine and porcine responses. Immunol,1986,58:621–30.
    6. Lafuente MJ, Martin P, Garcia-Cao I, Diaz-Meco MT, Serrano M, Moscat J.Regulation of mature T lymphocyte proliferation and differentiation by Par-4.EMBO J,2003,22:4689–98.
    7.编.检验.北京:高等教育出版,2008.
    8. http://www.fda.gov/ForIndustry/ColorAdditives/ColorAdditiveInventories/ucm115641.htm.2009-12-25.
    9. Wetter K J.100years after the pure food&dryg act: FDA’s current regulatoryframeword inadequate to address new nano-scale technologies. FDANanotechnologh Public Meeting,2006.
    10.陈春英等编.二钛米生物效应全应.北京:出版,2010.
    11. Coleman M D, Coleman N A. Drug-induced methaemoglobinaemia: Treatmentissues. Drug Saf,1996,14:394-405.
    12. Everse J, Hsia N. The toxicities of native and modified hemoglobins. Free RadicBiol Mde,1997,22:1075-1099.
    13. Curtis D. Klaassen. Toxicology: The Basic Scince of Poisons, USA: TheMcGraw-Hill Companies.2001:352.
    14.鲜,瑞霞,范兴,莉,裴秋玲.低剂量亚性中毒兔规检查指标察.中地杂,2009,28(4):395-397.
    15. Zhivotovsky B, Orrenius S, Brustugun O T, Doskeland S O. Injected cytochrome: cinduces apoptosis. Nature,1998,391(6666):449.
    16. Donaldson K, Stone V, Seaton A, MacNee W. Ambient particle inhalation and thecardiovascular system: potential mechanisms. Environ Health Perspect,2001,109(Suppl.4):523–7.
    17.和刚,.淋巴节外恶性淋巴外T淋巴细胞亚免疫指标定分析.医杂,2005,21(11):1153-1154.
    18. Bricard G, Cesson V, Devevre E, Bouzourene H, Barbey C, Rufer N, Im J S,Alves P M, Martinet O, Halkic N, Cerottini J C, Romero P, Porcelli S A,Macdonald H R, Speiser D E. Enrichment of human CD4+V(alpha)24/Vbeta11invariant NKT cells in intrahepatic malignant tumors. J immunol,2009,189(8):5140-5151.
    19. Filep J G, Baron C, Lachance S, Perreault C, Chan JS. Involvement of nitric oxidein target-cell lysis and DNA fragmentation induced by murine natural killer cells.Blood,1996,87:5136–43.
    20. Chen T, Zamora R, Zuckerbraun B, Billiar T R. Role of nitric oxide in liver injury.Curr Mol Med.2003,3(6):519-26.
    21.黄秋,莫剑忠,张中.活性物质肝力改.外医内分,1997,24:55-58.
    22. Castro A, Jiménez W, Clária J, Ros J, Martínez J Maria, Bosch M, Arroyo V,Piulats J, River F, Rodés J. Impaired responsiveness to angiotensin II inexperimental cirrhosis: Role of nitric oxide. Hepatology,1993,18(2):367-372.
    1. Vives-Pi M, Somoza N, Fernandez-Alvarez J, Vargas F, Caro P, Alba A, Gomis R,Labeta M O, Pujol-Borrell R. Evidence of expression of endotoxin receptorsCD14. Toll-like receptors TLR4and TLR2and associated molecule MD-2and ofsensitivity to endotoxin (LPS) in islet beta cells. J Clin Exp Immunol,2003,133:208–218.
    2. Iwasaki A, Medzhitov R. Toll-like receptor control of adaptive immune responses.Nat Immunol,2004,5:987–995.
    3. Vasselon T, Detmers P A. Toll receptors: a central element in innate immuneresponses. Infect Immun,2002,70(3):1033.
    4. Paterson H M, Murphy T J, Purcell E J, Shelley O, Kriynovich S J, Lien E,Mannick J A, Lederer J A. Injury primes the innate immune system for enhancedToll-like receptor reactivity. J Immunol,2009,171(3):1473-1483.
    5. Jones B W, Means T K, Heldwein K A, Keen M A, Hill P J, Belisle J T, Fenton MJ. Different Toll-like receptor agonists induce distinct macrophage responses. JLeukoc Biol,2001,69:1036–1044.
    6. Fan H, Peck O M, Tempel G E, Halushka P V, Cook J A. Toll-like receptor4coupled GI protein signaling pathways regulate extracellular signal-regulatedkinase phosphorylation and AP-1activation independent of NFkappaB activation.Shock,2004,22:57–62.
    7. Aderem A, Ulevitch R J. Review Toll-like receptors in the induction of the innateimmune response. Nature,2000,17;406(6797):782-7.
    8. Janeway CA Jr, Medzhitov R. Review Innate immune recognition. Annu RevImmunol,2002,20:197-216.
    9. Roach J C, Glusman G, Rowen L, Kaur A, Purcell M K, Smith K D, Hood L E,Aderem A. The evolution of vertebrate Toll-like receptors. Proc Natl Acad Sci U SA.2005,102(27):9577-82.
    10. Beutler B A. Review TLRs and innate immunity. Blood,2009,113(7):1399-407.
    11. Pasare C, Medzhitov R. Control of B-cell responses by Toll-like receptors. Nature,2005,438(7066):364-8.
    12. Rakoff-Nahoum S, Medzhitov R. Review Role of toll-like receptors in tissue repairand tumorigenesis. Biochemistry (Mosc),2008,73(5):555-61.
    13. Schwabe R F, Seki E, Brenner D A. Review Toll-like receptor signaling in theliver. Gastroenterology,2006,130(6):1886-900.
    14. Szabo G, Dolganiuc A, Mandrekar P. Review Pattern recognition receptors: acontemporary view on liver diseases. Hepatology,2006,44(2):287-98.
    15. Seki E, Brenner D A. Review Toll-like receptors and adaptor molecules in liverdisease: update. Hepatology,2008,48(1):322-35.
    16. De Creus A, Abe M, Lau A H, Hackstein H, Raimondi G, Thomson A W. LowTLR4expression by liver dendritic cells correlates with reduced capacity toactivate allogeneic T cells in response to endotoxin. J Immunol,2005,174(4):2037-45.
    17. Lichtman S N, Wang J, Lemasters J J. LPS receptor CD14participates in release ofTNF-alpha in RAW264.7and peritoneal cells but not in kupffer cells. Am J Physiol,1998,275: G39–46.
    18. Zarember K A, Godowski P J. Tissue expression of human Toll-like receptors anddifferential regulation of Toll-like receptor mRNAs in leukocytes in response tomicrobes, their products, and cytokines. J Immunol,2002,168:554–61.
    19. Su G L, Klein R D, Aminlari A, Zhang H Y, Steinstraesser L, Alarcon W H, RemickD G, Wang S C. Kupffer cell activation by lipopolysaccharide in rats: role forlipopolysaccharide binding protein and toll-like receptor4. Hepatology,2000,31:932–6.
    20. Seki E, Tsutsui H, Tsuji N M, Hayashi N, Adachi K, Nakano H, Futatsugi-YumikuraS, Takeuchi O, Hoshino K, Akira S, Fujimoto J, Nakanishi K. Critical roles ofmyeloid differentiation factor88-dependent proinflammatory cytokine release inearly phase clearance of Listeria monocytogenes in mice. J Immunol,2002,169:3863–8.
    21. Ke L D, Chen Z. A reliability test of standard-based quantitative PCR: exogenousvs endogenous standards. Mol Cell Probes,2000,14:127–135.+11
    22. Livak K J, Schmittgen T D. Analysis of relative gene expression data usingreal-time quantitative PCR and the2(-Delta Delta C(T)) method. Methods,2001,25:402–408.
    23. Liu W H, David A. Saint validation of a quantitative method for real time PCRkinetics. Biochem Biophys Res Commun,2002,294:347–353.
    24. Takeda K, Kaisho T, Akira S. Toll-like receptors. Annu Rev Immunol,2003,21:335-376.
    25. Calandra T, Roger T. Macrophage migration inhibitory factor: A regulator of innateimmunity. Nat Rev Immunol,2003,3:791–800.
    26. Chen T L, Chang C C, Lin Y L, Ueng Y F, Chen R M. Signal-transducingmechanisms of ketamine-caused inhibition of interleukin-1beta gene expression inlipopolysaccharide-stimulated murine macrophage-like Raw264.7cells. ToxicolAppl Pharmacol,2009,240:15–25.
    27. Nathan C F. Neutrophil activation on biological surfaces. Massive secretion ofhydrogen peroxide in response to products of macrophages and lymphocytes. J ClinInvest,1987,80:1550–1560.
    28. Aderem A. Phagocytosis and the infammatory response. J Infect Dis,2003,187:S340–S345.
    29. Somesh BP, Vlahou G, Iijima M, Insall RH, Devreotes P, Rivero F. RacGregulates morphology, phagocytosis, and chemotaxis. Eukaryot Cell,2006,5:1648–1663.
    1. Wang J X, Zhou G Q, Chen C Y, Yu H W, Wang T C, Ma Y M, Jia G, Gao Y X, LiB, Sun J, Li Y F, Jiao F, Zhao Y L, Chai Z. Acute toxicity and biodistribution ofdifferent sized titanium dioxide particles in mice after oral administration. ToxicolLett,2007,168:176-185.
    2. Liu H T, Ma L L, Zhao J F, Liu J, Yan J Y, Ruan J, Hong F S. Biochemical toxicityof nano-anatase TiO2particles in mice. Biol Trace Elem Res,2009,129:170-180.
    3. Ma L L, Zhao J F, Wang J, Liu J, Duan Y M, Liu H T, Li N, Yan J Y, Ruan J,Wang H, Hong F S. The acute liver injury in mice caused by nano-anatase TiO2.Nanoscale Res Lett,2009,4:1275-1285.
    4. Cui Y L, Liu H T, Zhou M, Duan Y M, Li N, Gong X L, Hu R P, Hong M M, HongF S. Signaling pathway of inflammatory responses in the mouse liver caused byTiO2nanoparticles. J Biomed Mater Res Part A,2011,96A:221-229.
    5. Liu H T, Ma L L, Liu J, Zhao J F, Yan J Y, Hong F S. Toxicity of nano-anataseTiO2to mice: liver injury, oxidative stress. Toxicol Environ Chem,2010,92:175-186.
    6. Cui Y L, Gong X L, Duan Y M, Li N, Hu R P, Liu H T, Hong M M, Zhou M,Wang L, Wang H, Hong F S. Hepatocyte apoptosis and its molecular mechanismsin mice caused by titanium dioxide nanoparticles. Journal of Hazardous Materials,2010,183:874-880.
    7. Stover P J. Nutritional genomics. Physiol Genomics,2004,16:161-165.
    8. Yin H Q, Kim M, Kim J H, Kong G, Lee M O, Kang K S, Yoon B I, Kim H L, LeeB H. Hepatic gene expression profiling and lipid homeostasis in mice exposed tosteatogenic drug, tetracycline. Toxicoll Sci,2006,94:206-216.
    9. Dutta R, Singh U, Li T B, Fornage M, Teng B B. Hepatic gene expression profilingreveals perturbed calcium signaling in a mouse model lacking both LDL receptorand Apobec1genes. Atherosclerosis,2003,169:51-62.
    10. Hughes T R, Marton M J, Jones A R, Roberts C J, Stoughton R, Armour C D,Bennett H A, Coffey E, Dai H, He Y D, Kidd M J, King A M, Meyer M R, Slade D,Lum P Y, Stepaniants S B, Shoemaker D D, Gachotte D, Chakraburtty K, Simon J,Bard M, Friend S H. Functional discovery via a compendium of expression profiles.Cell,2000,102:109-126.
    11. Afshari C A, Nuwaysir E F, Barrett J C. Application of complementary DNAmicroarray technology to carcinogen identification, toxicology, and drug safetyevaluation. Cancer Res,1999,59(19):4759-4760.
    12. Bartosiewicz M, Penn S, Buckpitt A. Applications of gene arrays in environmentaltoxicology: fingerprints of gene regulation associated with cadmium chloride,benzo(a)pyrene, and trichloroethylene. Environ Health Perspect,2001,109(1):71-74.
    13. Bayne K, Revised guide for the care and use of laboratory animals availableAmerican physiological society, Physiologist,1996,199:208-211.
    14. Waring J F, Gum R, Morfitt D, Jolly R A, Ciurlionis R, Heindel M, Gallenberg L,Buratto B, Ulrich R G. Identifying toxic mechanisms using DNA microarrays;Evidence that an experimental inhibitor of cell adhesion molecule expressionsignals through the aryl hydrocarbon nuclear receptor. Toxicol,2002,181:537-550.
    15. Waring J F, Ulrich R G. The impact of genomics-based technologies on drug safetyevaluation. Annual Review Pharmacologh and Toxicol,2000,40:335-352.
    16. Nguyen P, Leray V, Diez M, Serisier S, Le B J, Siliart B, Dumon H. Liver lipidmetabolism. J Anim Physiol Anim Nutr (Berl),2008,92(3):272-283.
    17. Clugston R D, Jiang H, Lee M X, Piantedosi R, Yuen J J, Ramakrishnan R, LewisM J, Gottesman M E, Huang LS, Goldberg I J, Berk P D, Blaner W S. Alteredhepatic lipid metabolism in C57BL/6mice fed alcohol: a targeted lipidomic andgene expression study. J lipid research,2011,52:2021-2031.
    18. Schwarz M, Lund E G, Lathe R, Bj rkhem I, Russell D W. Identification andcharacterization of a mouse oxysterol7α-hydroxylase cDNA. J Biol Chem,1997,272(38):23995-24001.
    19. Rose K A, Stapleton G, Dott K, Kieny M P, Best R, Schwarz M, Russell D W,Bj rkhem I, Seckl J, Lathe R. Cyp7b, a novel brain cytochrome P450, catalyzes thesynthesis of neurosteroids7alpha-hydroxy dehydroepiandrosterone and7alpha-hydroxy pregnenolone. Proc Natl Acad Sci U S A,1997,94(10):4925-4930.
    20. Long T C, Tajuba J, Sama P, Saleh N, Swartz C, Parker J, Hester S, Lowry G V,Veronesi B. Nanosize titanium dioxide stimulates reactive oxygen species in brainmicroglia and damages neurons in vitro. Environ Health Perspect,2007,115(11):1631–1637.
    21. Hayakawa Y, Kelly J M, Westwood J A, Darcy P K, Diefenbach A, Raulet D,Smyth M J. Cutting edge: tumor rejection mediated by NKG2D receptor-ligandinteraction is dependent upon perforin, J Immunol,2002,169:5377-5381.
    22. Moser B, Clark-Lewis I, Zwahlen R, Baggiolini M. Neutrophil-activatingproperties of the melanoma growth-stimulatory activity. J Exp Med,1990,171(5):1797-802.
    23. Iida N, Grotendorst G R. Cloning and sequencing of a new gro transcript fromactivated human monocytes: expression in leukocytes and wound tissue. Mol CellBiol.1990,10(10):5596-9.
    24. Becker S, Quay J, Koren H S, Haskill J S. Constitutive and stimulated MCP-1,GRO alpha, beta, and gamma expression in human airway epithelium andbronchoalveolar macrophages. Am J Physiol.1994,266(3):278-86.
    25. Devalaraja, R M, Nanney L B, Du J, Qian Q, Yu Y, Devalaraja M N, Richmond A.Delayed wound healing in CXCR2knockout mice. Investig Dermatol,2000,115:234-244.
    26. Anisowicz A, Bardwell L, Sager R. Constitutive overexpression of agrowth-regulated gene in transformed Chinese hamster and human cells. Proc NatAcad Sci USA1987,84:7188-7192.
    27. Richmond A, Thomas H G. Melanoma growth stimulatory activity: isolation fromhuman melanoma tumors and characterization of tissue distribution. Cell Biochem,1988,36:185-198.
    28. Chen H W, Su S F, Chien C T, Lin W H, Yu S L, Chou C C, Chen J J, Yang P C.Titanium dioxide nanoparticles induce emphysema-like lung injury in mice. FasebJournal,2006,20:2393-2395.
    29. Espina J, Feijóo CG, Solís C, Glavic A. Csrnp1a is necessary for the developmentof primitive hematopoiesis progenitors in zebrafish. PLoS One,2013,8(1): e53858.
    30. Anastas J N, Moon R T. WNT signalling pathways as therapeutic targets in cancer.Nat Rev Cancer,2013,13(1):11-26.
    31. Wakefield LM, Roberts A B. TGF-beta signaling: positive and negative effects ontumorigenesis. Curr Opin Genet Dev,2002,12(1):22-9.
    32. Furuhashi M, Yagi K, Yamamoto H, Furukawa Y, Shimada S, Nakamura Y, KikuchiA, Miyazono K, Kato M. Axin facilitates Smad3activation in the transforminggrowth factor beta signaling pathway. Mol Cell Biol,2001,21(15):5132-5141.
    1.陈敬中,剑洪,良,陈瀛编.米论(第二版).北京:高等教育出版,2010.
    2.朱融融,,姚.米二钛生物效应.生,2005,25(4).
    3. http://www.nanotechproject.org/cpi/about/analysis/
    4. Yinxia Li, Wei Wang, Qiuli Wu, Yiping Li, Meng Tang, Boping Ye, Dayong Wang1.Molecular Control of TiO2-NPs Toxicity Formation at Predicted EnvironmentalRelevant Concentrations by Mn-SODs Proteins. PLoS One,2012,7(9): e44688.
    5.赵亮,柴.米毒.北京:出版,2010.
    6.宋爱.内钛应、生产工和市场.中氯碱,2005,8:18-20.
    7. Maynard A D, WarheitD B, Philbert M A. The New Toxicology of SophisticatedMaterials: Nanotoxicology and Beyond. Toxicol Sci.2011,120(Suppl1):S109-S129.
    8. Wu C J. The study of application of different size of nanometer titanium dioxide.Guangzhou Chem. Ind. Technol,2006,34(1):26-27.
    9. Tucci P, Porta G, Agostini M, Dinsdale D, Iavicoli I, Cain K, Finazzi-Agró A,Melino G, Willis A. Metabolic effects of TiO2nanoparticles, a common componentof sunscreens and cosmetics, on human keratinocytes. Cell Death Dis,2013,4:e549.
    10. Shi H, Magaye R, Castranova V, Zhao J. Titanium dioxide nanoparticles: a reviewof current toxicological data. Part Fibre Toxicol.2013,10:15.
    11. Robertson T A, Sanchez W Y, Roberts M S. Are commercially availablenanoparticles safe when applied to the skin? J Biomed Nanotechnol.2010,6(5):452-68.
    12. Weir A, Westerhoff P, Fabricius L, Hristovski K, von Goetz N. Titanium dioxidenanoparticles in food and personal care products. Environ Sci Technol.2012,46(4):2242-50.
    13. Weir A, Westerhoff P, Fabricius L, Hristovski K, Goetz N. Titanium dioxidenanoparticles in food and personal care products. Environ Sci Technol,2012,46(4):2242-2250.
    14. Zhu R R, Wang S L, Chao J, Shi D L, Zhang R, Sun X Y, Yao S D. Bio-effects ofnano-TiO2on DNA and cellular ultrastructure with different polymorph and size.Mater Sci Eng,2009, C29:691–696.
    15. Chang X, Zhang Y, Tang M, Wang B. Health effects of exposure to nano-TiO2: ameta-analysis of experimental studies. Nanoscale Res Lett.2013,8(1):51.
    16. Günter Oberd rster, Eva Oberd rster, Jan Oberd rster. Nanotoxicology: AnEmerging Discipline Evolving from Studies of Ultrafine Particles. Environ HealthPerspect,2005,113:823-839.
    17. James A C, Stahlhofen W, Rudolf G, Briant J K, Egan M J, Nixon W, Birchall A.Human respiratory tract model for radiological protection: A report of a task groupof the International Commission on Radiological Protection.1994,24:1-482.
    18. Http://www.fda.gov/ForIndustry/ColorAdditives/ColorAdditiveInventories/ucm115641.htm.
    19.张铣,毓谷.毒.北京:北京医大中协和医大联合出版,1997.
    20. Nohynek G J, Dufour E K, Roberts M S. Nanotechnology, cosmetics and the skin:is there a health risk? Skin Pharmacol Physiol.2008,21(3):136-49.
    21. Labille J, Feng J, Botta C, Borschneck D, Sammut M, Cabie M, Auffan M, Rose J,Bottero J Y. Aging of TiO(2) nanocomposites used in sunscreen. Dispersion andfate of the degradation products in aqueous environment. Environ Pollut.2010,158(12):3482-9.
    22. Skocaj M, Filipic M, Petkovic J, Novak S. Titanium dioxide in our everyday life; isit safe? Radiol Oncol.2011,45(4):227-47.
    23.林,强,宝山.妆品肤色米TiO2备.工,2005,7:1-2.
    24. Tan M H, Commens C A, Burnett L, Snitch P J. A pilot study on the percutaneousabsorption of microfine titanium dioxide from sunscreens. Australasian Journal ofDermatology,1996,37:185-187.
    25. Kiss B, Bíró T, Czifra G, Tóth BI, Kertész Z, Szikszai Z, Kiss A Z, Juhász I,Zouboulis C C, Hunyadi J. Investigation of micronized titanium dioxide penetrationin human skin xenografts and its effect on cellular functions of human skin-derivedcells. Exp Dermatol.2008,17(8):659-67.
    26. Campbell A, Oldham M, Becaria A, Bondy S C, Meacher D, Sioutas C, Misra C,Mendez LB, Kleinman M. Particulate matter in polluted air may increasebiomarkers of inflammation in mouse brain. Neurotoxicol,2005,26:1332-140.
    27. Dunford R, Salinaro A, Cai L, Serpone N, Horikoshi S, Hidaka H, Knowland J.Chemical oxidation and DNA damage catalysed by inorganic sunscreen ingredients.FEBS Lett.1997,418(1-2):87-90.
    28. WHO (World Health Organization), Titanium Dioxide. EHC24, World HealthOrganization, Geneva, Switzerland,1982.
    29. Rahman Q, Lohani M, Dopp E, pemsel H, Jonas L, Weiss D G, Schiffmann D.Evidence that ultrafine titanium dioxide induces micronuclei and apoptosis inSyrian hamster embryo fibroblasts. Environmental Health Perspectives,2002,110(8):797–800.
    30. Hedenborg M. Titanium dioxide induced chemiluminescence of humanpolymorphonuclear leukocytes. International Archives of Occupational andEnvironmental Health,1988,61(1-2):1–6.
    31. Duan Y M, Liu J, Ma L L, Li N, Liu H T, Wang J, Zheng L, Liu C, Wang X F,Zhaoo X Y, Yan J Y, Wang S S, Wang H, Zhang X G, Hong F S. Toxicologicalcharacteristics of nanoparticulate anatase titanium dioxide in mice. Biomaterials,2010,31(5):894–899.
    32. Laney A S, McCauley L A, Schubauer-Berigan M K. Workshop summary:epidemiologic design strategies for studies of nanomaterial workers. J OccupEnviron Med,2011,53(6Suppl): S87-90.
    33. Wang J X, Zhou G Q, Chen C Y, Yu H W, Wang T C, Ma Y M, Jia G, Gao Y X, Li B,Sun J, Li Y F, Jiao F, Zhao Y L and Chai Z F. Acute toxicity and biodistribution ofdifferent sized titanium dioxide particles in mice after oral administratio. Toxicol.Lett,2007,168(2):176-185.
    34. Xu J, Shi H, Ruth M, Yu H, Lazar L, Zou B, Yang C, Wu A, Zhao J. Acute toxicityof intravenously administered titanium dioxide nanoparticles in mice. PLoS One,2013,8(8): e70618.
    35. Roursgaard M, Jensen K A, Poulsen S S, Jensen N E, Poulsen L K, Hammer M,Nielsen G D, Larsen S T. Acute and subchronic airway inflammation afterintratracheal instillation of quartz and titanium dioxide agglomerates in mice.Scientific World Journal,2011,11:801-25.
    36. Nemmar A, Melghit K, Ali B H. The acute proinflammatory and prothromboticeffects of pulmonary exposure to rutile TiO2nanorods in rats. Exp Biol Med,2008,233:610-619.
    37. GrassianV H, Adamcakova-Dodd A, Pettibone J M, O’shaughnessy P I, Thorne P S.Inflammatory response of mice to manufactured titanium dioxide nanoparticles:comparison of size effects through different exposure routes. Nanotoxicology,2007,1(3):211-226.
    38. Olmedo D G, Tasat D R, Guglielmotti M B, Cabrini R L. Biodistribution of titaniumdioxide from biologic compartments. J Mater Sci Mater Med,2008,19:3049-3056.
    39. Chen J Y, Dong X, Zhao J, Tong G. In vivo acute toxicity of titanium dioxidenanoparticles to mice after intraperitioneal injection. J Appl Toxicol,2009,29(4):330-337.
    40. Ravenzwaay B V, Landsiedel R, Fabian E, Burkhardt S, Strauss V, Mahock L.Comparing fate and effects of three particles of different surface properties:Nano-TiO2, Nano-TiO2, pigmentary TiO2and quartz. Toxicology Letters,2009,186(3):152-159.
    41. Ma L L, Liu J, Li N, Wang J, Duan Y M, Yan J Y, Wang H, Hong F S. Oxidativestress in the brain of mice caused by translocated nanoparticulate TiO2delivered tothe abdominal cavity. Biomaterial,2010,31:99-105.
    42.黄飚,,冰,麻懿馨,和, Shima K,部隆,齐藤宪. TiO2体对要脏器中微量元素响.中公共卫生,2007,23(6):739-740.
    43. Kobayashi N, Naya M, Endoh S, Maru J, Yamamoto K, Nakanishi J. Comparativepulmonary toxicity study of nano-TiO(2) particles of different sizes andagglomerations in rats: different short-and long-term post-instillation results.Toxicology.2009,264(1-2):110-8.
    44.宋文华,张文,张,艳,丁峰,高敏芩.米二钛对肺部生指标响究.南开大(版),2008,41(3):14-18.
    45. Sun Q Q, Tan D N, Ze Y G, Sang X Z, Liu X R, Gui S X, Cheng Z, Cheng J, Hu R P,Gao G D, Liu G, Zhu M, Zhao X Y, Sheng L, Wang L, Tang M, Hong F S.Pulmotoxicological effects caused by long-term titanium dioxide nanoparticlesexposure in mice. J Hazard Mater,2012,235-236:47-53.
    46. Wang J X, Liu Y, Jiao F, Lao F, Li W, Gu Y Q, Li Y F, Ge C C, Zhou G Q, Li B,Zhao Y L, Chai Z F, Chen C Y. Time-dependent translocation and potentialimpairment on central nervous system by intranasally instilled TiO2nanoparticles.Toxicology,2008,254(1-2):82-90.
    47. Wang J X, Chen C Y, Liu Y F, Jiao F, Li W, Lao F, Li Y F, Li B, Ge C C, Zhou G Q.Potential neurological lesion after nasal instillation of TiO2nanoparticles in theanatase and rutile crystal phases. Toxicol Lett.2008,10:72–80.
    48. Hu R P, Gong X L, Duan Y M, Li N, Che Y, Cui Y L, Zhou M, Liu C, Wang H,Hong F S. Neurotoxicological effects and the impairment of spatial recognitionmemory in mice caused by exposure to TiO2nanoparticles. Biomaterials,2010,10:8043-8050.
    49. Amara S, Khemissi W, Mrad I, Rihane N, Ben Slama I, Mir LE, Jeljeli M, BenRhouma K, Abdelmelek H, Sakly M. Effect of TiO2nanoparticles on emotionalbehavior and biochemical parameters in adult Wistar rats. Gen Physiol Biophys.2013,32(2):229-34.
    50. Wu J H, Liu W, Xue C B, Zhou S C, Lan F L, Lei B, Xu H B, Yang X L, Zeng F D.Toxicity and penetration of TiO2nanoparticles in hairless mice and porcine skinafter subchronic dermal exposure. Toxicology Letters,2009,191(1):1-8.
    51. Furukawa F, Doi Y, Suguro M, Morita O, Kuwahara H, Masunaga T, Hatakeyama Y,Mori F. Lack of skin carcinogenicity of topically applied titanium dioxidenanoparticles in the mouse. Food Chem Toxicol,2011,49(4):744-749.
    52. Li N, Duan Y M, Hong M M, Zheng L, Fei M, Zhao X Y, Wang J, Cui Y L, Liu H T,Cai J W, Gong S J, Wang H, Hong F S. Spleen injury and apoptotic pathway inmice caused by titanium dioxide nanoparticules. Toxicology Letters,2010,195:161-168.
    53. Rossi E M, Pylkkanen L, Koivisto A J, Nyka senoja H, Wolff H, Savolainen K,Alenius H. Inhalation exposure ro nanosized and fine TiO2particles inhibitsfestures of allergic asthma in a murine model. Particle and Fibre Toxicology,2010,7:35.
    54. Wang J, Li N, Zheng L, Wang S S, Wang Y, Zhao X Y, Duan Y M, Cui Y L, Zhao M,Cai J W, Gong S J, Wang H, Hong F S.P38-Nrf-2signaling pathway of oxidativestress in mice caused by nanoparticulate TiO2. Biol Trace Elen Res,2011,140:180-197.
    55. Shrivastava R, Raza S, Yadav A, Kushwaha P, Flora S J. Effects of sub-acuteexposure to TiO2, ZnO and Al2O3nanoparticles on oxidative stress and histologicalchanges in mouse liver and brain. Drug Chem Toxicol.2013Dec17.[Epub aheadof print].
    56. Fries R, Myrtill S.(Nano)-Titanium dioxide (Part II): health hazard potential.Institute of Technology Assessment of the Austrian Academy of Sciences.2012,034en.
    57. Chen J Y, Dong X, Xin Y Y, Zhao M. Effects of titanium dioxide nano-particles ongrowth and some histological parameters of zebrafish(Danio rerio) after a long-termexposure. Aquatic Toxicology,2011,101:493-499.
    58. Lee K P, Trochimowicz H J, Reinhardt C F. Pulmonary response of rats exposed totitanium dioxide (TiO2) by inhalation for two years. Toxicol Appl Pharmacol.1985,10:179-192.
    59. Baskerville A, Fitzgeorge R B, Gilmour M I, Dowsett A B, Williams A,Featherstone A S. Effects of inhaled titanium dioxide dust on the lung and on thecourse of experimental Legionnaires' disease. Br J Exp Pathol.1988,10:781-792.
    60. Warheit D B, Yuen I S, Kelly D P, Snajdr S, Hartsky M A. Subchronic inhalation ofhigh concentrations of low toxicity, low solubility particulates produces sustainedpulmonary inflammation and cellular proliferation. Toxicol Lett.1996,10:249-253.
    61. Warheit D B, Hansen J F, Yuen I S, Kelly D P, Snajdr S I, Hartsky MA. Inhalationof high concentrations of low toxicity dusts in rats results in impaired pulmonaryclearance mechanisms and persistent inflammation. Toxicol Appl Pharmacol.1997,10:10-22.
    62. Bermudez E, Mangum J B, Asgharian B, Wong B A, Reverdy E E, Janszen D B,Hext P M, Warheit D B, Everitt J I. Long-term pulmonary responses of threelaboratory rodent species to subchronic inhalation of pigmentary titanium dioxideparticles. Toxicol Sci.2002,10:86-97.
    63. Oberd rster G, Ferin J, Lehnert B E. Correlation between particle size, in biboparticle persistence, and lung injury. Environ Health Persp,1994,102(5):173-179.
    64. Baggs R B, Ferin J, Oberd rster G. Regression of pulmonary lesions produced byinhaled titanium dioxide in rats. VET pathol,1997,34:592-597.
    65. Sang X Z, Zheng L, Sun Q Q, Li N, Cui Y L, Hu R P, Gao G D, Cheng Z,Cheng J, Gui S X, Liu H T, Zhang Z, Hong F S. The chronic spleen injury ofmice following long-term exposure to titanium dioxide nanoparticles. JBiomed Mater Res A.2012,100(4):894-902.
    66. Shimuzu M, Tainaka H, Oba T, Mizuo K, Umezawa M, Takeda K.Maternalexposure to nanoparticulate titanium dioxide during the prenatal period alters geneexpression related to brain development in the mouse.Part Fibre Toxicol,2009,6:20.
    67. Takeda K, Suzuki K I, Ishihara A, Kubo-Irie M, Fujimoto R, Tabata M, Oshio S,Nihei Y, Ihara T, Sugamata M. Nanoparticles transferred frompregnant mice to theiroffspring can damage the genital and cranial nerve systems. Journal of HealthScience,2009,55(1):95-102.
    68. Gao G, Ze Y, Li B, Zhao X, Zhang T, Sheng L, Hu R, Gui S, Sang X, Sun Q, ChengJ, Cheng Z, Wang L, Tang M, Hong F. Ovarian dysfunction and gene-expressedcharacteristics of female mice caused by long-term exposure to titanium dioxidenanoparticles. J Hazard Mater.2012,243:19-27.
    69. Guo L L, Liu X H, Qin D X, Gao L, Zhang H M, Liu J Y, Cui Y G. Effects ofnanosized titanium dioxide on the reproductive system of male mice. National JAndrology,2009,15(6):517-522.
    70.瑜,,玲,睿,黄碧兰,袁正,远.2种米在体内分毒性作.中公共卫生,2009,25:835-836.
    71. Warheit D B, Hoke R A, Finlay C, Donner E M, Reed K L, Sayes C M.Development of a base set of toxicity tests using ultrafine TiO2particles as acomponent of nanoparticle risk management. Toxicol Lett,2007,171(3):99-110.
    72. Unnithan J, Rehman M U, Ahmad F J, Samim M. Aqueous synthesis andconcentration-dependent dermal toxicity of TiO2nanoparticles in Wistar rats. BiolTrace Elem Res.2011,143(3):1682-94.
    73. Zhang S L, Li J, Lykotrafitis G, Bao G, Suresh S. Size-dependent endocytosis ofnanoparticles. Adv Mater,2009,21:419-424.
    74. Geiser M, Rothen-Rutishauser B, Kapp N, Schürch S, Kreyling W, Schulz H,Semmler M, Im Hof V, Heyder J, Gehr P. Ultrafine particles cross cellularmembranes by nonphagocytic mechanisms in lungs and in cultured cells. EnvironHealth Perspect,2005,113(11):1555-1560.
    75. Long T C, Saleh N, Tilton, Lowry G V, Veronesi B. Titanium dioxide (P25)produces reactive oxygen species in immortalized brain microglia (BV2):implications for nanoparticle neurotoxicity.Environ Sci Technol,2006,40(14):4346-4352.
    76. Singh S, Shi T, Duffin R, Albrecht C, van Berlo D, H hr D, Fubini B, Martra G,Fenoglio I, Borm PJ, Schins RP. Endocytosis, oxidative stress and IL-8expressionin human lung epithelial cells upon treatment with fine and ultrafine TiO2: role ofthe specific atea and of surface methylation of the particles. Toxicol ApplPharmacol,2007,222(2):141-151.
    77. Saito T, Iwase T, Horie J, Morioka T. Mode of photocatalytic bactericidal action ofpowdered semiconductor TiO2on mutans streptococci. J Photochem Photobiol B:Biol,1992,14(4):369-379.
    78. Nadtochenko V A, Rincon A G, Stanca S E, Kiwi J. Dynamics of E. coli membranecell peroxidation during TiO2photocatalysis studied by ATR-FTIR spectroscopyand AFM microscopy. J Photochem Photobiol A Chem,2005,169:131-137.
    79. Nadtochenko V A, Denisov N, Sarkisov O, Gumy D, Pulgarin C, Kiwi J. Laserkinetic spectroscopy of the interfacial charge transfer between membrane cell wallsof E. coli and TiO2. J Photochemistry Photobiol A Chem,2006,181(2-3):401-407.
    80. Ogino C, Dadjour M F, Takaki K, Shimizu N. Enhancement of sonocatalytic celllysis of Escherichia coli in the presence of TiO2. Biochem Eng J,2006,32(2):100-105.
    81. Sanders K, Degn L L, Mundy W R, Zucker R M, Dreher K, Zhao B, Roberts J E,Boyes WK. In vitro phototoxicity and hazard identification of nano-scale titaniumdioxide. Toxicol Appl Pharmacol.2012,258(2):226-36.
    82. Yin J J, Liu J, Enrenshaft M, Roberts J E, Fu P P, Mason R P, Zhao B Z.Phototoxicity of Nano Titanium Dioxides in HaCaT Keratinocytes–Generation ofReactive Oxygen Species and Cell Damage. Toxicol Appl Pharmacol.2012,263(1):81–88.
    83. Zhao J, Bowman L, Zhang X, Vallyathan V, Young S H, Castranova V, Ding M.Titanium dioxide (TiO2) nanoparticles induce JB6cell apoptosis through activationof the caspase-8/Bid and mitochondrial pathways. J Toxicol Environ Health A.2009,72(19):1141-9.
    84. Saquib Q, Al-Khedhairy A A, Siddiqui M A, Abou-Tarboush F M, Azam A,Musarrat J. Titanium dioxide nanoparticles induced cytotoxicity, oxidative stressand DNA damage in human amnion epithelial (WISH) cells. Toxicol In Vitro.2012,26(2):351-61.
    85. Liu H T, Ma L L, Zhao J F, Liu J, Yan J Y, Ruan J, Hong F S. Biochemical toxicityof nano-anatase TiO2particles in. Biol Trace element Res,2009,129:170-180.
    86. Wang J X, Zhou G Q, Chen C Y, Yu H W, Wang T C, Ma Y M, Jia G, Gao Y X, Li B,Sun J, Li Y F, Jia F, Zhao Y L, Chai Z F. Acute toxicity and biodistribution ofdifferent sized titanium dioxide particles in mice after oral administration. ToxicolLett,2007,168:176-185.
    87. Alarifi S, Ali D, Al-Doaiss A A, Ali B A, Ahmed M, Al-Khedhairy A A. Histologicand apoptotic changes induced by titanium dioxide nanoparticles in the livers ofrats. Int J Nanomedicine.2013,8:3937-43.
    88. Jin C, Tang Y, Fan X Y, Ye X T, Li X L, Tang K, Zhang Y F, Li A G, Yang Y J. Invivo evaluation of the interaction between titanium dioxide nanoparticle and ratliver DNA. Toxicol Ind Health.2013,29(3):235-44

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700