导管内积乳miRNA表达谱提示乳腺上皮细胞微环境对肿瘤形成的潜在作用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:乳腺癌发病率日益增高,渐成为威胁女性生命的第一位恶性肿瘤。绝大多数的乳腺癌变起源于导管上皮细胞,上皮细胞具有在哺乳期产生并排射乳汁的作用,但临床显示在哺乳期过后数年乃至数十年仍在大量患者的乳管内发现积乳且泌乳素在正常范围。已知肿瘤微环境对肿瘤的形成和发展起着重大作用,积乳可被认为是乳管上皮细胞的微环境,它存在和变化产生的作用还没有人研究。近年来在人类体液如血液、哺乳期乳汁、唾液等中被发现含有多种miRNA,这些miRNA与细胞的生理病理活动直接相关,尤其肿瘤微环境中的miRNA对于肿瘤的形成和细胞间的关联起着重要作用。因此,通过研究导管内积乳及合并肿物的miRNA表达谱将会引领我们发现导管上皮细胞微环境的变化,有助于发现特异miRNA在致瘤过程中的作用。另外与血清学对比,探讨乳管内液特异性miRNA作为新的肿瘤标志物的优势。
     方法:临床中有大量患者在乳管镜检查前后被发现有乳管内积乳,部分患者镜检同时发现合并有乳管内肿物,我们采集单纯积乳和积乳合并乳管内肿物患者的导管灌洗液。分别提取小RNA,质检后做高通量测序,将全长度的小RNA筛选后得到miRNA做进一步差异分析,得到两组的miRNA表达谱并预测出新miRNA,对比miRBase找到发生碱基突变的miRNA。之后做候选miRNA的靶基因预测及代谢通路富集分析可能的生物学过程。在随机的20个独立样本中做real-time RT-PCR验证miRNA的表达量,最后在随机7对样本中对比积乳和血清中同种miRNA的表达量,并做统计分析。
     结果:我们在积乳和乳管内肿物合并积乳组的导管内液中成功提取出纯度较高的小RNA,通过高通量测序,我们在单纯积乳的样本中发现了266种已知的miRNA和271种新的miRNA,在积乳合并肿瘤的样本中发现了271种已知的miRNA和140种新的miRNA,同时得到了差异表达的miRNA。积乳合并肿瘤组对比单纯积乳组,我们发现了10种显著下调的miRNA,如let-7、miR-29a、 miR-146、miR-223等;7种显著上调的miRNA,如miR-451、 miR-185、miR-107、miR-92、miR-10等。接下来用生物信息学富集分析差异性miRNA靶基因所处的细胞位置、分子功能和参与的生物学过程,值得一提的是肿瘤组显著上调的7种miRNA的靶基因所处的细胞位置显著富集于细胞膜上。再进一步分析得出与细胞间信号转导和肿瘤形成有关的信号通路,其中单纯积乳组3种信号通路,积乳合并肿物组9种信号通路。另外有13种miRNAs在两组中表达量均很高但无明显差异,其中miR-140归一化后的表达量在两组中十分接近。接下来,我们选择了三种已知的miRNAs用real-time RT-PCR方法证实它们在随机选取的积乳及积乳合并肿物组均有高表达,且这三种miRNAs在积乳中的表达量要明显高于血清中的表达量。
     结论:本实验第一个得出了人单纯积乳和积乳合并肿物时的miRNA表达谱。表达量高的积乳miRNAs不同程度地参与了“癌症中转录误调信号”通路。表达量高且有明显差异的miRNAs所靶向的基因显著富集于“粘附连接”信号通路,可见在肿瘤发生前后,上皮细胞微环境中的miRNA的种类和表达量有显著变化。乳管内肿物合并积乳组表达显著下调的10种miRNA中,既往对乳腺癌的研究中被认为6种有抑癌作用,1种有致癌作用,3种在癌发展中有两面性,它们的靶基因显著富集于与细胞间信号转导有密切关系的“MAPK信号通路”,暗示可能通过调节某些靶基因的表达来抑制上皮细胞增殖而发挥作用。乳管内肿物合并积乳组表达显著上调的7种miRNAs中,既往对肿瘤的研究中被认为5种有致癌作用,1种有抑癌作用,1种有两面性。它们的靶基因富集于细胞膜且显著富集在9种参与细胞间信号传递和致瘤作用的信号通路中,在微环境中可能起到促进肿瘤形成的作用。miR-140和miR-21在积乳中的表达量较稳定,尤其是前者或可作为积乳性乳管内液miRNA表达水平的内参。积乳可以作为乳腺上皮细胞的微环境,其中富含大量的miRNAs,且表达量明显高于血清,可以作为潜在的乳腺肿瘤标志物。
Objection: The incidence of breast cancer is rising,。Breast cancer gradually become thefirst malignant tumor in women. Breast cancer cells mostly change from epithelial cells. Inthe clinic, we find that many patients with milk remains in their breast instead of dischargingduring feeding, resulting in ‘milk stasis’. The duration required for milk stasis for milk stasisranges from several years to more than30years with nomal PRL. Tumor microenvironmentplays an important role in breast carcinogenesis. Milk acts as an important microenvironmentof breast cancer, but its role in breast carcinogenesis is largely unknown. Recently peoplefound miRNAs in human body fluid such as serum, milk,saliva and so on. These miRNAs aredirectly related to the cell activity. So, studying the miRNA profiling between milk stasis onlyand milk stasis plus tumor group can help us to find the changes of microenvironment forepithelial cell, and also find the function of special miRNAs in neoplasia.
     Methods: Samples were collected by lavaging the milk ducts from the two groups. Afterisolating total RNAs using miRNA Isolation kit, we did high-throughput sequencing andselected miRNAs from full lengh small RNAs. Then we got miRNAs profiles with differentexpression in the two groups, also got novel miRNAs. For the candidate of miRNAs, we didtarget genes prediction and metabolic pathway analysis of possible biological processes. Realtime RT-PCR was used to verify the expression of miRNAs in20samples. Finally wecompared the expression between milk stasis samples and the same patients’ serum in7pairsof samples.
     Results: We successfully extracted miRNAs from the two groups. We identified266known miRNAs and271novel miRNAs in10milk stasis only samples,271known miRNAsand140novel miRNAs in10milk stasis plus breast tumor samples by high-throughput sequencing. MiRNA profiles were different between the two groups. Furthermore,we foundten significantly down-regulated miRNAs such as let-7,miR-29a, miR-146and miR-223,while seven significantly up-regulated miRNAs such as miR-451,miR-185,miR-107,miR-92,miR-10were in the milk of milk stasis plus tumor patients. We analyzed the results of targetgenes prediction such as molecular function, cellular component and biological process, alsogot metabolic pathway analysis of possible biological processes,3in milk stasis only groupand9in milk stasis plus tumor group. We identified13miRNAs which high expressed in bothgroups with no signiftant difference, especially miR-140. Three kinds of the identifiedmiRNAs were selected using real time RT-PCR, confirming that these miRNAs were highlyexpressed. The results also showed that those three kinds of miRNAs were more abundant inthe milk than in the blood.
     Conclusion: We make the first miRNA profiling in milk stasis and we found thehigh-expression miRNAs all took part in the “regulation of cancer inordinately”. Significantlydifferent expression miRNAs could regulate the “adhesion junction” pathway. We found10miRNAs significantly down-regulated in milk stasis plus tumor group,6tumor suppressor,1oncogene and3dual character.There might be a close relationship between them andinformation transmission by ‘MAPK signaling’ pathways. Suggesting that they mightcontribute the microenvironment of epithelial cells as a role of suppressor.7miRNAs(5oncogene,1tumor suppressor and1dual character), most target genes are on themembrane,significantly up-regulated in milk stasis plus tumor group might act as oncogenein the microenvironment joined nine pathways about neoplasia and information transmissionamong epitheliar cells. miR-140might be internal reference.MiRNAs in the milk could be abetter biomarker for breast tumor than in the blood.
引文
[1] H.M.Heneghan, N. Miller, A.J. Lowery, K.J. Sweeney,and M.J. Kerin.MicroRNAs as Novel Biomarkersfor Breast Cancer. Journal of Oncology (2010), Volume2010, doi:10.1155/2010/950201.
    [2] Ma L, Teruya-Feldstein J, Weinberg RA. Tumour invasion and metastasis initiated by microRNA-10bin breast cancer.[J]Nature (2007),449(7163):682-8.
    [3] Tavazoie SF, Alarcón C,Oskarsson T, Padua D, Wang Q, Bos PD, Gerald WL, Massagué J. Endogenoushuman microRNAs that suppress breast cancer metastasis.[J]Nature (2008),451(7175):147-52
    [4] Huang Q, Gumireddy K, Schrier M, le Sage C, Nagel R, Nair S, Egan DA, Li A, Huang G, Klein-SzantoAJ, Gimotty PA, Katsaros D, Coukos G, Zhang L, Puré E, Agami R. The microRNAs miR-373andmiR-520c promote tumour invasion and metastasis.[J]Nat Cell Biol (2008),10(2):202-10.
    [5] Weber JA1, Baxter DH, Zhang S, Huang DY, Huang KH, Lee MJ, Galas DJ, Wang K.The microRNAspectrum in12body fluids.[J]Clin Chem.2010Nov;56(11):1733-41.
    [6] Jay R.Harris, Marc E.Lippman, Monica Morrow,C.Kent Osborne.: Diseases of the breast [M].3rd ed.U.S.A.: Lippincott William&Wilkins,Inc.2006
    [7] S.Eva Singletary, Geoffrey L.Robb,Gabriel N.Hortobagyi.: Advanced Therapy of Breast Disease[M].2rd ed. Hamilton: B.C. DECKER,INC.2004
    [8] Makarova J A, Kramerov D A. Noncoding RNAs[J].Biochemistry(Mosc),2007,72(11):1161-1178..
    [9] Chen C Z. MicroRNAs as oncogenes and tumor suppressors[J]. N Engl J Med,2005,353(17):1768-1771..
    [10] Hannafon BN, Ding WQ.Intercellular Communication by Exosome-Derived microRNAs in Cancer.[J]Int J Mol Sci.2013Jul9;14(7):14240-69
    [11] Thery, C., Zitvogel, L., Amigorena, S. Exosomes: Composition, biogenesis and function.[J] Nat. Rev.Immunol.2002,2:569–579.
    [12] Wickman, G., Julian, L., Olson, M.F. How apoptotic cells aid in the removal of their own cold deadbodies.[J] Cell Death Differ.2012,19:735–742.
    [13] Pan, B.T.,Teng, K.,Wu, C.,Adam, M.,Johnstone, R.M. Electron microscopic evidence forexternalization of the transferrin receptor in vesicular form in sheep reticulocytes.[J] Cell Biol.1985,101:942–948..
    [14] Harding, C. Heuser, J. Stahl, P. Receptor-mediated endocytosis of transferrin and recycling ofthe transferrin receptor in rat reticulocytes.[J] Cell Biol.1983,97:329–339.
    [15] Admyre, C., Johansson, S.M., Qazi, K.R.; Filen, J.J., Lahesmaa, R.,Norman, M., Neve, E.P.,Scheynius, A.,Gabrielsson, S. Exosomes with immune modulatory features are present in humanbreast milk.[J] Immunol.2007,179:1969–1978.
    [16] Masyuk, A.I.; Masyuk, T.V.; Larusso, N.F. Exosomes in the pathogenesis, diagnostics and therapeuticsof liver diseases.[J] Hepatol.2013, doi:10.1016/j.jhep.2013.03.028.
    [17] Vella, L.J.; Sharples, R.A.; Nisbet, R.M.; Cappai, R.; Hill, A.F. The role of exosomes in the processingof proteins associated with neurodegenerative diseases. Eur. Biophys.[J]2008,37:323–332.
    [18] Keller, S., Rupp, C., Stoeck, A., Runz, S., Fogel, M., Lugert, S., Hager, H.D., Abdel-Bakky, M.S.,Gutwein, P., Altevogt, P. CD24is a marker of exosomes secreted into urine and amniotic fluid.[J]Kidney Int.2007Nov;72(9):1095-102.
    [19] Taylor, D.D., Gercel-Taylor, C. MicroRNA signatures of tumor-derived exosomes as diagnosticbiomarkers of ovarian cancer.[J] Gynecol. Oncol.2008,110,13–21.
    [20] Gallo, A.; Tandon, M.; Alevizos, I.; Illei, G.G. The majority of microRNAs detectable in serum andsaliva is concentrated in exosomes. PLoS One2012,7, e30679.
    [21] Saman, S.,Kim, W., Raya, M., Visnick, Y., Miro, S., Saman, S., Jackson, B.,McKee, A.C., Alvarez,V.E.et al. Exosome-associated tau is secreted in tauopathy models and is selectively phosphorylated incerebrospinal fluid in early Alzheimer disease.[J]. Biol. Chem.2012,287:3842–3849
    [22] Qiu, S.,Duan, X., Geng, X., Xie, J., Gao, H. Antigen-specific activities of CD8+T cells in the nasalmucosa of patients with nasal allergy. Asian Pac. J. Allergy Immunol. Launched Allergy Immunol.[J]Soc. Thail.2012,30:107–113.
    [23] Record, M. Exosomal Lipids in Cell–Cell Communication. In Emerging Concepts of TumorExosome–Mediated Cell-Cell Communication; Zhang, H.-G., Ed.; Springer: New York,2013; pp.47–68
    [24] Bobrie, A., Colombo, M., Raposo, G., Thery, C. Exosome secretion: Molecular mechanisms and rolesin immune responses.[J]Traffic2011,12:1659–1668.
    [25] Hanson, P.I., Cashikar, A. Multivesicular body morphogenesis.[J]Annu. Rev. Cell Dev. Biol.2012,28:337–362
    [26] Schmidt, O., Teis, D. The ESCRT machinery.[J]. Curr. Biol.2012,22: R116–R120
    [27] Raymond, C.K., Howald-Stevenson, I., Vater, C.A.,Stevens, T.H. Morphological classification of theyeast vacuolar protein sorting mutants: Evidence for a prevacuolar compartment in class E vpsmutants.[J] Mol. Biol. Cell1992,3:1389–1402
    [28] Katzmann, D.J., Babst, M., Emr, S.D. Ubiquitin-dependent sorting into the multivesicular bodypathway requires the function of a conserved endosomal protein sorting complex, ESCRT-I [J] Cell2001,106:145–155..
    [29] Wollert, T., Wunder, C., Lippincott-Schwartz, J., Hurley, J.H. Membrane scission by the ESCRT-IIIcomplex.[J]Nature2009,458:172–177..
    [30] Trajkovic, K., Hsu, C., Chiantia, S.,Rajendran, L., Wenzel, D., Wieland, F., Schwille, P., Brugger,B.;,Simons, M. Ceramide triggers budding of exosome vesicles into multivesicular endosomes.[J]Science2008,319:1244–1247.
    [31] Van Niel, G., Charrin, S., Simoes, S., Romao, M., Rochin, L.,Saftig, P.; Marks, M.S., Rubinstein, E.,Raposo, G. The tetraspanin CD63regulates ESCRT-independent and–dependent endosomal sortingduring melanogenesis.[J] Dev. Cell2011,21:708–721.
    [32] Ostrowski, M.,Carmo, N.B.,Krumeich, S.,Fanget, I., Raposo, G., Savina, A., Moita, C.F., Schauer, K.,Hume, A.N., Freitas, R.P.,et al. Rab27a and Rab27b control different steps of the exosome secretionpathway.[J]Nat. Cell Biol.2010,12:19–30.
    [33] Llorente, A.,van Deurs, B., Sandvig, K. Cholesterol regulates prostasome release from secretorylysosomes in PC-3human prostate cancer cells. Eur.[J]. Cell Biol.2007,86:405–415
    [34] Thompson, C.A., Purushothaman, A., Ramani, V.C.,Vlodavsky, I., Sanderson, R.D. HeparanaseRegulates Secretion, Composition, and Function of Tumor Cell-derived Exosomes.[J] Biol. Chem.2013,288:10093–10099.
    [35] Koumangoye, R.B, Sakwe, A.M, Goodwin, J.S, Patel, T, Ochieng, J. Detachment of breast tumor cellsinduces rapid secretion of exosomes which subsequently mediate cellular adhesion and spreading.[J]PLoS One2011,6, e24234.
    [36] Parolini, I, Federici, C, Raggi, C, Lugini, L, Palleschi, S, de Milito, A, Coscia, C, Iessi, E, Logozzi, M,Molinari, A, et al. Microenvironmental pH is a key factor for exosome traffic in tumor cells.[J] Biol.Chem.2009,284:34211–34222
    [37] Mittelbrunn, M, Gutierrez-Vazquez, C, Villarroya-Beltri, C, Gonzalez, S, Sanchez-Cabo, F, Gonzalez,M.A, Bernad, A, Sanchez-Madrid, F. Unidirectional transfer of microRNA-loaded exosomes from Tcells to antigen-presenting cells.[J]Nat. Commun.2011,2:282.
    [38] Mathivanan, S, Fahner, C.J, Reid, G.E, Simpson, R.J. ExoCarta2012: Database of exosomal proteins,RNA and lipids.[J] Nucleic Acids Res.2012,40:1241–1244.
    [39] Mathivanan, S, Simpson, R.J. ExoCarta: A compendium of exosomal proteins and RNA.[J]Proteomics2009,9:4997–5000.
    [40] Cao, W, Ma, Z, Rasenick, M.M, Yeh, S, Yu, J. N-3poly-unsaturated fatty acids shift estrogen signalingto inhibit human breast cancer cell growth.[J]PLoS One2012,7, e52838.
    [41] Valadi, H.; Ekstrom, K.; Bossios, A.; Sjostrand, M.; Lee, J.J.; Lotvall, J.O. Exosome-mediated transferof mRNAs and microRNAs is a novel mechanism of genetic exchange between cells. Nat.[J] CellBiol.2007,9:654–659.
    [42] Hessvik, N.P, Phuyal, S, Brech, A, Sandvig, K, Llorente, A. Profiling of microRNAs in exosomesreleased from PC-3prostate cancer cells.[J] Biochim. Biophys. Acta2012,1819:1154–1163.
    [43] Bellingham, S.A,Coleman, B.M, Hill, A.F. Small RNA deep sequencing reveals a distinct miRNAsignature released in exosomes from prion-infected neuronal cells.[J] Nucleic Acids Res.2012,40:10937–10949
    [44] Pigati, L, Yaddanapudi, S.C, Iyengar, R, Kim, D.J, Hearn, S.A, Danforth, D, Hastings, M.L, Duelli,D.M. Selective release of microRNA species from normal and malignant mammary epithelial cells.[J]PLoS One2010,5, e13515..
    [45] Jaiswal, R., Luk, F, Gong, J, Mathys, J.M, Grau, G.E,Bebawy, M. Microparticle conferred microRNAprofiles—Implications in the transfer and dominance of cancer traits.[J] Mol. Cancer2012,11:37.
    [46] Simpson, R.J,Jensen, S.S, Lim, J.W. Proteomic profiling of exosomes: Current perspectives.[J]Proteomics2008,8:4083–4099.
    [47] de Gassart, A, Geminard, C, Fevrier, B,Raposo, G, Vidal, M. Lipid raft-associated protein sorting inexosomes.[J] Blood2003,102:4336–4344
    [48] Koga, K,Matsumoto, K, Akiyoshi, T, Kubo, M,Yamanaka, N,Tasaki, A, Nakashima, H, Nakamura,M,Kuroki, S, Tanaka, M, Katano, M. Purification, characterization and biological significance oftumor-derived exosomes.[J] Anticancer Res.2005,25:3703–3707
    [49] Ristorcelli, E, Beraud, E, Verrando, P,Villard, C,Lafitte, D, Sbarra, V, Lombardo, D, Verine, A. Humantumor nanoparticles induce apoptosis of pancreatic cancer cells.[J]FASEB.2008,22:3358–3369
    [50] Hakulinen, J, Sankkila, L,Sugiyama, N, Lehti, K, Keski-Oja, J. Secretion of active membrane type1matrix metalloproteinase (MMP-14) into extracellular space in microvesicular exosomes.[J] Cell.Biochem.2008,105:1211–1218.
    [51] Kucharzewska, P, Christianson, H.C, Welch, J.E, Svensson, K.J, Fredlund, E.; Ringner, M, Morgelin,M, Bourseau-Guilmain, E, Bengzon, J,Belting, M. Exosomes reflect the hypoxic status of glioma cellsand mediate hypoxia-dependent activation of vascular cells during tumor development.[J] Proc. Natl.Acad. Sci. USA2013, doi:10.1073/pnas.1220998110
    [52] Mineo, M, Garfield, S.H, Taverna, S, Flugy, A, De Leo, G, Alessandro, R, Kohn, E.C. Exosomesreleased by K562chronic myeloid leukemia cells promote angiogenesis in a Src-dependent fashion.[J]Angiogenesis2012,15:33–45
    [53] Baer, C, Squadrito, M.L,Iruela-Arispe, M.L, De Palma, M. Reciprocal interactions betweenendothelial cells and macrophages in angiogenic vascular niches. Exp.[J]Cell Res.2013,doi:10.1016/j.yexcr.2013.03.026.
    [54] Ohshima, K,Inoue, K.; Fujiwara, A, Hatakeyama, K, Kanto, K, Watanabe, Y,Muramatsu, K, Fukuda, Y.;Ogura, S, Yamaguchi, K., et al. Let-7microRNA family is selectively secreted into the extracellularenvironment via exosomes in a metastatic gastric cancer cell line.[J] PLoS One2010,5, e13247.
    [55] Pigati, L, Yaddanapudi, S.C, Iyengar, R, Kim, D.J, Hearn, S.A, Danforth, D, Hastings, M.L, Duelli,D.M. Selective release of microRNA species from normal and malignant mammary epithelial cells.[J]PLoS One2010,5, e13515
    [56] Rabinowits, G, Gercel-Taylor, C, Day, J.M,Taylor, D.D, Kloecker, G.H. Exosomal microRNA: Adiagnostic marker for lung cancer. Clin.[J]Lung Cancer2009,10:42–46.
    [57] Bryant, R.J, Pawlowski, T, Catto, J.W, Marsden, G, Vessella, R.L, Rhees, B, Kuslich, C, Visakorpi, T,Hamdy, F.C. Changes in circulating microRNA levels associated with prostate cancer.[J] Br. Cancer2012,106:768–774.
    [58] Umezu, T, Ohyashiki, K, Kuroda, M, Ohyashiki, J.H. Leukemia cell to endothelial cell communicationvia exosomal miRNAs.[J]Oncogene2012,32:2747–2755.
    [59] Grange, C, Tapparo, M, Collino, F, Vitillo, L, Damasco, C, Deregibus, M.C, Tetta, C, Bussolati,B,Camussi, G. Microvesicles released from human renal cancer stem cells stimulate angiogenesis andformation of lung premetastatic niche.[J]Cancer Res.2011,71:5346–5356..
    [60] Yang, M, Chen, J, Su, F, Yu, B, Su, F, Lin, L, Liu, Y,Huang, J.D, Song, E. Microvesicles secreted bymacrophages shuttle invasion-potentiating microRNAs into breast cancer cells.[J]Mol. Cancer2011,10:117.
    [61] Fabbri, M, Paone, A, Calore, F,Galli, R, Gaudio, E,Santhanam, R, Lovat, F, Fadda, P, Mao, C.; Nuovo,G.J, et al. MicroRNAs bind to Toll-like receptors to induce prometastatic inflammatory response. Proc.Natl. Acad. Sci. USA2012,109: E2110–E2116.
    [62] Liu, C, Yu, S.; Zinn, K,Wang, J,Zhang, L, Jia, Y, Kappes, J.C, Barnes, S,Kimberly, R.P, Grizzle, W.E,et al. Murine mammary carcinoma exosomes promote tumor growth by suppression of NK cellfunction.[J] Immunol.2006,176:1375–1385.
    [63] Higginbotham, J.N, Demory Beckler, M,Gephart, J.D, Franklin, J.L, Bogatcheva, G, Kremers,G.J,Piston, D.W, Ayers, G.D, McConnell, R.E, Tyska, M.J, et al. Amphiregulin exosomes increasecancer cell invasion.[J]Curr. Biol.2011,21:779–786..
    [64] Luga, V,Zhang, L,Viloria-Petit, A.M, Ogunjimi, A.A, Inanlou, M.R, Chiu, E,Buchanan, M,Hosein,A.N, Basik, M,Wrana, J.L. Exosomes mediate stromal mobilization of autocrine Wnt-PCP signaling inbreast cancer cell migration.[J]Cell2012,151:1542–1556
    [65] Suetsugu, A, Honma, K, Saji, S,Moriwaki, H,Ochiya, T,Hoffman, R.M. Imaging exosome transferfrom breast cancer cells to stroma at metastatic sites in orthotopic nude-mouse models.[J].Adv. DrugDeliv. Rev.2013,65:383–390..
    [66] Sotiriou, C, Pusztai, L. Gene-expression signatures in breast cancer.[J]N. Engl. J. Med.2009,360:790–800.
    [67] Blenkiron, C,Goldstein, L.D, Thorne, N.P, Spiteri, I, Chin, S.F, Dunning, M.J, Barbosa-Morais, N.L,Teschendorff, A.E, Green, A.R, Ellis, I.O, et al. MicroRNA expression profiling of human breastcancer identifies new markers of tumor subtype.[J]Genome Biol.2007,8:214
    [68] Perou, C.M,Sorlie, T, Eisen, M.B, van de Rijn, M, Jeffrey, S.S, Rees, C.A, Pollack, J.R, Ross,D.T,Johnsen, H, Akslen, L.A, et al. Molecular portraits of human breast tumours.[J]Nature2000,406:747–752.
    [69] Ciravolo, V, Huber, V, Ghedini, G.C, Venturelli, E, Bianchi, F, Campiglio, M, Morelli, D, Villa, A,Della Mina, P, Menard, S, et al. Potential role of HER2-overexpressing exosomes in counteringtrastuzumab-based therapy.[J]. Cell. Physiol.2012,227:658–667
    [70] Safaei, R,Larson, B.J, Cheng, T.C, Gibson, M.A,Otani, S, Naerdemann, W, Howell, S.B. Abnormallysosomal trafficking and enhanced exosomal export of cisplatin in drug-resistant human ovariancarcinoma cells.[J] Mol. Cancer Ther.2005,4:1595–1604
    [71] Ohno, S, Takanashi, M, Sudo, K, Ueda, S, Ishikawa, A, Matsuyama, N, Fujita, K, Mizutani, T, Ohgi,T, Ochiya, T,et al. Systemically injected exosomes targeted to EGFR deliver antitumor microRNA tobreast cancer cells.[J]Mol. Ther.2013,21:185–191.
    [72] Allen, E, Z. Xie, Gustafson AM, Carrington JC. microRNA-directed phasing during trans-actingsiRNA biogenesis in plants.[J] Cell2005,121(2):207-21.
    [73] Schwab, R., J. F. Palatnik et al. Specific effects of microRNAs on the plant transcriptome.[J]Dev Cell2005,8(4):517-27.
    [74] Cochrane DR, Jacobsen BM, Connaghan KD, Howe EN, Bain DL, Richer JK.Progestin regulatedmiRNAs that mediate progesterone receptor action inbreast cancer.[J] Mol Cell Endocrinol.2012May15;355(1):15-24
    [75] Jiang H, Zhang G, Wu JH, Jiang CP.Diverse roles of miR-29in cancer[J] Oncol Rep.2014Apr;31(4):1509-16
    [76] Gebeshuber CA, Zatloukal K, Martinez J. Gebeshuber CA1, Zatloukal K, Martinez J. miR-29asuppresses tristetraprolin, which is a regulator of epithelial polarity and metastasis[J] EMBORep.2009Apr;10(4):400-5
    [77]师锐赞,范彦英,胡晓玲.原癌基因c-fos在人乳腺癌耐药株MCF-7/ADR中的表达及意义.[J]山西医科大学学报,2012,43(10):731
    [78] Martin EC1, Bratton MR, Zhu Y, Rhodes LV, Tilghman SL, Collins-Burow BM, Burow ME.Insulin-like growth factor-1signaling regulates miRNA expression in MCF-7breast cancer cell line[J]PLoS One.2012;7(11):e49067. doi:10.1371/journal.pone.0049067
    [79]杨丽娟,刘玉琴,顾蓓,卞晓翠,冯海凉,杨振丽,刘艳艳。人乳腺癌细胞系中上皮型钙黏连蛋白表达对其黏附和增殖的影响.http://d.wanfangdata.com.cn/periodical_zhblx201012011.aspx.中华病理学杂志2010,39(12)
    [80] Yujie Liu, Yujie Liu, Yujie Liu, Yujie Liu,,Wei Huang, Yudong Li.Lin28InducesEpithelial-to-Mesenchymal Transition and Stemness via Downregulation of Let-7a in Breast CancerCells.PLOS ONE.2013December;8(12)e83083
    [81] Cai WY, Wei TZ, Luo QC, Wu QW, Liu QF, Yang M, Ye GD, Wu JF, Chen YY, Sun GB, Liu YJ, ZhaoWX,Zhang ZM, Li BA. The Wnt-β-catenin pathway represses let-7microRNA expression throughtransactivation of Lin28to augment breast cancer stem cell expansion.[J]Cell Sci.2013Jul1;126:2877-89
    [82] Xiaowen Hu, Jinyi Guo, Lan Zheng.The Heterochronic microRNA let-7Inhibits Cell Motility byRegulating the Genes in the Actin Cytoskeleton Pathway in Breast Cancer.PublishedOnline,http://www.ncbi.nlm.nih.gov/pubmed/23339187,Mol Cancer Res;2013,March.11(3)
    [83] Lu L, Katsaros D, Zhu Y, Hoffman A, Luca S, Marion CE, Mu L, Risch H, Yu H. Let-7a regulation ofinsulin-like growth factors in breast cancerBreast.[J]Cancer Res Treat.2011Apr;126(3):687-94
    [84] Vrba L,Mu oz-Rodríguez JL, Stampfer MR, Futscher BW. miRNA gene promoters are frequenttargets of aberrant DNA methylation in human breast cancer [J]. PLoS One.2013;8(1):e54398
    [85] Mitra D, Das PM, Huynh FC, Jones FE.Jumonji/ARID1B (JARID1B) protein promotes breast tumorcell cycle progression through epigenetic repression of microRNA let-7e.[J] Biol Chem.2011Nov25;286(47):40531-5
    [86] Shibahara Y, Miki Y, Onodera Y, Hata S, Chan MS, Yiu CC, Loo TY, Nakamura Y, Akahira J, IshidaT, Abe K. Aromatase inhibitor treatment of breast cancer cells increases the expression of let-7f, amicroRNA targeting CYP19A1.[J] Pathol.2012Jul;227(3):357-66
    [87] Chen Y, Song Y, Wang Z, Yue Z, Xu H, Xing C, Liu Z: Altered expression of MiR-148a and MiR-152in gastrointestinal cancers and its clinical significance.[J] Gastrointest Surg2010,14:1170–1179.
    [88] Cuk K, Zucknick M, Heil J, Madhavan D, Schott S, Turchinovich A, Arlt D,Rath M, Sohn C, BennerA, Junkermann H, Schneeweiss A, Burwinkel B:Circulating microRNAs in plasma as early detectionmarkers for breast cancer.[J]Int J Cancer2012. doi:10.1002/ijc.27799
    [89] Yuan K, Lian Z, Sun B, Clayton MM, Ng IO, Feitelson MA: Role of miR-148a in hepatitis Bassociated hepatocellular carcinoma.[J]PLoS One2012,7:e35331.
    [90] Xu Q, Jiang Y, Yin Y, Li Q, He J, Jing Y, Qi YT, Xu Q, Li W, Lu B, Peiper SS,Jiang BH, Liu LZ: Aregulatory circuit of miR-148a/152and DNMT1in modulating cell transformation and tumorangiogenesis through IGF-IR and IRS1.[J] J Mol Cell Biol2013,5:3–13
    [91] Pinatel EM, Orso F, Penna E, Cimino D, Elia AR, Circosta P, Dentelli P, Brizzi MF, Provero P,TavernaD. miR-223is a coordinator of breast cancer progression as revealed by bioinformatics predictions.[J]PLoS One.2014Jan6;9(1):e84859
    [92] Gong B, Hu H, Chen J, Cao S, Yu J, Xue J, Chen F, Cai Y, He H, Zhang L. Caprin-1is a novelmicroRNA-223target for regulating the proliferation and invasion of human breast cancercells[J]Biomed Pharmacother.2013Sep;67(7):629-36
    [93]Masciarelli S, Fontemaggi G, Di Agostino S, Donzelli S, Carcarino E, Strano S, BlandinoG.Gain-of-function mutant p53downregulates miR-223contributing to chemoresistance of culturedtumor cells. http://www.ncbi.nlm.nih.gov/pubmed/23584479Oncogene.2013Apr15(106)
    [94] Yang M, Chen J, Su F, Yu B, Su F, Lin L, Liu Y, Huang JD, Song E.Microvesicles secreted bymacrophages shuttle invasion-potentiating microRNAs into breast cancer cells[J] Mol Cancer.2011Sep22;10:117
    [95] Gao LB, Bai P, Pan XM, Jia J, Li LJ, Liang WB, Tang M, Zhang LS, Wei YG, Zhang L.Theassociation between two polymorphisms in pre-miRNAs and breastcancer risk: ameta-analysis[J]Breast Cancer Res Treat.2011Jan;125(2):571-4
    [96] Shen J, Ambrosone CB, DiCioccio RA, Odunsi K, Lele SB, Zhao H.A functional polymorphism in themiR-146a gene and age of familialbreast/ovarian cancer diagnosis.[J]Carcinogenesis.2008Oct;29(10):1963-6
    [97] Hurst DR, Edmonds MD, Scott GK, Benz CC, Vaidya KS, Welch DR.Breast cancer metastasissuppressor1up-regulates miR-146, which suppresses breast cancer metastasisHurst DR1, EdmondsMD, Scott GK, Benz CC, Vaidya KS, Welch DR.Cancer Res.2009Feb15;69(4):1279-83
    [98] Neel JC, Lebrun JJ.Activin and TGFβ regulate expression of the microRNA-181family to promotecell migration and invasion in breast cancer cells[J]Cell Signal.2013Jul;25(7)
    [99] Wang Y, Yu Y, Tsuyada A, Ren X, Wu X, Stubblefield K, Rankin-Gee EK, Wang SE.Transforminggrowth factor-β regulates the sphere-initiating stem cell-like feature in breast cancer throughmiRNA-181and ATM.[J] Oncogene.2011Mar24;30(12):1470-80
    [100] Nagpal N1, Ahmad HM, Molparia B, Kulshreshtha R.MicroRNA-191, an estrogen-responsivemicroRNA, functions as an oncogenic regulator in human breast cancer.[J]Carcinogenesis.2013Aug;34(8):1889-99.
    [101] Gianpiero Di Leva, Claudia Piovan, Pierluigi Gasparini.et.Estrogen Mediated-Activation ofmiR-191/425Cluster Modulates Tumorigenicity of Breast Cancer Cells Depending on EstrogenReceptor Status.PLoS Genet.2013;9(3):e1003311
    [102] Jadeski L1, Mataraza JM, Jeong HW, Li Z, Sacks DB.IQGAP1stimulates proliferation and enhancestumorigenesis of human breast epithelial cells.[J]Biol Chem.2008Jan11;283(2):1008-17.
    [103] Chen W, Harbeck MC, Zhang W, Jacobson JR. MicroRNA regulation of integrins.[J] TranslRes.2013Sep;162(3):133-43
    [104] Mamoru Ouchida, Hirotaka Kanzaki, Sachio Ito, Hiroko Hanafusa, Yoshimi Jitsumori,Seiji Tamaru,Kenji Shimizu.Novel Direct Targets of miR-19a Identified in Breast Cancer Cells by a QuantitativeProteomic Approach.PLoS One.2012;7(8):e44095
    [105] H Al-Nakhle, PA Burns, M Cummings, AM Hanby, TA Hughes ERβ1expression is regulated bymiR-92in breast cancer [J] Cancer Res.2010June1;70(11):4778–4784.
    [106] Pogribny IP, Filkowski JN, Tryndyak VP, Golubov A, Shpyleva SI, Kovalchuk O. Alterations ofmicroRNAs and their targets are associated with acquired resistance of MCF-7breast cancer cells tocisplatin.[J] Int J Cancer.2010Oct15;127(8):1785-94.
    [107] Luigi Cicatiello, Margherita Mutarelli,Oli M.V. Grober,Ornella Paris,Estrogen Receptor_Controls aGene Network inLuminal-Like Breast Cancer Cells Comprising Multiple Transcription Factors andMicroRNAs [J]The American Journal of Pathology,2010May,Vol.176, No.5,:2113-2115
    [108] Li XY, Luo QF, Wei CK, Li DF, Li J, Fang L. MiRNA-107inhibits proliferation and migration bytargeting CDK8in breastcancer.[J] Int J Clin Exp Med.2014Jan15;7(1):32-40
    [109] Chen PS, Su JL, Cha ST, Tarn WY, Wang MY, Hsu HC, Lin MT, Chu CY, Hua KT, Chen CN, KuoTC, Chang KJ,Hsiao M, Chang YW, Chen JS, Yang PC, Kuo ML.miR-107promotes tumorprogression by targeting the let-7microRNA in mice and humans.[J]J Clin Invest.2011Sep;121(9):3442-55
    [110] L Lezina, N Purmessu, AV Antonov, T Ivanova,et.miR-16and miR-26a target checkpoint kinasesWee1and Chk1in response to p53activation by genotoxic stress.:Cell Death and Disease (2013)4,e953
    [111] Rivas MA, Venturutti L, Huang YW, Schillaci R, Huang TH, Elizalde PV.Downregulation of thetumor-suppressor miR-16via progestin-mediated oncogenic signaling contributes to breast cancerdevelopment.[J]Breast Cancer Res.2012May14;14(3):R77.
    [112] Boncristiano S, CalhounM, Howard Vet al. Neocortica l synaptic bouton number is maintaineddespite robust amyloid deposition in APP23transgenic mice [J]. Neuro biol Aging,2005,26:607-613.
    [113] Bensen JT, Tse CK, Nyante SJ, Barnholtz-Sloan JS, Cole SR, Millikan RC..Association of germlinemicroRNA SNPs in pre-miRNA flanking region andbreast cancer risk and survival: theCarolina Breast Cancer Study.[J]Cancer Causes Control.2013Jun;24(6):1099-109
    [114] Imam JS, Buddavarapu K, Lee-Chang JS, Ganapathy S, Camosy C, Chen Y, Rao MK.MicroRNA-185suppresses tumor growth and progression by targeting the Six1oncogene in humancancers.[J]Oncogene.2010Sep2;29(35):4971-9
    [115] Farazi TA, Horlings HM, Ten Hoeve JJ, Mihailovic A, Halfwerk H, Morozov P, Brown M, HafnerM, Reyal F, van Kouwenhove M, Kreike B, Sie D, Hovestadt V, Wessels LF, van de VijverMJ, Tuschl T. MicroRNA sequence and expression analysis in breast tumors by deep sequencing.[J]Cancer Res.2011Jul1;71(13):4443-53
    [116] Bergamaschi A, Katzenellenbogen BS.Tamoxifen downregulation of miR-451increases14-3-3ζ andpromotes breastcancer cell survival and endocrine resistance.[J]Oncogene.2012Jan5;31(1):39-47
    [117] Lucy Pigati, Sree C. S. Yaddanapudi, Ravi Iyengar.et.Selective Release of MicroRNA Species fromNormal and Malignant Mammary Epithelial Cells.PLoS One.2010Oct20;5(10):e13515
    [118] Tahiri A, Leivonen SK, Lüders T, Steinfeld I, Ragle Aure M, Geisler J, M kel R, Nord S, RiisML, Yakhini Z,Kleivi Sahlberg K, B rresen-Dale AL, Per l M, Bukholm IR, Kristensen VN.ofcancer-related miRNAs is a common event in both benign and malignant human breast tumors.[J]Carcinogenesis.2014Jan;35(1):76-85
    [119] Lerebours F, Cizeron-Clairac G, Susini A, Vacher S, Mouret-Fourme E, Belichard C, BrainE, Alberini JL,Spyratos F, Lidereau R, Bieche I.miRNA expression profiling ofinflammatory breast cancer identifies a5-miRNA signature predictive of breast tumor aggressiveness.[J] Int J Cancer.2013Oct1;133(7):1614-23.
    [120] Hu Z, Dong J, Wang LE, Ma H, Liu J, Zhao Y, Tang J, Chen X, Dai J, Wei Q, Zhang C, Shen H.Serum microRNA profiling and breast cancer risk: the use of miR-484/191as endogenouscontrols[J]Carcinogenesis.2012Apr;33(4):828-34
    [121] Li Q, Yao Y, Eades G, Liu Z, Zhang Y, Zhou Q.Downregulation of miR-140promotes cancer stemcell formation in basal-like early stage breast cancer. http://www.ncbi.nlm.nih.gov/pubmed/23752191Oncogene.2013Jun10
    [122] Li Q, Eades G, Yao Y, Zhang Y, Zhou Q.J Biol Chem. Characterization of a stem-like subpopulationin basal-like ductal carcinoma in situ (DCIS) lesions.[J] J Biol Chem.2014Jan17;289(3):1303-12
    [123] Vazquez-Martin A, Cufí S, López-Bonet E, Corominas-Faja B, Cuyàs E, Vellon L, Iglesias JM, LeisO,Martín AG, Menendez JA.Reprogramming of non-genomic estrogen signaling by the stemnessfactor SOX2enhances the tumor-initiating capacity of breast cancer cells.[J] Cell Cycle.2013Nov15;12(22):3471-7
    [124] Soria-Valles C, Gutiérrez-Fernández A, Guiu M, Mari B, Fueyo A, Gomis RR, López-Otín C.Theanti-metastatic activity of collagenase-2in breast cancer cells is mediated by a signaling pathwayinvolving decorin and miR-21. http://www.ncbi.nlm.nih.gov/pubmed/23851508Oncogene.2013Jul15.
    [125] Hafner M, Landgraf P, Ludwig J, Rice A, Ojo T, Lin C, Holoch D, Lim C, Tuschl T. Identification ofmicroRNAs and other small regulatory RNAs using cDNA library sequencing.[J]Methods.2008Jan;44(1):3-12.
    [126] Ruby JG, Jan C, Player C, Axtell MJ, Lee W, Nusbaum C, Ge H, Bartel DP. Large-scale sequencingreveals21U-RNAs and additional microRNAs and endogenous siRNAs in C. elegans.[J]Cell.2006Dec15;127(6):1193-207.
    [127] Calabrese JM, Seila AC, Yeo GW, Sharp PA. RNA sequence analysis defines Dicer's role in mouseembryonic stem cells.[J] Proc Natl Acad Sci U S A.2007Nov13;104(46):18097-102.
    [128] Kanehisa M, Araki M, Goto S, Hattori M, Hirakawa M, Itoh M, Katayama T, Kawashima S, OkudaS,Tokimatsu T, Yamanishi Y. KEGG for linking genomes to life and the environment..[J]NucleicAcids Res.2008Jan;36:D480-4

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700