碳/金属复合纳米结构性质调控及其能量转化的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
十世纪九十年代以来,低维碳纳米结构材料的研究一直是物理、化学、材料学等多学科交叉的热点之一。碳原子以sp2杂化形式构成六角形蜂窝状结构,并有序排列组成包括一维碳纳米管和二维石墨烯在内的低维碳纳米结构材料。由于其独特的结构特征,这些低维度碳纳米结构材料具有优异的性质:例如高弹性模量,高机械强度,高热导率,高载流子迁移率以及大比表面积等。低维度碳纳米材料目前被认为是后硅时代的重要替代材料,其与金属构成的复合纳米结构不但拥有原先单体各自的物理化学特性,同时还具有特殊的增效协同作用,从而进一步拓宽了碳纳米材料及其复合体系的应用范围,有望在电学、光电、力学、传感、能源、催化等诸多领域展现其迷人的色彩。本论文基于第一性原理以及分子动力学方法,对碳/金属复合纳米结构的空间构型、电子掺杂特性、自旋轨道耦合机理以及热输运过程进行了研究,在此基础上对调节其结构性质及利用复合结构收集核衰变能应用方面也进行了探索性研究。
     基于密度泛函理论,本论文进行了石墨烯/金属复合纳米结构的基本性质以及张力作用对界面吸附和电性掺杂调控的研究。石墨烯/金属接触面的物理性吸附不会破坏石墨烯狄拉克点附近独特的线性关系,但却面临巨大的应用挑战,即石墨烯和金属之间非常弱的界面结合(~30meV)使其在常温条件下会出现解离问题。计算发现施加适当的界面张力,可以明显减小石墨烯和金属的面问距并极大地增强界面结合(最大增强315%),从而简单有效地克服界面解离问题;同时张力作用可以在102量级上调制石墨烯中的载流子浓度。研究表明该界面变化的物理机制为增强的pd相互作用和张力所致的界面偶极子相互作用。
     采用全势线性缀加平面波方法,本论文研究了石墨烯/金属复合纳米结构的自旋轨道耦合效应及其增强机理,探讨了原子序数和pd相互作用对自旋轨道耦合劈裂的影响。研究中,我们采用了低原子序数的金属铜与石墨烯构成复合纳米结构,重点研究了金属的存在对石墨烯狄拉克点附近的自旋轨道耦合效应的影响。计算结果表明,复合结构中金属铜使石墨烯π态产生了-2meV的自旋轨道耦合劈裂。自旋轨道耦合劈裂在不改变金属类型而只增加界面3%张力的条件下,最大值出乎意料地增加到-83meV。对石墨烯π态成分的分析表明此张力调控下的巨大自旋轨道耦合劈裂是碳原子pz态与铜dz2态混合所致。结果首次证明了在低原子序数的3d金属上,石墨烯可以在狄拉克点实现巨大的旋轨劈裂,对金属衬底上石墨烯旋轨耦合效应增强机理的认识有进一步推进。
     基于含时密度泛函理论,本论文对石墨烯/金属复合纳米结构用于收集α核衰变能进行了模拟研究,重点关注电子在辐射受激条件下的转移和重分布过程,该研究的目的是了解碳/金属复合纳米结构能量转化的基本物理机制,为利用碳/金属复合纳米结构实现衰变能向电能的直接转化提供理论基础。研究结果表明,衰变α粒子入射石墨烯/金属复合结构后,大量衰变粒子能量被复合结构吸收,其中绝大部分的能量沉积由金属贡献。结果表明,复合结构吸收衰变粒子能量后金属层的受激电荷能够获得足够高的能量克服界面势垒而积聚于石墨烯层;石墨烯层上的受激电子能量由于电声相互作用受到抑制,使得其能量传递主要在层内以电子传递为主
     运用分子动力学方法,通过精确控制碳纳米管中晶格的振动模式,本论文还研究了碳纳米管中的热脉冲的传输过程和机理。结果表明不同振动模式激发的热脉冲在碳纳米中的传播以不同种波包形式进行,传播的波包构型强烈依赖于初始振动模式。研究还表明传播速度最大的纵声学波具有孤子特定,其传播过程对空位缺陷具有较强的稳定性。
Since the1990s, the low-dimensional carbon nanostructures have alreadydrawn quite a lot of attentions in physics, chemistry, materials science andother disciplines. Carbon atoms are densely packed in a regular sp2-bondedhexagonal pattern and form the low-dimensional carbon nanostructures includ-ing the1-dimensional carbon nanotube and2-dimensional graphene. Due to theunique structure, the low-dimensional carbon nanostructures possess outstand-ing properties, such as high tensile strength and elastic modulus, high thermalconductivity, high electronic mobility and high specific surface area. Up to thepresent, the low-dimensional carbon nanostructures have been considered as oneof the most important materials in the post-silicon era. The combination ofgraphene and metals produce nanocomposites, which possess not only both func-tions of graphene and metals, but also some extraordinary synergetic efects. Thenanocomposites spread the applications of graphene in quite a lot of fields, in-cluding electronics, optics, mechanics, catalysis and energy. In this dissertation,we focus our attentions on the theoretical studies on carbon-based nanocom-posites. Based on the density functional theory and molecular dynamics, weinvestigated the structure configuration, electronic doping, spin-orbit coupling ofthe nanocomposites, as well as the modulations of the properties. In addition,the application of graphene-metal nanocomposites in harvesting nuclear energywas also studied.
     Based on the density functional theory, the properties of graphene/metalinterface and the influences of strain on the interface were studied. It is foundthat the physical adsorption of graphene on metal does not sacrifice graphene’sunique linear dispersion around the Dirac point. However, a huge challenge inthe potential applications is the weak binding (~30meV) at the contacts. Arealizable tensile strain is found to be very efective in enhancing the interfacebinding as well as shifting the Fermi level. Particularly, an enhancement ofthe binding energy up to315%can be achieved because of the dipole-dipole interaction.
     Based on the full potential linearized augmented plane wave method, thespin-orbit splitting around the Dirac point and its enhancement were studied.We mainly focus our attentions on the roles of the substrate’s atomic numberand the p d interaction between C and metals. It is found that the presenceof light metal substrate Cu generates a small spin-orbit splitting about2meVaround the Dirac point. When a tensile strain of about3%is applied to theinterface, the spin-orbit splitting is greatly enhanced to a maximum value of83meV. The analysis of the compositions of the π-derived band suggests that the Cpzand Cu dz2interaction is responsible for the induced giant spin-orbit splitting.The results confirm, for the first time, that a sufcient spin-orbit splitting canbe achieved in graphene on substrates with small atomic numbers.
     Using time-dependent density functional theory, the process and mechanismof the conversion from radiation energy into electric power at graphene/metalinterface were studied. It is found that the energetic α particle loses its kineticenergy when it passes through the graphene/metal interface. Most of the αparticle’s energy is absorbed by the metal atoms, resulting in excited electrons.The excited electrons have high enough energy to overcome the potential barrierbetween graphene and metal, and then accumulate at the graphene layer. Dueto the bottleneck that limits electronic energy redistribution into the lattice, theexcited electrons maintain their energies during transport in graphene.
     The propagation of heat pulses along single-wall carbon nanotube (SWCNT)is also studied by using molecular dynamics. Controlled heat pulses were usedin this work to excite heat wave packets which propagate along SWCNT. It isfound that the propagation of excited wave packets significantly depend on theinitial components of the heat pulses. The excited leading wave packets or heatsignals keep their shapes and amplitudes during propagation and have robustnessagainst vacancy defects, which indicates the stability of the heat wave packetsduring the propagation.
引文
[1]http://en.wikipedia.org/wiki/Atomic_battery.
    [2]张立德,牟季美.纳米材料和纳米结构.科学出版社,北京,2001.
    [3]王世敏,许祖勋,付晶.纳米材料制备技术.化学工业出版社,北京,2002.
    [4]许并社.纳米材料及应用技术.化学工业出版社,北京,2004.
    [5]L. Adamska, Y. Lin, A. J. Ross, M. Batzill, and I. I. Oleynik. Atom-ic and electronic structure of simple metal/graphene and complex met-al/graphene/metal interfaces. Physical Review B,85:195443,2012.
    [6]Lyudmyla Adamska, You Lin, Andrew J. Ross, Matthias Batzill, and Ivan I. Oleynik. Atomic and electronic structure of simple metal/graphene and complex metal/graphene/metal interfaces. Phys. Rev. B,85:195443, May2012.
    [7]R. E. Allen, G. P. Alldredge, and F. W. de Wette. Studies of vibrational surface modes, ii. monatomic fee crystals. Phys. Rev. B,4:1661, Sep1971.
    [8]Christian R. Ast, Jurgen Henk, Arthur Ernst, Luca Moreschini, Mihaela C. Falub, Daniela Pacile, Patrick Bruno, Klaus Kern, and Marco Grioni. Giant spin splitting through surface alloying. Phys. Rev. Lett.,98:186807,2007.
    [9]Phaedon Avouris. Graphene:Electronic and photonic properties and de-vices. Nano Letters,10(11):4285-4294,2010.
    [10]Phaedon Avouris, Zhihong Chen, and Vasili Perebeinos. Carbon-based electronics. Nature nanotechnology,2(10):605-615,2007.
    [11]Adrian Bachtold, Peter Hadley, Takeshi Nakanishi, and Cees Dekker. Logic circuits with carbon nanotube transistors. Science,294(5545):1317-1320,2001.
    [12] DS Bethune, CH Klang, MS De Vries, G Gorman, R Savoy, J Vazquez, andR Beyers. Cobalt-catalysed growth of carbon nanotubes with single-atomic-layer walls. Nature,1993.
    [13] P. E. Blo¨chl. Projector augmented-wave method. Phys. Rev. B,50:17953–17979, Dec1994.
    [14] J. C. Boettger and S. B. Trickey. First-principles calculation of the spin-orbit splitting in graphene. Phys. Rev. B,75:121402,2007.
    [15] Sergiy Bubin, Bin Wang, Sokrates Pantelides, and K′alm′an Varga. Simula-tion of high-energy ion collisions with graphene fragments. Phys. Rev. B,85:235435, Jun2012.
    [16] Yu A Bychkov and E I Rashba. Oscillatory efects and the magnetic sus-ceptibility of carriers in inversion layers. Journal of Physics C: Solid StatePhysics,17(33):6039,1984.
    [17] C. W. Chang, D. Okawa, H. Garcia, A. Majumdar, and A. Zettl. Break-down of fourier.s law in nanotube thermal conductors. Phys. Rev. Lett.,101:075903, Aug2008.
    [18] Chih-Wei Chang, David Okawa, Henry Garcia, Arunava Majumdar, andAlex Zettl. Breakdown of fourier.s law in nanotube thermal conductors.Physical review letters,101(7):075903,2008.
    [19] CW Chang, D Okawa, A Majumdar, and A Zettl. Solid-state thermal rec-tifier. Science,314(5802):1121–1124,2006.
    [20] Yu. S. Dedkov, M. Fonin, U. Ru¨diger, and C. Laubschat. Rashba efect inthe graphene/ni(111) system. Phys. Rev. Lett.,100:107602, Mar2008.
    [21] Y Ding, Y Jiang, F Xu, J Yin, H Ren, Q Zhuo, Z Long, and P Zhang. Prepa-ration of nano-structured lifepo4/graphene composites by co-precipitationmethod. Electrochemistry Communications,12(1):10–13,2010.
    [22] A. Dyrdal, V. K. Dugaev, and J. Barna′s. Spin hall efect in a system ofdirac fermions in the honeycomb lattice with intrinsic and rashba spin-orbitinteraction. Phys. Rev. B,80:155444,2009.
    [23] Zheyu Fang, Zheng Liu, Yumin Wang, Pulickel M Ajayan, Peter Nordlan-der, and Naomi J Halas. Graphene-antenna sandwich photodetector. Nanoletters,12(7):3808–3813,2012.
    [24] EA Friis, RS Lakes, and JB Park. Negative poisson’s ratio polymeric andmetallic foams. Journal of Materials Science,23(12):4406–4414,1988.
    [25] Miguel Fuentes-Cabrera, M. I. Baskes, Anatoli V. Melechko, and MichaelL. Simpson. Bridge structure for the graphene/ni(111) system: A firstprinciples study. Phys. Rev. B,77:035405, Jan2008.
    [26] A. K. Geim and K. S. Novoselov. The rise of graphene. Nat Mater,6(3):183,2007.
    [27] Andre K Geim and Konstantin S Novoselov. The rise of graphene. Naturematerials,6(3):183–191,2007.
    [28] G. Giovannetti, P. A. Khomyakov, G. Brocks, V. M. Karpan, J. van denBrink, and P. J. Kelly. Doping graphene with metal contacts. PhysicalReview Letters,101:026803,2008.
    [29] M. Gmitra, S. Konschuh, C. Ertler, C. Ambrosch-Draxl, and J. Fabian.Band-structure topologies of graphene: Spin-orbit coupling efects fromfirst principles. Phys. Rev. B,80:235431,2009.
    [30] Wenbin Gong, Wei Zhang, Cuilan Ren, Xuezhi Ke, Song Wang, Ping Huai,Wenqing Zhang, and Zhiyuan Zhu. Strain-controlled interface engineeringof binding and charge doping at metal-graphene contacts. Applied PhysicsLetters,103(14):143107,2013.
    [31] JE Graebner, S Jin, GW Kammlott, JA Herb, and CF Gardinier. Largeanisotropic thermal conductivity in synthetic diamond films.1992.
    [32] Stefan Grimme. Semiempirical gga-type density functional constructedwith a long-range dispersion correction. Journal of Computational Chem-istry,27(15):1787–1799,2006.
    [33] Ting Guo, MD Diener, Yan Chai, MJ Alford, RE Haufler, SM McClure, TOhno, JH Weaver, GE Scuseria, and RE Smalley. Uranium stabilization ofc28: a tetravalent fullerene. Science,257(5077):1661–1664,1992.
    [34] R. He, L. Y. Zhao, N. Petrone, K. S. Kim, M. Roth, J. Hone, P. Kim, A.Pasupathy, and A. Pinczuk. Large physisorption strain in chemical vapordeposition of graphene on copper substrates. Nano Letters,12(5):2408,2012.
    [35] J Hone, MC Llaguno, NM Nemes, AT Johnson, JE Fischer, DA Walters,MJ Casavant, J Schmidt, and RE Smalley. Electrical and thermal trans-port properties of magnetically aligned single wall carbon nanotube films.Applied Physics Letters,77(5):666–668,2000.
    [36] J Hone, M Whitney, C Piskoti, and A Zettl. Thermal conductivity of single-walled carbon nanotubes. Physical Review B,59(4):R2514,1999.
    [37] Bing Huang, Jaejun Yu, and Su-Huai Wei. Strain control of magnetism ingraphene decorated by transition-metal atoms. Phys. Rev. B,84:075415,Aug2011.
    [38] Sumio Iijima and Toshinari Ichihashi. Single-shell carbon nanotubes of1-nm diameter. Nature,1993.
    [39] Ali Izadi-Najafabadi, Takeo Yamada, Don N Futaba, Masako Yudasa-ka, Hideyuki Takagi, Hiroaki Hatori, Sumio Iijima, and Kenji Ha-ta. High-power supercapacitor electrodes from single-walled carbonnanohorn/nanotube composite. ACS nano,5(2):811–819,2011.
    [40] Hao Jiang, Chunzhong Li, Ting Sun, and Jan Ma. A green and high energydensity asymmetric supercapacitor based on ultrathin mno2nanostructuresand functional mesoporous carbon nanotube electrodes. Nanoscale,4:807–812,2012.
    [41] P. A. Khomyakov, G. Giovannetti, P. C. Rusu, G. Brocks, J. van den Brink,and P. J. Kelly. First-principles study of the interaction and charge transferbetween graphene and metals. Physical Review B,79:195425,2009.
    [42] P Kim, Li Shi, A Majumdar, and PL McEuen. Thermal transport mea-surements of individual multiwalled nanotubes. Physical review letters,87(21):215502,2001.
    [43] Sergej Konschuh, Martin Gmitra, and Jaroslav Fabian. Tight-binding theo-ry of the spin-orbit coupling in graphene. Physical Review B,82(24):245412,2010. PRB.
    [44] Arkady V Krasheninnikov, Yoshiyuki Miyamoto, and David Tom′anek. Roleof electronic excitations in ion collisions with carbon nanostructures. Phys-ical review letters,99(1):016104,2007.
    [45] AV Krasheninnikov and F Banhart. Engineering of nanostructured carbonmaterials with electron or ion beams. Nature materials,6(10):723–733,2007.
    [46] G. Kresse and J. Furthmu¨ller. Efcient iterative schemes for abinitio total-energy calculations using a plane-wave basis set. Phys. Rev. B,54:11169–11186, Oct1996.
    [47] Jayeeta Lahiri, Travis Miller, Lyudmyla Adamska, Ivan I Oleynik, andMatthias Batzill. Graphene growth on ni (111) by transformation of asurface carbide. Nano letters,11(2):518–522,2010.
    [48] A Latg′e, CG Rocha, LAL Wanderley, M Pacheco, P Orellana, and Z Bar-ticevic. Defects and external field efects on the electronic properties of acarbon nanotube torus. Physical Review B,67(15):155413,2003.
    [49] Baowen Li, Lei Wang, and Giulio Casati. Thermal diode: Rectification ofheat flux. arXiv preprint cond-mat/0407093,2004.
    [50] Z Y Li, Z Q Yang, S Qiao, J Hu, and R Q Wu. Spin orbit splitting ingraphene on metallic substrates. Journal of Physics: Condensed Matter,23(22):225502,2011.
    [51] Y-M Lin, Christos Dimitrakopoulos, Keith A Jenkins, Damon B Farmer, H-Y Chiu, Alfred Grill, and Ph Avouris.100-ghz transistors from wafer-scaleepitaxial graphene. Science,327(5966):662–662,2010.
    [52] Chang-Hua Liu, Nanditha M Dissanayake, Seunghyun Lee, KyunghoonLee, and Zhaohui Zhong. Evidence for extraction of photoexcited hot car-riers from graphene. ACS nano,6(8):7172–7176,2012.
    [53] Ming Liu, Xiaobo Yin, Erick Ulin-Avila, Baisong Geng, Thomas Zentgraf,Long Ju, Feng Wang, and Xiang Zhang. A graphene-based broadbandoptical modulator. Nature,474(7349):64–67,2011.
    [54] Dongwei Ma, Zhongyao Li, and Zhongqin Yang. Strong spin orbit split-ting in graphene with adsorbed au atoms. Carbon,50(1):297,2012.
    [55] MJ Majid and SS Savinskii. Variation of electron spectrum of elasticallyplane-strained graphene. Technical Physics Letters,37(6):519–521,2011.
    [56] Kiran Kumar Manga, Yong Zhou, Yongli Yan, and Kian Ping Loh. Multi-layer hybrid films consisting of alternating graphene and titania nanosheetswith ultrafast electron transfer and photoconversion properties. AdvancedFunctional Materials,19(22):3638–3643,2009.
    [57] D. Marchenko, J. S′anchez-Barriga, M. R. Scholz, O. Rader, and A.Varykhalov. Spin splitting of dirac fermions in aligned and rotated grapheneon ir(111). Phys. Rev. B,87:115426,2013.
    [58] D. Marchenko, A. Varykhalov, M. R. Scholz, G. Bihlmayer, E. I. Rashba,A. Rybkin, A. M. Shikin, and O. Rader. Giant rashba splitting in graphenedue to hybridization with gold. Nat Commun,3:1232,2012.
    [59] M. Mavrikakis, B. Hammer, and J. K. N rskov. Efect of strain on thereactivity of metal surfaces. Phys. Rev. Lett.,81:2819–2822, Sep1998.
    [60] Guang-Xin Ni, Hong-Zhi Yang, Wei Ji, Seung-Jae Baeck, Chee-Tat Toh,Jong-Hyun Ahn, Vitor M. Pereira, and Barbaros?zyilmaz. Tuning opticalconductivity of large-scale cvd graphene by strain engineering. AdvancedMaterials,26(7):1081,2014.
    [61] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V.Dubonos, I. V. Grigorieva, and A. A. Firsov. Electric field efect in atomi-cally thin carbon films. Science,306(5696):666–669,2004.
    [62] SC o.Brien, JR Heath, RF Curl, and RE Smalley. Photophysics of buck-minsterfullerene and other carbon cluster ions. The Journal of chemicalphysics,88(1):220–230,1988.
    [63] Mohamed A. Osman and Deepak Srivastava. Molecular dynamics simula-tion of heat pulse propagation in single-wall carbon nanotubes. Phys. Rev.B,72:125413, Sep2005.
    [64] Seung-Min Paek, EunJoo Yoo, and Itaru Honma. Enhanced cyclic per-formance and lithium storage capacity of sno2/graphene nanoporous elec-trodes with three-dimensionally delaminated flexible structure. Nano Let-ters,9(1):72–75,2008.
    [65] K. Pi, Wei Han, K. M. McCreary, A. G. Swartz, Yan Li, and R. K. Kawaka-mi. Manipulation of spin transport in graphene by surface chemical doping.Phys. Rev. Lett.,104:187201, May2010.
    [66] Liviu Popa-Simil. Nanotube potential future in nuclear power. In MRSProceedings, volume1081. Cambridge Univ Press,2008.
    [67] Horst Prinzbach, Andreas Weiler, Peter Landenberger, Fabian Wahl,Ju¨rgen W¨orth, Lawrence T Scott, Marc Gelmont, Daniela Olevano, andBernd v Issendorf. Gas-phase production and photoelectron spectroscopyof the smallest fullerene, c20. Nature,407(6800):60–63,2000.
    [68] O. Rader, A. Varykhalov, J. S′anchez-Barriga, D. Marchenko,A. Rybkin, and A. M. Shikin. Is there a rashba efec-t in graphene on span class=”aps-inline-formula” math dis-play=”inline” mn3/mn mi d/mi/math/span ferromagnets?Phys. Rev. Lett.,102:057602,2009.
    [69] E. I. Rashba. Sov. Phys. Solid State,2:1109,1960.
    [70] Emmanuel I. Rashba. Graphene with structure-induced spin-orbit coupling:Spin-polarized states, spin zero modes, and quantum hall efect. Phys. Rev.B,79:161409,2009.
    [71] A. M. Shikin, A. Varykhalov, G. V. Prudnikova, D. Usachov, V. K. Adam-chuk, Y. Yamada, J. D. Riley, and O. Rader. Origin of spin-orbit splittingfor monolayers of au and ag on w(110) and mo(110). Phys. Rev. Lett.,100:057601,2008.
    [72] Alexander M Shikin, Artem G Rybkin, Dmitry Marchenko, Anna A Rybki-na, Markus R Scholz, Oliver Rader, and Andrei Varykhalov. New Journalof Physics,15(1):013016,2013.
    [73] Ram Sevak Singh, Venkatram Nalla, Wei Chen, Wei Ji, and Andrew TSWee. Photoresponse in epitaxial graphene with asymmetric metal contacts.Applied Physics Letters,100(9):093116,2012.
    [74] J. Slawin′ska, P. Dabrowski, and I. Zasada. Doping of graphene by a au(111)substrate: Calculation strategy within the local density approximation anda semiempirical van der waals approach. Phys. Rev. B,83:245429, Jun2011.
    [75] Meryl D Stoller, Sungjin Park, Yanwu Zhu, Jinho An, and Rodney S Ruof.Graphene-based ultracapacitors. Nano letters,8(10):3498–3502,2008.
    [76] Jing (Jenifer) Sun, Stefan Caltapanides, and Hans-Friedrich Grjtzmacher.Isomeric c24+carbon cluster ions derived from perchlorocoronene. reactionsof carbon-cluster ions with pyridine. The Journal of Physical Chemistry A,102(14):2408–2414,1998.
    [77] Alexandre Tkatchenko and Matthias Schefer. Accurate molecular vander waals interactions from ground-state electron density and free-atomreference data. Phys. Rev. Lett.,102:073005, Feb2009.
    [78] Nikolaos Tombros, Csaba Jozsa, Mihaita Popinciuc, Harry T. Jonkman,and Bart J. van Wees. Electronic spin transport and spin precession insingle graphene layers at room temperature. Nature,448(7153):571,2007.
    [79] Vincent C Tung, Li-Min Chen, Matthew J Allen, Jonathan K Wassei,Kurt Nelson, Richard B Kaner, and Yang Yang. Low-temperature solu-tion processing of graphene-carbon nanotube hybrid materials for high-performance transparent conductors. Nano Letters,9(5):1949–1955,2009.
    [80] M. Vanin, J. J. Mortensen, A. K. Kelkkanen, J. M. Garcia-Lastra, K. S.Thygesen, and K. W. Jacobsen. Graphene on metals: A van der waalsdensity functional study. Phys. Rev. B,81:081408, Feb2010.
    [81] M. Vanin, J. J. Mortensen, A. K. Kelkkanen, J. M. Garcia-Lastra, K. S.Thygesen, and K. W. Jacobsen. Graphene on metals: A van der waalsdensity functional study. Phys. Rev. B,81:081408,2010.
    [82] A. Varykhalov, J. Sa′nchez-Barriga, A. M. Shikin, C. Biswas, E. Vescovo, A.Rybkin, D. Marchenko, and O. Rader. Electronic and magnetic propertiesof quasifreestanding graphene on ni. Phys. Rev. Lett.,101:157601,2008.
    [83] E. Voloshina and Y. Dedkov. Graphene on metallic surfaces: problems andperspectives. Phys Chem Chem Phys,14(39):13502–13514,2012.
    [84] T Wacharasindhu, JW Kwon, DE Meier, and JD Robertson. Radioiso-tope microbattery based on liquid semiconductor. Applied physics letters,95(1):014103–014103,2009.
    [85] Andrew L. Walter, Shu Nie, Aaron Bostwick, Keun Su Kim, Luca Moreschi-ni, Young Jun Chang, Davide Innocenti, Karsten Horn, Kevin F. McCarty,and Eli Rotenberg. Electronic structure of graphene on single-crystal cop-per substrates. Phys. Rev. B,84:195443, Nov2011.
    [86] Lei Wang and Baowen Li. Thermal logic gates: Computation with phonons.Phys. Rev. Lett.,99:177208, Oct2007.
    [87] Lei Wang and Baowen Li. Thermal memory: A storage of phononic infor-mation. Phys. Rev. Lett.,101:267203, Dec2008.
    [88] Qing Hua Wang, Zhong Jin, Ki Kang Kim, Andrew J. Hilmer, GeraldineL. C. Paulus, Chih-Jen Shih, Moon-Ho Ham, Javier D. Sanchez-Yamagishi,Kenji Watanabe, Takashi Taniguchi, Jing Kong, Pablo Jarillo-Herrero, andMichael S. Strano. Understanding and controlling the substrate efect ongraphene electron-transfer chemistry via reactivity imprint lithography. NatChem,4(9):724–732,2012.
    [89] Yan Wang, Zhiqiang Shi, Yi Huang, Yanfeng Ma, Chengyang Wang,Mingming Chen, and Yongsheng Chen. Supercapacitor devices based ongraphene materials. The Journal of Physical Chemistry C,113(30):13103–13107,2009.
    [90] S. A. Wolf, D. D. Awschalom, R. A. Buhrman, J. M. Daughton, S. vonMolnSr, M. L. Roukes, A. Y. Chtchelkanova, and D. M. Treger. Spintronics:A spin-based electronics vision for the future. Science,294(5546):1488,2001.
    [91] Junpeng Wu, Lei Wang, and Baowen Li. Heat current limiter and constantheat current source. Phys. Rev. E,85:061112, Jun2012.
    [92] Qiong Wu, Yuxi Xu, Zhiyi Yao, Anran Liu, and Gaoquan Shi. Superca-pacitors based on flexible graphene/polyaniline nanofiber composite films.Acs Nano,4(4):1963–1970,2010.
    [93] Fengnian Xia, Thomas Mueller, Yu-ming Lin, Alberto Valdes-Garcia, andPhaedon Avouris. Ultrafast graphene photodetector. Nature nanotechnol-ogy,4(12):839–843,2009.
    [94] Zhuo Yao. Carbon-based nanostructured materials as electrode in lithium-ion batteries and supercapacitors. PhD thesis, Wright State University,2013.
    [95] Zongyou Yin, Shixin Wu, Xiaozhu Zhou, Xiao Huang, Qichun Zhang, Fred-dy Boey, and Hua Zhang. Electrochemical deposition of zno nanorods ontransparent reduced graphene oxide electrodes for hybrid solar cells. Small,6(2):307–312,2010.
    [96] Yao Zhao, Jinquan Wei, Robert Vajtai, Pulickel M Ajayan, and Enrique VBarrera. Iodine doped carbon nanotube cables exceeding specific electricalconductivity of metals. Scientific reports,1,2011.
    [97] Yuda Zhao, Xin Liu, Dang Yuan Lei, and Yang Chai. Efects of sur-face roughness of ag thin films on surface-enhanced raman spectroscopy ofgraphene: spatial nonlocality and physisorption strain. Nanoscale,6:1311,2014.
    [98] Miao Zhou, Yunhao Lu, Chun Zhang, and Yuan Ping Feng. Strain efects onhydrogen storage capability of metal-decorated graphene: A first-principlesstudy. Applied Physics Letters,97(10):103109,2010.
    [99] Miao Zhou, Aihua Zhang, Zhenxiang Dai, Yuan Ping Feng, and ChunZhang. Strain-enhanced stabilization and catalytic activity of met-al nanoclusters on graphene. The Journal of Physical Chemistry C,114(39):16541–16546,2010.
    [100] Yanwu Zhu, Shanthi Murali, Meryl D Stoller, Aruna Velamakanni, RichardD Piner, and Rodney S Ruof. Microwave assisted exfoliation and reductionof graphite oxide for ultracapacitors. Carbon,48(7):2118–2122,2010.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700