无人机仿生紧密编队飞行控制技术研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
多无人机(Unmanned Aerial Vehicle,UAV)协同编队飞行(Coordinated Formation Flight,CFF)在军事和民用领域具有广阔的应用前景,正受到越来越广泛的关注。以赶超国外先进水平为目标,面向UAV开展多学科交叉基础性技术研究,有着非常重要的现实意义。
     本文着重研究多无人机仿生紧密编队飞行控制问题。分析了候鸟编队飞行原理,讨论了无人机紧密编队飞行的仿生机理,建立考虑气动耦合效应的紧密编队飞行模型,设计了基于小脑模型神经网络(Cerebellar Model Articulation Controller,CMAC)与PID复合控制的队形保持控制器,并开展了CFF半物理验证。主要工作包括:
     1)研究了大雁等候鸟编队飞行的特点,并建立鸟类单只和编队模型进行理论分析。从控制策略和几种CFF队形调整方法,以及基准参考点的选取等方面对队形动态调整的原理与规则进行研究。
     2)分析了各种涡流模型的特点,研究了紧密编队飞行气动耦合问题,并建立了尾涡引起的上洗和侧洗流模型。通过仿真分析了升力、阻力和侧力变化与编队间距变化之间的关系,并确定了节省能量的编队结构,进一步验证了鸟群编队的省力结构。
     3)针对多无人机紧密编队飞行的特点,考虑相邻两机间的涡流效应,建立多无人机紧密编队飞行模型。提出了一种基于CMAC和PID复合控制的编队保持控制器,并通过仿真验证了其有效性。
     4)利用本实验室已建成的UAV飞控系统虚拟原型(基于Statemate软件包)和物理原型(基于32位高性能DSP的飞行控制计算机)搭建CFF半物理验证平台,并基于该平台进行紧密编队队形保持的仿真试验。结果表明所设计的控制器有效可行。
The technology of multi-UAV coordinated formation flight is being concerned increasingly. It has extensive application perspective in military and civil industries. In order to catch up with foreign advanced level of the technology, it has an important practical significance to carry out a multi-disciplinary research of crossing technology.
     In this thesis, the topic of multi-UAV biomimetic close formation flight is studied. Based on the principle of migratory bird formation flight, the bionic principle of multi-UAV close formation flight is discussed. The close formation flight model with aerodynamic coupling is built. A formation keeping controller based on CMAC and PID is designed, and it is verified on the semi-physical verification platform of CFF. The main work of this paper is as follows:
     1) The characteristics of migratory birds flying in formation are introduced. This paper makes a theoretical analysis by establishing the bird’s single and formation models. The principles of formation dynamic adjustment are studied, such as control strategy, several methods of adjustment, selecting methods of formation reference point and so on.
     2) Many vortex models are analyzed and the aerodynamic coupling problem is studied in close formation flight. The models of upwash and sidewash caused by trail vortex are established. The relationship between the changes of the lift, drag and lateral force and the changes in distance is researched through the simulation analysis. The energy-saving formation structure is designed and verified.
     3) The model of multi-UAV close formation flight with vortex effects is established. A formation keeping controller based on CMAC and PID is proposed for multi-UAV formation flight control system. The simulation results have been included to demonstrate effectiveness of the proposed controller.
     4) The semi-physical verification platform of CFF is built. It contains the virtual prototype of flight control system based on the Statemate software and the physical prototype of flight control system based on the high-performance 32-bit DSP. Finally, a verification test for the close formation keeping controller based on the platform is done. The result shows that the controller is effective.
引文
[1]朱战霞,袁建平.无人机编队飞行问题初探.飞行力学,2003,21(2):5~7.
    [2] B. Cobleigh. Capabilities and future applications of the NASA autonomous formation flight (AFF) aircraft.AIAA-2002-3443. AIAA’s 1st UAV Conference, Portsmouth, Virginia, 2002.
    [3] Z. Bangash, R. Sanchez, A. Ahmed, et al. Aerodynamics of formation flight. AIAA-2004-725. The 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004.
    [4] C. Schumacher, S. Singh. Nonlinear control of multiple UAVs in close-coupled formation flight. AIAA-2000-4373. AIAA Guidance, Navigation, and Control Conference and Exhibit, Denver, CO, 2000.
    [5] S. M. Li, J. D. Boskovic, S. Seereeram, et al. Autonomous hierachical control of multiple unmanned combat air vehicles (UCAVs). Proceedings of the 2002 American Control Conference, 2002:274~279.
    [6] G. Vachtsevanos, L. Tang, J. Reimann. An intelligent approach to coordinated control of multiple unmanned aerial vehicles. Presented at the American Helicopter Society 60th Annual Forum, 2004.
    [7] P. Binetti, K. B. Ariyur, M. Krstic, et al. Formation flight qptimization using extremum seeking feedback. Journal of Guidance, Control, and Dynamics 2003, 26(1):132~142.
    [8] J. Walls, A. Howard, A. Homaifar, et al. A generalized framework for autonomous formation reconfiguration of multiple spacecraft. Aerospace Conference, IEEE, 2005:397~406.
    [9] D. M. Stipanovi'ca, G. Inalhana, R. Teob, et al. Decentralized overlapping control of a formation of unmanned aerial vehicles. Proceedings of the 41st IEEE Conference on Decision and Control, 2002, 3:2829~2835.
    [10] L. Pollini, F. Giulietti, M. Innocenti. Sensorless formation flight. AIAA-2001-4356. AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, 2001.
    [11] L. Pollini, M. Innocenti, R. Mati. Vision algorithms for formation flight and aerial refueling with optimal marker labeling. AIAA-2005-6010. AIAA Modeling and Simulation Technologies Conference and Exhibit, San Francisco, California, 2005.
    [12] M. Innocenti, L. Pollini, F. Giulietti. Management of communication failures in formation flight. Journal of Aerospace Computing, Information, and Communication, 2004, 1(1):19~35.
    [13] S. H. Pruett, G. J. Slutz, J. L. Paunicka, et al. Hardware-in-the-loop simulation using open controlplatform. AIAA-2003-5759. AIAA Modeling & Simulation Technologies Conference. Austin, Texas, 2003.
    [14]胡云安,左斌.无人机近距离编队飞行模型建立及控制器设计.飞行力学,2005,23(2):47~55.
    [15]胡军,都基焱,刘文清.多无人机控制与定位系统的研究.航空科学技术,2004,3:29~32.
    [16]左益宏,柳长安,罗昌行.多无人机监控航路规划.飞行力学,2004,22(3):31~34.
    [17]符小卫,高晓光.多架无人作战飞机协同作战的几个关键问题.电光与控制,2003,10(3):19~22.
    [18]刘金星,佟明安.多架无人作战飞机攻击行为的协调.飞行力学,2003,21(2):16~19.
    [19]安崇君,刘长卫.飞机尾涡对飞行安全的影响.飞行力学,2000,18(4):69~72.
    [20]鲍中行.军事仿生谈.北京:国防大学出版社,1990.
    [21]陈尔奎,喻俊志,王硕,等.多仿生机器鱼群体及单体控制体系结构的研究.中国科学院研究生院学报,2003,20(2):232~237.
    [22] P. Seiler, A. Pant, K. Hedrick. Analysis of bird formations. Proceedings of the 41st IEEE Conference on Decision and Control, 2002:118~123.
    [23] M. Andersson, J. Wallander. Kin selection and reciprocity in flight formation? Behavioral Ecology, 2004.15(1):158~162.
    [24] H. Weimerskirch, J. Martin, Y. Clerquin, et al. Energy saving in flight formation. Nature .2001, 413(6857):697~698.
    [25] P. B. S. Lissaman, C. A. Shollenberger. Formation flight of birds. Science, May, 1970, 1968:1003~1005.
    [26] L. L. Gould, F. Heppner. The vee formation of canada geese. Auk, 1974, 91:494~506.
    [27] J. P. Badgerow. An analysis of function in the formation flight of Canada geese. Auk, 1988, 93:41~52.
    [28] F. H. Heppner, J. L. Convissar, D. E. Moonan, et al. Visual angle and formation flight in Canada geese {Branta Canadensis}. Auk, 1985, 102:195~198.
    [29] M Andersson, J Wallander. Kin selection and reciprocity in flight formation? Behavioral Ecology, 2004,15(1):158~162.
    [30] F. R. Hainsworth. Induced drag savings from ground effect and formation flight in brown pelicans. Jounarl of Experimental Biology, 1988, 135:431~444.
    [31] C. J. Cutts, J. R. Speakman. Energy savings information flight of pink-footed geese. Journal of Experimental Biology, 1994, 189:251~261.
    [32] J. R. Speakman, D. Banks. The function of flight formations in Grelag Geese Anser anser; energy savings or orientation? Ibis, 1998, 140:280~287.
    [33] F. R. Hainsworth. Precision and dynamics of positioning by Canada geese flying in formation. Journal of Experimental Biology, 1987, 128:445~462.
    [34] T. Alerstam. Bird migration. Cambridge: Cambridge University Press, 1990.
    [35] C. J. Pennycuick. Bird flight performance: A Practical Calculation Manual, Oxford Science Publications, 1989.
    [36] P. Seiler. Coordinated control of unmanned aerial vehicles. Ph.D. thesis, University of California, Berkeley, 2001.
    [37] R H Middleton, G C Goodwin. Digital control and estimation: A Unified Approach, Prentice Hall, Englewood Cliffs, N.J., 1990.
    [38] D. P. Looze, J. S. Freudenberg. Tradeoffs and limitations in feedback systems. The Control Handbook, W.S. Levine, Ed., CRC Press, 1996:537~549.
    [39] J. Chen. On logarithmic complementary sensitivity integrals for MIMO systems. Proceedings of the American Control Conference, 1998:3529~3530.
    [40] J. Chen. Logarithmic integrals, interpolation bounds, and performance limitations in MIMO feedback systems. Proceedings of IEEE Transactions on Automatic Control, June 2000, 45(6):1098~1115.
    [41] F. Giulietti, L. Pollini, M. Innocenti. Formation flight control: A behavioral approach. AIAA-2001-4239.AIAA Guidance, Navigation, and Control Conference and Exhibit, Montreal, Canada, 2001.
    [42] L. H. Jennifer, E. M. James, and V. C. Norma. The NASA Dryden flight test approach to an aerial refueling system. NASA/TM-2005-212859.
    [43] A. Verma, C. N. Wu, V. Castelli, et al. UAV formation command and control management .AIAA 2003-6572. The 2nd AIAA "Unmanned Unlimited" Systems, Technologies, and Operations - Aerospace, Land, and Sea Conference, Workshop and Exhibition, San Diego, CA, 2003.
    [44] A. Lucas, R. R?nnquist, N. Howden, et al. Teamed UAVs - a new approach with intelligent agents. AIAA-2003-6574. The 2nd AIAA "Unmanned Unlimited" Systems, Technologies, and Operations - Aerospace, Land, and Sea Conference, Workshop and Exhibition, San Diego, CA, 2003.
    [45] Z. Bangash, R. Sanchez, A. Ahmed, et al. Aerodynamics of formation flight. AIAA-2004-725. 42nd AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, 2004.
    [46] P. Kostelnik, M. Samulka, M. Janosik. Scalable multi-robot formations using local sensing and communication. Proc. of the 3rd Int. Workshop on Robot Motion and Control. Poznan, 2002:319~324.
    [47]苏治宝,陆际联.多移动机器人队形控制的研究方法.机器人,2003,25(1):88~91.
    [48] B. D. William. Model predictive control: Extension to coordinated multi-vehicle formations and real-time implementation. Pasadena: California Institute of Technology, 2001.
    [49] G. Wagner, D. Jacques, W. Blake, et al. An analytical study of drag reduction in tight formation flight. AIAA-2001-4075. Presented at the AIAA Atmospheric Flight Mechanics Conference, Montreal, Quebec, 2001.
    [50]吴霞,郑建华.小卫星编队飞行队形控制与仿真,[硕士学位论文].北京:中国科学院研究生院,2006.
    [51] S. Venkataramanan, A. Dogan. Modeling of aerodynamic coupling between aircraft in close proximities. AIAA-2004-5172. AIAA Atmospheric Flight Mechanics Conference and Exhibit, Providence, Rhode Island, 2004.
    [52] Rohs, R. Paul. A fully coupled, automated formation control system for dissimilar airvraft in maneuvering, formation flight, MS thesis, AFIT/GE/ENG/91M-03, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 1991.
    [53] B. E. Louis, Automated Control of Aircraft in Formation Flight, Ms thesis, AFIT/GE/ENG/92D-07, School of Engineering, Air Force Institute of Technology (AU), Wright-Patterson AFB OH, 1992.12.
    [54] P. Meir, J. D. A. John, A. W. Proud. Tight formation flight control. Journal of Guidance, Control, and Dynamics. 2001,24(2):246~254.
    [55] Blakelock, H. John. Automatic Control of Aircraft and Missiles (Sencond Edition), Hohn Wiley & Sons, Inc., 1991.
    [56]刘金琨.先进PID控制MATLAB仿真(第二版).北京:电子工业出版社,2004.9.
    [57]胡守仁,沈清,胡德文.神经网络应用技术.长沙:国防科技大学出版社,1993.12.
    [58] J. S. Albus. A new approach to manipulator control: the cerebellar model articulation controller (CMAC). Journal of Dynamic System, Measurement and Control, 1975, 97(3):220~227.
    [59] R. Fierro, C. Belta, J. P. Desai, et al. On controlling aircraft formation. Proceedings of the 40th IEEE Conference on Decision and Control.Orlando, FL, USA: IEEE, 2001:1065~1070.
    [60] W. T. Miller, F. H. Glanz, L. G. Kraft. Application of a general learning algorithm to control of robotic manipulator. Int. J. robotics Res, 1987, 6(2):84~98.
    [61] F. C. Chen, C. H. Chang. Practical stability issues in CMAC neural network control systems. IEEE Transactions on Control Systems Technology, 1996, 4(1):86~91.
    [62] F. Giulietti, L. Pollini, M. Innocenti. Autonomous formation flight. Control Systems Magazine, 2000, 20(6): 34~44.
    [63] B. Selcuk, E. F. Georgios, J. George. Experimental cooperative control of fixed-wing unmanned aerial vehicles. Proceedings of the 43rd IEEE Conference on Decision and Control, Atlantis, Paradise Island, Bahamas, 2004:4292~4298.
    [64] B. Seanor, G. Campa, Y. Gu, et al. Formation flight test results for UAV research aircraft models. AIAA 1st Intelligent Systems Technical Conference, Chicago, Illinois, 2004:1~14.
    [65]邬伟江.无人机飞控系统测试平台的研究与实现,[硕士学位论文].南京:南京航空航天大学,2006.
    [66]程林.无人机飞控与地检系统的综合设计与实现,[硕士学位论文].南京:南京航空航天大学,2008.
    [67]杨忠.无人机飞控系统虚拟原型及物理验证相关技术研究,[博士后研究工作报告].南京:南京航空航天大学,2004.
    [68]姚轶非.基于DSP嵌入式FCC的相关技术研究,[硕士学位论文].南京:南京航空航天大学,2006.
    [69] M. Franzle, J. Niehaus, A. Metzner, et al. A semantics for distributed execution of statemate. Formal Aspects of Computing, 2003,15(4):390~405.
    [70] D. Harel, A. Naamad. The statemate semantics of statecharts. ACM Transactions on Software Engineering and Methodology, 1996, 5(4):293~333.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700