淫羊藿苷体内外免疫调节作用的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:研究淫羊藿苷(icariin,ICA)体内外对免疫细胞及免疫系统的影响,探讨淫羊藿苷的免疫调节活性及其作用机制,为淫羊藿苷应用于临床治疗肿瘤等疾病提供实验依据。
     方法:
     1在无菌条件下采集健康足月妊娠产妇脐血,用密度梯度离心法获得脐血单个核细胞,用GM-CSF、IL-4诱导获得未成熟的树突状细胞(dendritic cells, DCs)。
     2采用光镜及透射电镜(TEM)观察未处理组、TNF-α刺激组、ICA刺激组DCs的形态学变化。
     3采用流式细胞技术(flow cytometry,FCM)检测未处理组、TNF-α刺激组、ICA刺激组DCs表面CD1a、CD83、CD80、CD86的表达情况;检测经不同浓度ICA(12.5、25、50、100μg/ml)作用12小时后人子宫内膜癌耐药细胞株B-MD-C1(ADR+/+)表面CD54、CD18的表达情况以及细胞周期分布的情况。
     4采用ELISA方法检测未处理组、TNF-α刺激组、ICA刺激组DCs培养上清中IL-12和IFN-γ水平。
     5采用四甲基偶氮唑蓝法(MTT)检测未处理组、TNF-α刺激组、ICA刺激组DCs刺激T细胞增殖的能力;检测不同浓度ICA(12.5、25、50、100μg/ml),处理不同时间(24、48和72h)对B-MD-C1(ADR+/+)细胞增殖的抑制作用。
     6采用乳酸脱氢酶(LDH)释放法检测B-MD-C1(ADR+/+)细胞经不同浓度ICA(12.5、25、50、100μg/ml)作用12小时后,CIK细胞对其杀伤活性的变化。
     7采用逆转录-聚合酶链反应(revers transcription PCR,RT-PCR)半定量检测不同浓度ICA(0、12.5、25、50μg/ml)作用12小时后,B-MD-C1(ADR+/+)细胞CD54、CD18 mRNA表达的变化。
     8将60只7-8周龄C57BL/6j小鼠随机分为6组,建立小鼠免疫抑制模型,其中实验组、阳性对照组和模型对照组均于腹腔注射环磷酰胺(Cy,300mg/kg);第二天,实验组通过灌胃方式给予不同剂量ICA(150、80、40mg/kg·day),阳性对照组小鼠经腹腔注射参芪扶正注射液,(1ml/day)。模型对照组小鼠给予等量生理盐水(NS),连续给药10d,正常对照组小鼠不做任何处理,正常饲养。每天观察小鼠生存状态,于末次给药12小时后引颈处死小鼠,分离胸腺、脾、腹腔巨噬细胞、骨髓、外周血,备用。
     9采用HE染色光镜下观察小鼠胸腺组织结构变化。
     10采用MTT法检测小鼠脾淋巴细胞的增殖反应。
     11采用ELISA方法检测小鼠腹腔巨噬细胞产生TNF-α、IL-12的水平。
     12采用乳酸脱氢酶(LDH)释放法检测小鼠腹腔巨噬细胞杀伤能力的变化。
     13采用瑞氏-姬姆萨染色法观察小鼠骨髓和外周血涂片细胞形态变化。
     14采用全自动血液分析仪检测小鼠外周血红细胞、白细胞和血小板水平的变化。
     15光镜下计数小鼠单根股骨髓细胞(BMC)数量变化。
     结果:
     1人脐血单个核细胞(CBMC)经GM-CSF、IL-4诱导5天后呈现典型未成熟树突状细胞形态,细胞体积较小,表面毛刺状突起较少,细胞成簇分布,呈集落样生长。
     2 CBMC在体外诱导培养10天时,经ICA刺激5d产生具有典型成熟特征的DCs,细胞体积较大,形态不规则,表面有大量细而长的树突状突起,胞浆线粒体、粗面内质网丰富,核异染色质边集于核膜下,溶酶体和空泡少见。
     3表型分析发现,ICA刺激组DCs具有成熟的特征性表面分子CD1a、CD83、CD80和CD86的表达,表达水平与未处理组DCs相比均显著增加(P<0.05),CD80表达水平最高达(90.44±0.81)%;随着ICA作用浓度的增加,B-MD-C1(ADR+/+)细胞表面CD54、CD18表达水平逐渐升高,各浓度处理组之间细胞的CD54、CD18表达水平具有显著性差异(P<0.01),各浓度处理组与对照组细胞之间CD54、CD18的表达水平具有显著性差异(P<0.01)。流式细胞分析结果显示:ICA能使B-MD-C1(ADR+/+)细胞生长周期被阻滞在S期。
     4 ICA刺激组DCs培养上清中IL-12和IFN-γ的含量均明显高于对照组DCs(P<0.01),但与TNF-α刺激组DCs无显著性差异(P>0.05)。
     5经ICA刺激获得的DCs可明显刺激T细胞增殖,且随DCs与T细胞比例增加而增强;在12.5~100μg/ml浓度范围内ICA能显著抑制B-MD-C1(ADR+/+)体外增殖反应(P<0.05),抑制率与ICA呈明显的浓度和时间依赖性,其中100μg/ml ICA作用72h的抑制率最高,达到78.74%。
     6与非ICA处理组相比,12.5~100μg/ml浓度的ICA对B-MD-C1(ADR+/+)细胞对CIK具有明显的杀伤增敏作用。在不同效靶比5∶1、10∶1、20∶1时,CIK对B-MD-C1(ADR+/+)细胞的杀伤率随着ICA浓度及效靶比的增加而增加,并与对照组相比具有显著性差异(P<0.01);
     7随着ICA作用浓度的增加,B-MD-C1(ADR+/+)细胞CD54、CD18 mRNA表达水平逐渐升高,各浓度处理组与对照组细胞之间CD54、CD18 mRNA的表达水平具有显著性差异(P<0.05);
     8成功建立了环磷酰胺诱导的小鼠免疫抑制模型,模型组小鼠活动能力差,进食饮水状况不佳,在第6天时有一只死亡;正常对照组、阳性对照组、实验组小鼠的活动、进食、饮水均正常活跃,全部存活。
     9模型对照组小鼠胸腺组织结构发生明显改变,胸腺周围出现脂肪细胞变性和坏死,低浓度(40mg/kg·day)ICA处理组小鼠胸腺组织仍可见部分脂肪组织填充,但未见明显坏死组织。参芪扶正注射液和中、高剂量ICA处理组小鼠胸腺组织形态正常,未见明显改变。
     10 ConA可明显促进高(150mg/kg·day)、中剂量(80mg/kg·day)ICA和参芪扶正注射液处理组小鼠脾脏T细胞增殖反应,与模型对照组相比,有显著性差异(P<0.05);LPS可促进高剂量ICA组小鼠B细胞的增殖反应,与模型对照组相比有显著性差异(P<0.05),中、低剂量ICA处理后,对小鼠脾B细胞增殖反应无显著影响(P>0.05)。
     11与正常组小鼠相比,模型组小鼠腹腔巨噬细胞产生TNF-α、IL-12的水平明显降低(P<0.01),经ICA处理10天后,实验组小鼠腹腔巨噬细胞产生TNF-α、IL-12的水平与阳性对照组及正常对照组相比无显著性差异(P>0.05)。
     12与正常组小鼠相比,模型对照组小鼠腹腔巨噬细胞的杀伤活性显著降低(P<0.01),不同浓度ICA均能提高巨噬细胞的杀伤活性,与模型对照组相比具有显著性差异(P<0.05);高浓度ICA处理组和阳性对照组小鼠巨噬细胞的杀伤活性与正常对照组相比,无明显差异(P>0.05)。
     13小鼠骨髓和外周血涂片可见,正常组小鼠骨髓涂片中有核细胞增生活跃,模型对照组小鼠骨髓呈现造血抑制状态。经ICA处理后,实验组小鼠骨髓涂片和外周血涂片中均可见骨髓抑制状态有所改善。
     14外周血常规分析结果显示:模型组小鼠WBC、RBC和PLT较对照组明显降低(P<0.01),而高、中、低浓度ICA均可明显提高实验组小鼠外周血WBC、RBC和PLT数量。
     15于小鼠腹腔注射Cy10天后,盐水对照组小鼠单根股骨骨髓细胞数量为7.03×106/femur,与对照组小鼠(10.36×106/femur)相比明显降低,差异有显著性(P<0.01),经高、中浓度ICA和参芪扶正注射液治疗后,小鼠单根股骨髓细胞数量与对照组相比,无显著性差异(P>0.05)。
     结论:
     1 ICA可在体外诱导CBMC来源的DCs成熟,上调DCs表面分子表达,促进DCs细胞因子的分泌,增强其刺激T细胞增殖的能力。
     2 ICA可以上调B-MD-C1(ADR+/+)细胞CD54、CD18蛋白和基因的表达,增强该细胞免疫原性,有利于免疫活性细胞的识别杀伤。
     3在一定浓度范围内ICA能抑制B-MD-C1(ADR+/+)细胞的生长,能使B-MD-C1(ADR+/+)细胞的生长周期被阻滞在S期,具有明显的量效和时效关系。
     4 ICA对免疫抑制小鼠的免疫器官具有很好的保护作用。
     5 ICA可显著刺激小鼠脾T、B细胞的增殖,增强腹腔巨噬细胞的杀伤能力,显著增加免疫抑制小鼠腹腔巨噬细胞产生TNF-α和IL-12等细胞因子的含量,可明显增强免疫抑制小鼠细胞免疫和体液免疫功能。
     6 ICA可显著改善免疫抑制小鼠的骨髓造血状态,提高骨髓细胞和外周血细胞数量,可明显恢复和改善造血功能。
     7 ICA显著增强免疫功能,提示其可作为抗肿瘤药物,并具有良好的安全性,有潜在的临床应用价值。
Objective: In order to study the effect of ICA on immune system and immunocyte in vitro and in vivo. Meanwhile, we approached immunoregulation mechanism of ICA initially. For the final purpose, this study provides some experimental bases to clinical application of ICA to cure certain diseases, such as tumor.
     Methods:
     1 The cord blood monocytes, which were collected from health and uterogestation parturient were isolated by density gradient centrifugation using lymphocyte isolating solution under axenic condition, and dendritic cells (DCs) were induced by GM-CSF and IL-4.
     2 The morphological characteristics of DCs from untreated group, TNF-αgroup and ICA group were observed under inverted microscope and transmission election microscope.
     3 Expressions of CD1a, CD83, CD80 and CD86 on DCs of untreated group, TNF-αgroup and ICA group, and the cell cycles and expressions of CD54, CD18 on B-MD-C1 (ADR+/+) cells treated by ICA (0, 12.5, 25, 50, 100μg/ml) for 12hours were detected by flow cytometry.
     4 The level of IL-12 and IFN-γin the culture supernatant of DCs from untreated group, TNF-αgroup and ICA group were detected by ELISA.
     5 The proliferation of T cells stimulated by DCs, and the inhibition effect of ICA on cell growth of B-MD-C1 (ADR+/+) in treated or untreated groups (12.5, 25, 50, 100μg/ml ICA and control) for different treatment times (24h, 48h and 72h) were determined by MTT method.
     6 The cytotoxicity of CIK cells against B-MD-C1 (ADR+/+) cell, which were treated by ICA (0, 12.5, 25, 50, 100μg/ml) for 12hours were investigated by LDH release method.
     7 Expression of CD54, CD18 mRNA in B-MD-C1 (ADR+/+) cells after treated with ICA (0, 1.25, 25, 50μg/ml) for 12h were detected by semi-quantitative RT-PCR.
     8 The sixty C57BL/6j mice of 7-8-week-old were divided into six groups randomly, and constructed immunosuppression models on them besides control group, the others were divided into experimental group, positive group and model group, and then the three groups were injected with cyclophosphamide (Cy) in abdominal cavity one time (300mg/kg). In the second day, the mice of experimental group were given ICA (150, 80, 40 mg/kg·day) by intragastric administration, the positive group were given Shenqi Fuzheng Injection (1ml/day); the model group were given normal saline (NS). All the mice were treated for 10 days. The mice of control group were raised normally. To observe the survival condition of the mice everyday, after the lasted given drugs for 12 hours, all the mice were killed, and the thymus, spleen, peritoneal macrophage, bone marrow and peripheral blood were removed for the succedent experiments.
     9 Morphology of thymus of the mice were observed under optical microscope after HE staining.
     10 The proliferation of lymphocyte of the mice were determined by MTT method.
     11 The level of TNF-αand IL-12 that were produced by peritoneal macrophage of mice were detected by ELISA.
     12 The cytotoxicity of the peritoneal macrophage of the mice were investigated by LDH release method.
     13 Morphological images of bone marrow and peripheral blood smears of the mice were detected by Wright-Giemsa’s staining.
     14 Population of WBC, RBC and PLT in the peripheral blood were detected with automated blood cell counter (ABCC).
     15 The number of bone marrow cells in the single femur was counted under microscope.
     Results:
     1 After 5 days cultured with GM-CSF and IL-4, the human CBMC developed into immature DCs with typical morphological characteristics, the cells were small and a little dendrites on the cellular surface, and they were grown in clustering.
     2 After 10 days cultured with cytokines and ICA, the CBMC that were stimulated by ICA for 5 days developed into mature DCs with typical morphological characteristics, the cells enlarged and were irregular in shape, many thin and long dendrites on the cellular surface, abundance of cytoplasm with more mitochondrion and rough endoplasmic reticulum, the caryon heterochromatin were under the karyolemma, and fewer lysosome and vacuolus.
     3 The result of phenotype analysis showed that the expressions of CD1a, CD83, CD80 and CD86 on mature DCs surface were up-regulated significantly by ICA, compared to the control group untreated with stimulating factor(P<0.05), in which most significant change occurred at CD80, reached (90.44±0.81)%. The expression of CD54 and CD18 on B-MD-C1 (ADR+/+) cells surface were also up-regulate by ICA in concentration-dependent manner. The expression of CD54 and CD18 on B-MD-C1 (ADR+/+) cells surface between every treated group, the difference was significant(P<0.01), the cells after treatment with different doses of ICA, compared to control group, the difference was significant(P<0.01). The results of FCM showed that ICA could arrest cell cycle of B-MD-C1 (ADR+/+) cells at S phase.
     4 ICA enhanced obviously the IL-12 and IFN-γproduction by DCs(P<0.01), but there was no significance difference between ICA group and TNF-αgroup(P>0.05).
     5 ICA-treated DCs stimulated markedly the proliferation of T cell (P<0.05), and the ability displayed rising tendency with the DC/T ratio. ICA (12.5~100μg/ml) could inhibited the proliferation of B-MD-C1 (ADR+/+) cells in vitro (P<0.05), the growth inhibition was in a time-and dose-dependent manner. The greatest inhibition rate was 78.74% observed in the treatment group of B-MD-C1 (ADR+/+) cells with the concentration of 100μg/ml ICA for 72 hours.
     6 ICA could enhance the susceptibility of B-MD-C1 (ADR+/+) cells to CIK in concentration-dependent manner and E/T-dependent manner, compared to control group, the difference was significant (P<0.05).
     7 The results analized by semi-quantitative RT-PCR showed that CD54, CD18 mRNA were up regulated after B-MD-C1 (ADR+/+) cells were treated with different concentrations of ICA for 12h, there was statistically significant differences compared to the control group (P<0.05).
     8 The immunosuppression models of the mice that were induced by cyclophosphamide were successfully established. The locomotor activity of the mice of the model group were feebly, the foodintake and hydroposia were not so good, one of them was died in the 6th day, however, the control group, positive group and experimental group were normal, none of them was died.
     9 Great changes have taken place in thymus of the mice of model group, and there were apomorphosis and necrosis of adipocyte around the thymus; there were partial fill of adipose tissue in the thymus of ICA low dose group, and no necrosis obviously, there were no changes in thymus of high dose, middle dose and Shenqi Fuzheng Injection groups.
     10 ConA enhanced obviously the proliferation of spleen T cell of high dose of ICA, middle dose and Shenqi Fuzheng Injection groups, compared to model group, the difference was significant (P<0.05); and LPS could enhanced the proliferation of spleen T cell of high dose of ICA, compared to model group, the difference was significant (P<0.05), however, it has no effects on the proliferation of spleen B cell of middle dose of ICA and low dose(P>0.05).
     11 Compared with control group, the level of TNF-αand IL-12 that were produced by peritoneal macrophage of the mice of model group was decreased markedly, after treated with ICA for 10 days, there was no significance difference in the experimental group, positive group and control group(P>0.05).
     12 The cytotoxicity of peritoneal macrophage of the mice of model group was decreased markedly(P<0.01), ICA of different concentration could all enhanced the cytotoxicity of peritoneal macrophage, compared to model group, the difference was significant(P<0.05); high dose and positive group, compared with control group, there was no significance difference(P>0.05).
     13 In the bone marrow and peripheral blood smear, we can see the karyocyte hyperplasia in the control group, but hematopoietic depression in the model group; after treated with ICA, the hematopoietic depression was improved.
     14 Result of automated blood cell counter (ABCC) revealed that the WBC, RBC and PLT of model group were all decreased markedly (P<0.01), after treated with ICA for 10 days, all of them were improved.
     15 After treated with Cy for 10 days, the number of bone marrow cells in single femur of NS group was 7.03×106/femur, compared with control group (10.36×106/femur) was decreased markedly(P<0.01), after treated with middle dose, high dose of ICA and Shenqi Fuzheng Injection, the number of bone marrow cells in the single femur, compared with control group, there was no significance difference(P>0.05).
     Conclusion:
     1 ICA induced the differentiation and maturation of DCs derived from CBMC in vitro, up-regulated the surface markers, cytokines production and increased the ability to stimulate the proliferation of T cell.
     2 ICA could up-regulated the expression of LFA-1/ICAM-1 on the B-MD-C1 (ADR+/+) cells, enhance the immunogenicity of them, and make them easy to recognized by immunologically competent cell.
     3 ICA protected immune organs of immunosuppression mice.
     4 ICA could inhibit the proliferation of B-MD-C1 (ADR+/+) cells in vitro and in a dose-and time-dependent manner, and arrest cell cycle of B-MD-C1 (ADR+/+) cells at S phase.
     5. ICA enhanced T and B cell proliferation of mice spleen significantly, and the killing ability of peritoneal macrophage of the mice as well, stimulated the production of TNF-αand IL-12, enhanced the function of cellular immunity and humoral immunity of immunosuppression mice.
     6 ICA improved the hematopoiesis of bone marrow of the mice, raised the number of bone marrow and peripheral blood cells, and indicated that it was good at improving the hematopoiesis of bone marrow.
     7 ICA possessed immunologic enhancement significantly, and great potent in clinical application.
引文
1. Meng FH, Li YB, Xiong ZL, et al. Osteoblastic proliferative activity of epimedium brevicornum [J]. Phytomedicine, 2005, 12(3):189-193
    2.雪原,王沛,齐青会,等.淫羊藿苷对成骨细胞Smad4 mRNA作用的实验研究[J].中华骨科杂志,2005, 25(2):19-123
    3.陈虹,张秀珍.淫羊藿苷对大鼠成骨细胞分泌细胞因子的影响[J].同济医科大学学报:医学版,2005, 26(2):5-7
    4.李淑梅,宋利格,张秀珍.淫羊藿苷对大鼠成骨细胞功能及Osterix表达的影响[J].同济医科大学学报:医学版,2005, 26(6):8-11
    5. Chen KM, Ge BF, Ma HP, et al. Icariin, a flavonoid from the herb epimedium enhances the osteogenic differentiation of rat primary bone marrow stromal cells [J]. Pharmazie, 2005, 60(12):939-942
    6. Zhu D, Qu L, Zhang X, et al. Icariin-mediated modulation of cell cycle and P53 during cardiomyocyte differention in embryonic stem cells [J]. Eur J Pharmacol, 2005, 514(223):99-110
    7. Zhu D, Lou Y. Icariin-mediated expression of cardiac genes and modulation of nitric oxide signaling pathway during differention of mouse embryonic stem cell into cardiomyocytes in vitro [J]. Acta Pharmacologie Sinica, 2006, 27(3):311-320
    8. He W, Sun H, Yang B, et al. Immunoregulatory effects of the herba epimediia glycoside Icariin [J]. Drug Res, 1995, 45(8):910-913.
    9. Zhao Y, Zhang L, Cui Z, et al. Studies on the immunomodulatory action of Icariin [J]. Chin Tradit Herb Drugs, 1996, 27(3):669-672
    10.李晓冰,金东庆,郭良军,等.淫羊藿苷在辐射小鼠免疫学功能恢复中作用的研究[J].中国辐射卫生,2002, 11(3):71-171
    11. Pan Y, Kong L, Xia X, et al. Antidep resantlike effect of icariin and its possible mechanism in mice [J]. Pharmacol Biochem Behav, 2005, 82 (4):686-694
    12.葛林阜,董政军,姜国胜,等.淫羊藿苷对急性早幼粒白血病细胞端粒酶活性的影响[J].中国肿瘤生物治疗杂志,2002, 9(1):36-38
    13.张玲,王芸,毛海婷,等.淫羊藿苷抑制肿瘤细胞端粒酶活性及其调节机制的研究[J].中国免疫学杂志,2002, 18(3):191-194
    14.李贵新,张玲,王芸,等.淫羊藿苷诱导肿瘤细胞凋亡及其机制的研究[J].中国肿瘤生物治疗杂志,1999, 6(2):131-135
    15.赵勇,张玲,崔正言,等.淫羊藿苷对HL-60细胞增殖与分化的影响[J].中国药理学通报,1996, 12(1):5-54
    16.苏华,郑秋红,何维.人外周血及脐血树突状细胞的体外培养[J].基础医学与临床,1999, (19):92-96
    17.殷晓雪,陈仲强,党耕町,等.淫羊藿苷对人成骨细胞增殖与分化的影响[J].中国中药杂志,2005, 30(4):289-291
    18.葛林阜,董政军,姜国胜,等.淫羊藿苷对小鼠免疫调节作用的研究[J].中华实用医学,2001, 3(3):25-27
    19.赵勇,张玲,王芸,等.淫羊藿苷的体外免疫调节作用研究[J].中草药,1996, 27(11):669-672
    20.朱丹雁,楼宜嘉.淫羊藿苷诱导小鼠胚胎干细胞体外定向分化为心肌细胞方法学研究[J].中国药学杂志,2007, 42(9):667-671
    21. Scotet E, Nedellec S, Devilder MC, et al. Bridging innate and adaptive immunity through gammadadelta T-dendritic cell crosstalk[J]. Front Biosci, 2008, 1(13):6872-6885
    22.姚康,邹云增,葛均波.树突状细胞和动脉粥样硬化免疫炎症反应[J].中国临床医学,2005, 12(3):371-372
    23. Mackensen A, Herbst B, Chen JL, et al. Phase study in melanoma patients of a vaccine with peptide pulsed dendritic cells generated in vitro from CD34+ hematopoietic progenitor cells [J]. Int J Cancer, 2000, 86(3): 385-392
    24. Timmerman J M, Czerwinski D K, Davis TA, et al. Idiotype pulsed dendritic cell vaccination for B-cell lymphoma: clinical and immune responses in 35 patients [J]. Blood, 2002, 99(5):1517-1526
    25.束永前,戴俊.人外周血单核细胞来源的DC体外分化成熟影响因素的研究[J].中国肿瘤生物治疗杂志,2003, 10(4):243-247
    26.陈月,陈政良,左大明,等. MBL对树突状细胞体外分化成熟的影响[J].细胞与分子免疫学杂志,2005, 21(2):159-162
    27.陈月,邹红岩,马云,等. IFN-γ促进树突状细胞分化成熟的实验研究[J].现代检验医学杂志,2008, 23(3):46-48
    28. Nishioka Y, Wen H, Mitani K, et al. Differential effects of IL-12 on the generation of alloreactive CTL mediated by murine and human dendritic cells:a critical role for nitric oxide [J]. J Leuko Biol, 2003, 73(5): 621-629
    29. Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in health and disease [J]. Physiol Rev, 2002, 82(1):97-130
    30. Halin C, Rondini S, Nilsson F, et al. Enhancement of the antitumor activity of IL-12 by targeted delivery to neovas- culature [J]. Nat Biotech, 2002, 20(3):264-269
    31. Moll H. Antigen delivery by dendritic cell [J]. Int J Med Microbiol, 2004, 294(5):337-344
    32. Varela N, Munoz-Pinedo C, Ruiz-Ruiz C, et al. Interferon-gamma sensitizes human myeloid leukemia cells to death receptor-mediated apoptosis by a pleiotropic mechanism [J]. Biol Chem, 2001, 276 (21):17779-17787
    33. Abe H, Maruno K, Yamakawa T, et al. Expression of Fas and induction of apoptosis by anti-Fas monoclonal antibody in human bileduct carcinoma cells, andenhancement of induction of apoptosis by IFN-gamma [J]. Gan To Kagaku Ryoho, 2002, 29(12):2254-2257
    1.黄体龙,杨跃煌.外周血单个核细胞冻存后诱导为CIK细胞及其抗肿瘤效应的研究[J].中国小儿血液及肿瘤杂志,2007, 12(5):204-208
    2. Kim HM, Lim J, Yoon YD, et al. Anti-tumor activity of ex vivo expanded cytokine-induced killer cells againsthuman heaptocellular carcinoma[J].Int Immunopharmacol,2007, 7(13):1793-1801
    3. Giancola R, Olioso P, diRitiM, et al. Evaluation of an automated closed fluidmanagementdevice forprocessing expanded cytokine induced killer cells to use in immunotherapy programs for cancer [J]. Transfusion, 2008, 48(4):629-639
    4. ShamriR, Grabovsky V, Gauguet JM, et al. Lymphocyte arrest requires instantaneous induction of an extended LFA-1 conformation mediated by endothelium-bound chemokines [J]. Nat Immuno, 2005, 6(5):497-506
    5. Shirai A, FurukawaM, Yoshizaki T. Expression of intercellular adhesion molecule (ICAM)-1 in adenoid cystic carcinoma of the head and neck[J]. Laryngoscope, 2003, 113(11): 1955-1960
    6. Asosingh K, Vankerkhove V, Van Riet I, et al. Selective ivivo growth of lymphocyte function-associated antigen-l-mediated homotypic cell-cell adhesion [J]. Exp Hematol, 2003, 31(1):48-55
    7. Puig-Kroger A, Sanchez-Elsner T, Ruiz N, et al. RUNX AML and C/EBP factors regulate CD11a integrin expression in myeloid cells through over-lapping regulatory elements [J]. Blood, 2003, 102(9):3252-3261
    8.张振江,张蕊,张世国,等.9-顺-维甲酸对人肺癌细胞株CD44、CD54表达的影响[J].肿瘤防治研究,2006, 33(4):225-230
    9. Tanaka H, Yashiro M, Sunami T, et al. Lipid-mediated gene transfection of intercellular adhesion molecule-1 suppresses the peritoneal metastasis of gastric carcinoma [J]. Int J Mol Med, 2002, 10(5):613-617
    10. Shirai A, Furukawa M, Yoshizaki T. Expression of intercellular adhesion molecule (ICAM)-1 in adenoid cystic carcinoma of the head and neck [J]. Laryngoscope, 2003, 113(11):1955-1960
    11. Hirayama Y, Sakamaki S, Tsuji Y, et al. IgM type multiple myeloma expressing various surface adhesion molecules and demonstrating an aggressive clinical course [J]. Rinsho Ketsueki, 2003, 44(9):957-961
    12. Rosette C, Roth RB, Oeth P, et al. Role of ICAM-1 in invasion of human breast cancer cells [J]. Carcinogenesis, 2005, 26(5):943-950
    1. Sridhar T, Paul R, Symonds, et al. Principles of chemotherapy and radiotherapy [J]. Obstetrics and gynaecology, 2003, 2(13): 102-109
    2.宁鹤丽,林洪生.关于肿瘤化疗辅助中药新药临床疗效指标的研究与分析[J].中国新药杂志,2008, 17(11):821-824
    3.冯晓燕,严鲁萍,杨源.淫羊藿苷对骨髓增生异常综合征模型大鼠骨髓细胞凋亡的影响[J].时珍国医国药,2007, 12(18):3070-3071
    4.陈文杰.淫羊藿的研究现状[J].甘肃中医,2007, 20(5):67-69
    5. Ciurea SO, Hoffman, R. Cytokines for the treatment of thrombocytopenia [J]. Seminars in Hematology 2007, 44(3):166-182
    6. Yang M, Chan GC, Deng R, et al. An herbal decoction of Radix astragali and Radix angelicae sinensis promotes hematopoiesis and thrombopoiesis [J]. Ethno pharmacol, 2009, 124(1):87-89
    7. Masuda Y, Inoue M, Miyata A, et al. Maitakeβ-glucan enhances therapeutic effect and reduces myelosupression and nephrotoxicity of cisplatin in mice [J]. International Immunopharmacology, 2009, 5(9):620-626
    8. Nathan CF, Hibbs Jnr. Role of nitric oxide synthesis in macrophage antimicrobial activity[J]. Cur Opini Immunol, 1991, 3(1):65-70
    9. Shon YH, Nam KS. Cancer chemoprevention: inhibitory effect of soybeans fermented with basidiomycetes on 7, 12-dimethylbenz an-thracene1 2-O-tetradecanoylphorbol-13-a-cetate-induced mouse skin carcinogenesis [J]. Biotechnol Lett, 2002, 24(12):1005-1010
    10. Oh JY, Cho KJ, Chung SH. Activation of macrophages by GLB,a protein-polysaccharide of the growing tips of Ganodermalucidum [J]. Yakhak Hoeji (Korean), 1998, 42(7):302-306
    11. Logan TF, Gooding WE, Whiteside TL, et al. Biological response modulation by tumor necrosis factor alpha (TNF-α) in a phaseⅡtrial in cancer patients [J]. J Immunol, 1997, 20(5):387-398
    12. Nooijen PTGA, Mnusama ER, Eggermont AMM, et al. Synergistic effects of TNF-αand melphalan in an isolated limb perfusion model of rat sarcoma: a histopathological immunohistochemical and electron micro- scopical study [J]. Br J Cancer, 1996, 74(12):1908-1915
    13. Leung DT, Morefield S, Willerford DM. Regulation of lymphoid homeostasis by IL-2 receptor signals in vivo [J]. J Immunol, 2000, 164(7):3527-3534
    14. Romani L, Mencacci A, Tonnetti L, et al. Interleukin-12 but not inte-r feron-gamma production correlates with induction of T helper type-1 phenotype in murine candidiasis [J]. Eur J Immunol, 1994, 24(4):909-915
    15. Wu CY, Demeure C, Kiniwa M, et al. IL-12 induces the production of IFN-gamma by neonatal human CD4 T cells [J]. Immunol, 1993, 151(4):1938-1949
    16.陈伟,孔庆志,冯刚。补血升白胶囊对非小细胞肺癌化疗的骨髓保护及免疫调节作用[J].吉林中医药,2006, 26(3):17-18
    17.鹿英杰。参麦注射液配合化疗治疗急性髓系白血病疗效观察[J].辽宁中医杂志,2007, 34(9):1287
    18. Nestler G. Traditional Chinese medicine[J]. Med Clin North Am, 2002, 86(3):63-73
    19. Ikarashi Y, Yuzurihara M, Sakakibaral, et al. Effeets of an oriental herbal medieine,“Saiboku-to”and its constituent herb on compound48/80-induced histamine release from peritoneal mast cells in rats. Phytomedieine, 2001, 8(1):8-15
    20. LI T, Tamada K, Abe K, et al. The restoration of the antitumor T cell response from stress-induced suppression using a traditional Chinese herbal medieine Hoehu-ekki-to (TJ-41: Bu-Zhong-Yi-Qi-Tang) [J]. ImrnunoPhannaeology, 1999, 43(1):11-21
    21. Ohtake N, Nakai Y, Yamamoto M, et al. The herbal medicine Shosaiko-to exert different modulating effects on lung local immune responses among mice trains [J]. Int Immuno Pharmaeol, 2002, 2(5):357-366
    22. Sinclair S. Chinese herbs: a clinical review of Astragalus, Ligustieum, and Sehizandrae [J]. Altern Med Rev, 1998, 3(6):338-344
    1. Reichardt VL, Brossart P, Kanz L. Dendritic cells in vaccination therapies of human malignant disease[J]. Blood Rev, 2004, 18(3):235-243
    2.陈彦,汪良,张雁云.痤疮丙酸杆菌促树突状细胞前体细胞动员及其对胃癌的治疗效应[J].江苏医药,2006, 32(9):830-832
    3.甄林林,马全,朱旬,等. MAGE2A3抗原肽负载树突状细胞治疗小鼠乳腺癌移植瘤[J].江苏医药,2006, 32(9):848-851
    4. Lipscomb MF, Masten BJ. Dendritic cells: immune regulators in healthand disease [J]. Physiol Rev, 2002, 82(1):97-130
    5. Steinman RM, Hawiger D, Liu K, et al. Dendritic cell function in vivo during the steady state: a role in peripheral tolerance [J]. Ann N Y Acad Sci, 2003, 987(1):15-20
    6.魏亚明,周华友,曹琼,等.脐血体外同时扩增造血干祖细胞、T细胞及树突状细胞[J].中国免疫学杂志,2006, 22(8):746-749
    7. Encabo A, Solves P, Mateu E, et al. Selective generation of different cell precursors from CD34+ cells by interleukin-6 and interleukin-3[J]. StemCells, 2004, 22(5):725-740
    8.叶枫,陈怀增,谢幸,等.血管内皮生长因子对CD34+干/祖细胞来源的树突细胞分化及功能的影响[J].中华血液学杂志,2004, 25 (9):532-535
    9. Lyakh LA, Scanford M, Chekol S, et al. TGF-βand vitamin D3 utilize distinct pathway to supress IL-12 production and modulate rapid diff- erentiation of human monocytes into CD83+ dendritic cells [J]. J Immunol, 2005, 174(4):2061-2070
    10. Um HD, Cho YH, Kim do K, et al. TNF-alpha suppresses dendritic cell death and the productions of reactive oxygen intermediates induced by plasma withdraw [J]. Exp Dermatol, 2004, 13(5):282-288
    11. Barbara A, Gargi D, Latha B, et al. Reduced T-cell and dendritic cell function is related to cyclooxygenase -2 overexpression and prostaglandin E2 secretion in patients with breast cancer [J]. Ann Surg Oncol, 2004, 11 (3):328-339
    12. Lee JJ, Takei M, Hori S, et al. The role of PGE2 in the differentiation of dendritic cell: how do dendritic cells influence T-cell polarization and chemokine receptor expression [J]. Stem Cells, 2002, 20(5):448-459
    13. Delgado M, Reduta A, Sharma V, et al. VIP/PACAP oppositely affect- simmature and mature dendritic cell expression of CD80/CD86 and the stimulatory activity for CD4+ T cells [J]. J Leukoe Biol, 2004, 75 (6):1122-1130
    14. Rover PJ, Tanquv-Rover S, Ebstein F, et al. Culture medium and proteinsupplement in the generation and maturation of dendritic cells [J]. Scand J Immunol, 2006, 63(6):401-409
    15. Zhang P, Snyder S, Feng P, et al. Role of N-acetylglucosamine within core lipopolysaccharide of several species of gram-negative bacteria in targeting the DC-SIGN (CD 209)[J]. Immunol, 2006, 177(6):4002-4011
    16. Kowalewicz-Kulbat M, Pestel J, Biet F, et al. Mycobacterium bovisBCG mycobacteria new application [J]. Pol J Microbiol, 2006, 55(1):13-17
    17. Gaqliard MC, Teloni R, Giannoni F, et al. Mycobacterium bovis bacillus calmette-guerin infects DC-SIGN-dendritic cell and causes the inhibition of IL-12 and the enhancement of IL-10 production [J]. J Leukoc Biol, 2005, 78(1): 106-113
    18.邵鹏,赵鲁杭.黄芪多糖对树突状细胞表型及成熟功能的影响[J].中华微生物和免疫学杂志,2006, 26(7):637-640
    19.邓旻,窦晓兵,史亦谦,等.黄芪多糖体外诱导脐血单核细胞分化为树突状细胞及其免疫学特征[J].医学研究杂志,2006, 35(9):22-26
    20. Gong H, Shen P, Jin L, et al. Therapeutic effects of Lycium barbarum polysaccharide (LBP) on irradiation or chemotherapy-induced myelosupp ressive mice [J]. Cancer Biother Radiopharm, 2005, 20(2):155-162
    21. Gan L, Zhang SH, Yang XL, et al. Immunomodulation and antitumor activity by a polysaccharide-protein complex from Lycium barbarum[J]. Int Immunopharmacol, 2004, 4(4):563-569
    22.朱杰,赵鲁杭,陈智.枸杞多糖对小鼠骨髓树突状细胞成熟的影响[J].浙江大学学报(医学版),2006, 35(6):648-652
    23.唐永富,黄丹菲,殷军艺,等.车前子多糖对骨髓来源树突状细胞表型和吞噬功能的影响[J].食品科学,2007, 28(10):517-520
    24.张维,周伯平,陈心春,等.氧化苦参碱对小鼠树突状细胞成熟和功能的影响[J].中西医结合肝病杂志,2007, 17(5):290-292
    25. Peng JC, Hyde C, Pai S, et al. Monocyte-derived DC primed withTLR agonists secrete IL-12p70 in a CD40-dependent manner underhyperther- mic condition [J]. J Immunother, 2006, 29(6):606-615
    26. de Goer de Herve MG, Durali D, Tran TA, et al. Differential effect of cells: the Janus face of anti-CD40 [J]. Blood, 2005, 106(18):2806-2814
    27.王友臣,谭晓华,刘兵,等.重组鼠CD20腺病毒载体感染的树突状细胞诱导小鼠抗肿瘤免疫的研究[J].中华肿瘤防治杂志,2008, 15(7): 507-510
    28. Chan T, Chen Z, Hao S, et al. Enhanced T-cell immunity induced by dendritic cells with phagocytosis of heat shock protein 70 Gene- transfected tumor cells in early phase of apoptosis [J]. Cancer Gene Ther, 2007, 14(4):409-420
    29. Siegal FP, Kadowaki N, Shodell M, et al. Interactions between dendritic cells and cytokine induced killer cells lead to an activation of both populations [J]. Immunother, 2007, 24(6):502-510
    30.袁玉涛,王志华,秦莉,等.IL-24对细胞因子诱导的杀伤细胞的作用[J].世界华人消化杂志,2007, 15(6):533-548
    31.孟凡东,隋承光,王晓华,等.体外培养的树突状细胞与细胞因子诱导的杀伤细胞相互作用的研究[J].中国老年杂志,2006, 6(26):818-820

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700