计及静态电压稳定性的多目标无功潮流优化
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
如何保证电力系统安全、经济和可靠地运行,一直是电力工作者们致力研究的课题。然而在电力市场环境下,由于竞争机制的存在和对环境保护的考虑,现有的发、输电设施被最大程度地利用着,以满足日益增长的负荷需求,使得系统运行点比以往更接近稳定极限边界,当系统发生较严重的故障时,极易诱发以电压崩溃为特征的电网瓦解事故。无功潮流优化是协调电力系统安全和经济运行的重要手段之一,但在通过调整相关无功设备来实现降低网络有功损耗和提高系统电压水平的过程中,不可避免地会改变系统的电压稳定裕度,如果在无功潮流优化中考虑系统的电压稳定性,必然会减少电压崩溃事故的发生。为此本文对计及静态电压稳定性的多目标无功潮流优化进行了相关的研究,建立了对应的数学模型,并运用免疫优化算法求解,主要内容包括:
     (1)在综合考虑系统运行的网络有功损耗、电压水平和静态电压稳定的前提下,建立了集安全性和经济性于一体的多目标无功潮流优化模型,分析了电压稳定的特征值指标在无功潮流优化中应用的有效性;由于无功潮流优化具有多目标、多控制变量、多约束条件和连续、整型变量混杂等特点,对自适应免疫算法在电力系统无功潮流优化中的应用进行了研究,定义和运用了局部亲和力与整体亲和力来评价多目标函数的解,避免了对多目标函数量纲处理和权重系数选取的缺点;算例验证了所提模型的正确性和算法的可行性。
     (2)关键节点的发电机无功备用容量多寡是衡量系统电压稳定裕度的一个重要指标,为此建立了以提高系统无功备用容量和电压水平以及减少网络有功损耗为多目标的无功潮流优化模型。为求取系统的无功备用容量,需要考虑发电机所处的系统位置和对电压稳定的支撑力度,定义了系统的无功备用分布系数,并分两步求取:首先,在定义空间电气距离概念基础上,提出了基于免疫-中心点聚类的无功/电压控制分区算法,按照此算法对系统进行分区,计算每个区域内发电机到所在区域其它节点距离之和,以此距离和作为发电机对该区域的电压稳定支撑系数;然后,依据每个区域的电压稳定裕度计算各个区域的无功备用需求系数,从而在发电机支撑电压稳定系数和区域无功备用需求系数的基础上确定系统无功备用的分布系数,依此系数计算系统的无功备用容量。算例验证了分区算法的正确性和在无功潮流优化中提高系统无功备用容量的可行性。
     (3)系统的可用输电容量(Available Transfer Capability,ATC)既是衡量电网安全稳定运行的重要指标,也是引导资源优化配置的关键市场信号之一,因此对提高系统ATC和电压水平以及减少网络有功损耗为多目标的无功潮流优化进行了研究。在线路P-Q电压稳定域的基础上,定义了线路潮流分布因子,并依此分布因子,提出了一种系统在正常情况下,考虑静态电压稳定和线路热稳定的ATC计算方法,该方法只需知道电力交易情况,且只要进行一次潮流计算便可求出系统的ATC,计算量非常小,避免当前考虑电压稳定约束ATC计算量大的缺点;分析了在无功潮流优化中对系统ATC的影响。算例验证了所推导计算ATC方法的正确性以及将提高ATC作为无功潮流优化目标函数的可行性。
     (4)在电力市场环境下,实行厂网分离,为激励发电公司积极参与提供无功辅助服务,需向其支付一定的费用。电网公司优化系统运行时,在保证系统稳定的前提下,应该从技术上考虑减少支付这样的费用,于是对电力市场环境下考虑静态电压稳定约束的日无功潮流优化进行研究。相对于静态无功潮流优化,日无功潮流优化要考虑一天内无功调节设备动作次数约束和系统负荷的变化。为既能顾及到设备动作次数约束,又能充分考虑各节点负荷变化,定义了系统的负荷综合变化来描述系统负荷曲线,并对其分段,然后运用聚类的方法选择优化断面,从而利用负荷分时段控制来解决设备动作次数约束,把日无功潮流优化问题转化为几个大时段断面的无功潮流优化;另外考虑到当前计算发电机机会成本方法存在的某些不足,提出了一种简单实用的发电机机会成本计算方法。建立了以系统故障情况下的静态电压稳定为约束条件,降低系统网络有功损耗和减少无功辅助服务费用为目标函数的日无功潮流优化数学模型,通过求解,进而形成优化的无功设备投切方案。算例验证了所提模型的正确性,得出了在市场环境下,无功潮流优化中考虑减少无功辅助服务费用的必要性。
In the electricity market, for the environment and economy limit, the system current transfer capability is used furthest and possible close to its limit in the load peak time, the system voltage stability margin is very lower than ever and easy to collapse when the system meets the serious contingencies. Optimal Reactive Power Flow (ORPF) is an effective measure to hold the security and economy balance of the power system operating. To reduce the active power loss and improve the voltage quality are the general ORPF main objectives, and the system voltage stability is considered rarely. But the system voltage stability margin may be changed in the ORPF process. If the system voltage stability is considered in ORPF, the voltage margin can be improved and the collapse probability will be small. So the multi-objective ORPF incorporating static voltage stability is studied in this dissertation, the main research work is summarized as follows:
     (1) The ORPF security and economy hybrid model is put out based on considering the active power loss, voltage quality and voltage stability margin, the validity of minimal eigenvalue of the voltage margin index used in ORPF is analysed. For ORPF is a typical non-linear programming problem with the characteristics of multi-objective, uncertainty, multi-restriction and discreteness, a multi-objective self-adaptive immune algorithm (MOAIA) is proposed to resolve the model in this dissertation, the main idea of the proposed algorithm includes two parts, firstly, the partial affinity and global affinity are defined to evaluate the antibodies affinity to the multi-objective functions, this part can avoid the weight factor selection; secondly, self-adaptive crossover, mutation and clone rates of the antibodies are used to keep the antibodies diversity, hence the proposed algorithm can achieve the dynamic balance between individual diversity and population convergence. The test systems results show the model is right and the algorithm is feasible.
     (2) The system reactive power reserve capacity is an important index for the voltage stability margin, so a new ORPF model is put out, whose objectives are to improve the system reactive reserve capacity and voltage level and decrease the active power losse. The system reactive power reserve capacity is not the sum of the generators reactive power reserve capacity. In order to calculate the system reactive power reserve capacity, the generators locations in power system and their value to support voltage stability must be considered. The system reactive power reserve distributor factor is defined and can be calculated based on two steps, firstly, the spatial electrical distance is defined and the immune-medoid clustering algorithm is proposed for reactive power/voltage control network partitioning, the total distance of the generator to the other buses is looked as the index to support the region voltage stability; secondly, the region reactive power reserve demand index is calculated based on the region stability margin. IA is used to resolve the model optimal solution and tested in the 84-bus system, the results indicate the system reactive power reserve capacity model is right, and the network partitioning algorithm is feasible.
     (3) Available Transfer Capability (ATC) is not only an important factor to evaluate the system stability, but also a key signal to distribute the power system resource, so ORPF with improving the system ATC is studied. A novel calculation method of ATC considering voltage stability is proposed, in the line P-Q voltage stability plane, the limit point of line stable operating can be gotten according to the line power flow distributor factor, while the position of the line thermal limit and the voltage stability of P-Q curve is considered. The system ATC can be calculated by one time power flow, so this method calculating burden is very small. At the time, the ORPF affection to the system ATC is analysed. The test systems results show the ATC calculating method is right and improving the system ATC is feasible in ORPF.
     (4) In the electricity market, the generator companies and the grid companies have the different economic benefit, in order to encourage the generator companies to support the reactive power auxiliary service, the grid companies will pay for the service, the grid companies should decrease the payment by the technology way, so the daily ORPF is studied. Relative to the static ORPF, the daily ORPF should consider the reactive power equipments action times and the load change. The system load integrative change is defined to reveal the buses load change and its curve is divided to satisfy the equipments action times constrain, the clustering method is used to select the system section for ORPF, in this way, the daily ORPF is looked as several system section static ORPF. A new simply way to calculate the generator opportunity cost is proposed and can avoid the general method shortcoming. The mathematic model of daily ORPF is put out whose objective function is to decrease the system active power loss and reactive power ancillary service, while the voltage stability is looked as constrain conditions when the system meets the line contingences. In two test systems, the load curve dividing method and the model of daily ORPF are tested, the results show the load curve dividing method is feasible and the model is right.
引文
[1] 程浩忠,吴浩,电力系统无功与电压稳定性[M],北京:中国电力出版社,2004
    [2] IEEE/CIGRE Joint Task Force On Stability Terms And Definitions And Classification Of Power Systemstability [J], IEEE Transactions on Power Systems, 2004, 19(3): 1387-1401
    [3] T.V. Cutsem, C. Vournas, Voltage Stability of Electric Power Systems [M], Kluwer Academic Publishers, 1998
    [4] B. Lee, V. Ajjarapu, A Piece Wise Global Small-Disturbance Voltage Stability Analysis Of Structure Preserving Power System Models [J], IEEE Transactions on Power Systems, 1995, 10(4): 1963-1971
    [5] Y. Zhou, V. Ajjarapu, A Novel Approach To Trace Time-Domain Trajectories Of Power Systems In Multiple Time Scales [J], IEEE Transactions on Power Systems, 2005, 20(1): 149-155.
    [6] Q. Wang, H. Song, V. Ajjarapu, Continuation-Based Quasi-Steady-State Analysis [J], IEEE Transactions on Power Systems, 2006, 21(1): 171-179
    [7] Q. Wang, V. Ajjarapu, A Novel Approach To Implement Generic Load Restoration In Continuation-Based Quasi- Steady -State Analysis[J], IEEE Transactions on Power Systems, 2005,20(1): 516-518
    [8] M. Gibescu, C. C. Liu, H. Hashimoto,Energy-Based Stability Margin Computation Incorporating Effects Of ULTCs [J], IEEE Transactions on Power Systems, 2005, 20(2): 843-851
    [9] N. Mithulananthan, C. A. Canizares, J. Reeve,Comparison Of PSS, SVC, And STATCOM Controllers For Damping Power System Oscillations [J], IEEE Transactions on Power Systems,2003, 18(2): 786-792.
    [10] A. A. P. Lerm, A. S. Silva, Avoiding Hopf Bifurcations In Power Systems Via Set-Points Tuning [J], IEEE Transactions on Power Systems, 2004, 19(2): 1076-1086
    [11] A. C. Z. de Souza, B. I. L Lopes, R. B. L. Guedes, Saddle-Node Index As Bounding Value For Hopf Bifurcations Detection [J], IEE Proceedings: Generation, Transmission and Distribution, 2005, 152(5): 737-742
    [12] A. A. P. Lerm, C. A. Cazizares, A. S. Silva, Multiparameter Bifurcation Analysis Of The South Brazilian Power System [J], IEEE Transactions on Power Systems, 2003, 18 (2): 737-746
    [13] 周双喜,朱凌志,郭锡玖,等,电力系统电压稳定性及其控制[M],北京:中国电力出版社,2004
    [14] Khoi T.Vu, Chenching Liu, Voltage Instability:Mechanisms And Control Strategies[J], Proceedings Of The IEEE,1995,83(11):1442-1455
    [15] M.Brucoli, A Probabilistic Approach To The Voltage Stability Analysis Of Interconnected Power System[J], Electric Power System Research, 1986,10(3):157-166
    [16] 袁骏,段献忠,何仰赞,电力系统电压稳定灵敏度分析方法综述[J],电网技术, 1997, 21 (9) :13-18
    [17] Lee B, A Jjarapu V. Invariant Subspace Parametric Sensitivity( ISPS) Of Structure Reserving Power System Models[J ], IEEE Transactions on Power Systems, 1996, 11(2):132-139.
    [18] Tamura Y, Mori H, Iwamoto S, Relationship Between Voltage Instability and Multiple Load Flow Solutions in Electric Power Systems[J],IEEE Transactions on Power Apparatus and Systems, 1983, 102(5): 1115-1125
    [19] Ma W M, Thorp J S, An Efficient Algorithm to Locate All the Load Flow Solutions[J], IEEE Transactions Power Systems, 1993, 8(3): 1077-1083
    [20] Iba K, Suzuki H, Egama M, A Method for Finding a Pair of Multiple Load Flow Solutions in Bulk Power Systems[J], IEEE Transactions Power Systems, 1990, 5(2): 582-591
    [21] 冯治鸿,倪以信,多机电力系统电压静态稳定性分析-奇异值分解法[J],中国电机工程学报,1992, 12(3): 10-19
    [22] Gao B,Morison G. K, Kundur P, Voltage Stability Evaluation Using Modal Analysis[J], IEEE Transactions Power Systems,1992,7(4): 1529-1542
    [23] P.A. Lof, Smed T, G Andersson, Fast Calculation of a Voltage Stability Index, IEEE Transactions on Power Systems[J], 1992, 7(1):54-64
    [24] BerizziA, Bresesti P,M arannino P, System-Area Operating Margin Assessment And Security Enhancement Against Voltage Collapse[J], IEEE Transactions on Power Systems, 1996, 11(3):1451-1462
    [25] P.A. Lof, G. Andersson, D.J. Hill, Voltage Stability Indices For Stressed Power Systems[J], IEEE Trans on on Power Systems,1993,8(1):326-335
    [26] Canizares C A , De Souza A C Z, Q uintana V H, Comparison Of Performance Indices For Detection Of Proximity To Voltage Collapse[J], IEEE Transactions on Power Systems, 1996, 11 (3):1441-1450
    [27] Iba K, Suzuki H, EgawaM,Calculation Of Critical Loading Condition With Nose Curve Using Homotopy Continuation Method [J], IEEE Transactions on Power Systems, 1991, 6(2): 584–593
    [28] 包黎昕,张步涵,段献忠,电压稳定裕度指标分析方法综述[J],电力系统自动化, 1999,23(8):52-60
    [29] Canizares C A,Alvarado F L, Point of Collapse and Continuation Methods for Large AC/DC Systems[J], IEEE Transactions on Power Systems, 1993, 8(1): 1-8
    [30] Chiang H D, Jean Jumeau Rene, A More Efficient Formulation for Computation of the Maximum Loading Points in Electric Power System[J],IEEE Transactions on Power System,1995,10(1):635-646
    [31] Semlyen A, Gao B, Janischewskyj W, Calculation of the Extreme Loading Condition of a Power System for the Assessment of Voltage Stability[J]. IEEE Transactions on Power Systems, 1991,6(1):307-315
    [32] Chiang H D, Flueck A J, Shah K S, CPFLOW:A Practical Tool for Tracing Power System Steady-State Stationary Behavior Due to Load and Generation Variations[J]. IEEE Transactions on Power Systems,1995,10(2): 623-634
    [33] Van Cutsem T, A Method to Compute Reactive Power Margins with Respect to VoltageCollapse[J], IEEE Transactions on Power Systems, 1991,6(1):145-156
    [34] 许文超,郭伟,电力系统无功优化的模型及算法综述[J],电力系统及其自动化学报,2003,15(1): 100-104.
    [35] Taylor G A,Rashidinejad M,Song Y H , Algorithmic Techniques For Transition-Optimized Voltage And Reactive Power Control[C], International Conference On Power System Technology [C],Kunming,China,2002:1660-1664
    [36] Cova B,Losignore N,Marannino P, Contingency Constrained Optimal Reactive Power Flow Procedures For Voltage Control In Planning And Operation[J],IEEE Transactions on Power Systems,1995, 10(2):602-608
    [37] Liu M B, Tso S K, Cheng Y, An Extended Nonlinear Primal-Dual Interior-Point Algorithm For Reactive-Power Optimization Of Large-Scale Power Systems With Discrete Control Variables[J], IEEE Transactions on Power Systems,2002,17(4):982-991
    [38] Terra L D B, Short M J, Security-Constrained Reactive Power Dispatch[J], IEEE Transactions on Power Systems, 1991, 6(1): 109-117
    [39] 熊曼丽,提高电压稳定的多目标优化模型及其神经网络算法[J],电力系统自动化, 1996, 20(1): 27-31
    [40] 王正风,徐先勇,唐宗全,电力市场下的无功优化规划[J],电工技术杂志, 2000, 19 (6): 10-12
    [41] 戴彦,倪以信,文福栓,电力市场下的无功电价研究[J],电力系统自动化,2000,24 (3):9-14
    [42] Granville S, Optimal reactive dispatch through interior point methods[J],IEEE Transactions on Power Systems,1994, 9(1):136-142
    [43] 张勇军,俞悦,任震,实时环境动态无功优化建模[J],电网技术,2004, 28(12):12-15
    [44] 苏玲,赵冬梅,韩静,电力系统无功优化算法综述[J],现代电力,2004,21(6):40-45
    [45] Hobson E, Active And Reactive Power Security Control Using Successive Linear Programming[J], IEEE Transactions on Power Apparatus and Systems, PAS, 1982,101(1):644-654
    [46] Mamandur K R C, Chenoweth R D, Optimal Control Reactive Power For Improvement In Voltage Profiles And For Real Loss Minimization[J],IEEE Transactions on Power Apparatus and Systems, PAS,1981,100(7):263-269
    [47] 赵尤新,徐国禹,灵敏度法分析计算电力系统无功和电压最优控制问题[J],重庆大学学报,1985,2:1-11
    [48] K R. Vlamandeur, Optimal Control Of Reactive Power Flow For Improvement In Voltage Profiles And Real Power Losses Minimization[J], IEEE Transactions on Power Apparatus and Systems, PAS,1981,100(7):3185-3194
    [49] 刘明波,程劲晖,电力系统无功综合优化的线性规划内点法[J],电力系统及其自动化学报,1999,11(5): 88-92
    [50] 刘明波,陈学军,电力系统无功优化的改进内点算法[J],电力系统自动化,1998,22(5):33~36
    [51] Burchett R C, Developments In Optimal Power Flow[J],IEEE Transactions on Power Apparatus Systems,1982,101 (2): 400-413
    [52] Sun D I,Ashey B,Brewer B, Optimal Power Flow Newton Approach [J],IEEE Transactions on Power Apparatus and Systems,1984,103(10): 2864-2880
    [53] 朱太秀,电力系统优化潮流与无功优化[[J],电网技术,1990,(4):13-16
    [54] 沈如刚,电力系统无功功率综合优化二次规划法[J],中国电机工程学报,1986,6 (5):40-47
    [55] N.Alguacil, A. J. Conejo, Multi Period Decomposition Power Flow Using Benders[J], IEEE Transactions on Power Systems, 2000, 15(7):196-201
    [56] 黄伟,蒋本一,电力系统无功功率综合优化-广义 Benders 分解法[J],电网技术,1996, 13(2):1-6
    [57] 马晋弢,Lai L L,杨以涵, 遗传算法在电力系统无功优化中的应用[J],中国电机工程学报,1995, 15(5):47-53
    [58] 王志华,尹项根,李光熹,伪并行遗传算法在无功优化中的应用[J],电网技术,2003, 27(8) :33-35
    [59] Bakirtzis Anastasios,G Gharehpetian,Optimal Reactive Power Flow By Enhanced Genetic Algorithm [J], IEEE Transactions on Power Systems, 2002, 17(2):229-236
    [60] 向铁元,周青山,李富鹏,等,小生境遗传算法在无功优化中的应用研究[J],中国电机程学报,2005,25(17): 103-108
    [61] Wu Q.H, Cao Y.J, Wen J Y,Optimal Reactive Power Dispatch Using An Adaptive Genetic Algorithm [J], Electrical Power & Energy Systems, 1998, 20(8): 563-569
    [62] Ma J.T, Lai L.L, New Genetic Algorithm For Optimal Reactive Power Dispatch [J], International Journal of Engineering Intelligent Systems for Electrical Engineering and Communications, 1997, 5(2):115-120
    [63] Esmin Ahmed A.A, Lambert-Torres, Germano, A Hybrid Particle Swarm Optimization Applied To Loss Power Minimization [J], IEEE Transactions on Power Systems.2005,20(2): 855-859
    [64] Zhang W. Liu Y, An Adaptive PSO Algorithm For Reactive Power Optimization[C],Advance In Power System Control Operation And Management, Application Of Artificial Intelligence Technique, Hongkong china, 2003:1534-1538
    [65] Himtaka Uyoshida, kenichi kawam, PSO Algorithm For Reactive Power Optimization And Voltage Control Considering Voltage Security Assessment[J], IEEE Transactions on Power Systems, 2000, 15(4):1323-1239
    [66] 周晖,周任军,谈顺涛,等,用于无功电压综合控制的改进粒子群优化算法[J],电网技术, 2004, 28(13):45-49
    [67] Huang Shyh Jier, Enhancement Of Thermal Unit Commitment Using Immune Algorithm Based Optimization Approaches[J], International Journal of Electrical Power & Energy Systems,1999,4(21): 245-252
    [68] 郭创新,朱承治,赵波,等,基于改进免疫算法的电力系统无功优化[J],电力系统自动化,2005, 29(15),23-28
    [69] Glover F, Laguna M, Band with Packing: A Tabu Search Approach[J], Management Science,1993,39(4):492-500
    [70] 刘玉田,马莉,基于 Tabu 搜索方法的电力系统无功优化[J],电力系统自动化,2000, 24(2):61-64
    [71] Hsiao Yingtung, Chiang, Hsiaodong, Applying Network Window Schema And A Simulated Annealing Technique To Optimal VAR Planning In Large-Scale Power Systems[J], International Journal of Electrical Power and Energy System,2000,22(1):1-8
    [72] Vlachogiannis John G., Hatziargyriou Nikos D, Lee Kwang Y, Ant Colony System-Based Algorithm For Constrained Load Flow Problem[J],IEEE Transactions on Power Systems,2005,20(3):1241-1249
    [73] 唐剑东,熊信银,吴耀武,等,基于人工鱼群算法电力系统无功优化[J],继电器,2004, 32(19):9-13
    [74] Fred G, James P k, Manuel L, Hybrids Genetic Algorithms And Tabu Search For Optimization[J], Computers & Operations Research, 1995, 22(1):111-134 [ 75 ] Liu Yutian,Ma Li,Zhang Jianjun,Reactive Power Optimization By GA/SA/TS Combined Algorithms[J], International Journal of Electrical Power and Energy Systems,2002,24(9):765-769
    [76] Valadimira Miranda, Nuno Fonseca, EPSO A New Algorithm With Application In Power System[C], Proceedings of Congress On Evolution Computation,Hawaii,USA,2002:745-750
    [77] Soto J R O,Domellas C R R,Falcao D M,Optimal Reactive Power Dispatch Using A Hybrid Formulation[C],Porto, Portugal: in Proceedings of Power Tech,2001,3:5-8
    [78] Yan Wei, Lu Shuai, Yu David C, A Novel Optimal Reactive Power Dispatch Method Based On An Improved Hybrid Evolutionary Programming Technique[J], IEEE Transactions on Power Systems, 2004.19 (2 ):913-918
    [79] 刘方,颜伟,基于遗传算法和内点法的无功优化混合策略[J],中国电机工程学报,2005,25(15): 67-72
    [80] Kinji I. Reactive Power Planning By Genetic Algorithm [J], IEEE Transactions on Power systems,1999, 14(2):685-692
    [81] 苏玲,基于混沌搜索的遗传算法在电力系统无功优化中的研究[D],华北电力大学,硕士学位论文, 2004
    [82] Siindi Araraja, Pahwaa,Capacitor Placement In Radial Distribution System[J],IEEE Transactions on Power Delivery,1999, 14(1):725-734
    [83] 张武军,叶剑锋,梁伟杰,基于改进遗传算法的多目标无功优化[J],电网技术, 2004,28(11):25-38
    [84] 娄素华,李研,吴耀武,多目标电网无功优化的量子遗传算法[J].高电压技术,2005, 31(9):69-72
    [85] 王勤,方鸽飞,考虑电压稳定性的电力系统多目标无功优化[J],电力系统自动化,1999,23(3):31-34
    [86] Zhong Jin, Bhattacharya Kankar, Toward A Competitive Market For Reactive Power[J], IEEE Transactions on Power Systems,2002,17(4): 1206-1215
    [87] Augugliaro A., Dusonchet L., etc, Multiobjective Design Of Distributed Reactive Power Production In A Deregulated Electric Market[J], International Journal of Electrical Power and Energy Systems,2005,27(3):204-215
    [88] Rider M.J, Pauca V.L, Application Of A Nonlinear Reactive Power Pricing Model For Competitive Electric Markets[J], IEE Proceedings: Generation, Transmission and Distribution, 2004, 151(3):407-414
    [89] 刘明波,朱春明,钱康龄,等,计及控制设备动作次数约束的动态无功优化算法[J],中国电机工程学报,2004, 24(3):34-40
    [90] Sharif S S, Taylor J H. Real-Time Implementation Of Optimal Reactive Power Flow[J], IEEE Power Engineering Review,2000,20(8) :47-51
    [91] Wong Y K, Chung T S, Lai W M, Application Of GA In Reactive Power/Voltage Control Problem[J],IEEE Transactions on Power Systems,2000,15(2):486-491
    [92] 张勇军,俞悦,任震,等, 实时环境下动态无功潮流优化建模研究[J],电网技术,2004,28(12):12-15
    [93] Wang Z. H, Yin X G,Zhang Z,etc,Pseudo-Parallel Genetic Algorithm for Reactive Power Optimization[C], Power Engineering Society General Meeting, 2003, IEEE, 2003:903-907
    [94] Venkatesh B, Sadasivam G, Khan M, New Optimal Reactive Power Scheduling Method For Loss Minimization And Voltage Stability Margin Maximization Using Successive Multi-Objective Fuzzy LP Technique[J],IEEE Transactions on Power Systems,2000,15(2):844-851
    [95] H. Song, Lee B, Y.H. Moon,Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints With Nonlinear Interior Point Method[J], IEE IEE Proceedings: Generation, Transmission and Distribution ,2005,152(6): 961-968
    [96] C. M. Affonso, L. C. P. Da Silva, F. G. M. Lima, Optimal Mw Mvar Dispatch And Minimal Load Shedding Strategy For Improving Voltage Stability Margin[C],IEEE Power Engineering Society General Meeting, Conference Proceedings, 2003,2:890-895
    [97] Su Yongchun, Cheng Shijie, Wen Jinyu, Reactive Power Generation Management for the Improvement of Power System Voltage Stability Margin[C], Proceedings of the 6th World Congress on Intelligent Control and Automation, Dalian, China,2006:7465-7468
    [98] Arya L.D, Choube S.C, Kothari D.P, Reactive Power Optimization Using Static Voltage Stability Index[J], Electric Power Components and Systems,2001,21(7):615-628
    [99] Kim S, Song T.Y, Jeong, Development Of Voltage Stability Constrained Optimal Power Flow (VSCOPF)[C], Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference,2001,3:1664-1669
    [100] Cai Guanglin, Ren Zhen, Yu Tao,Optimal Reactive Power Dispatch Based on Modified Particle Swarm Optimization Considering Voltage Stability[C], Power Engineering Society General Meeting, IEEE 2007: 24-28
    [101] Menezes, Taciana V., Da Silva, etc, Dynamic VAR Sources Scheduling For Improving Voltage Stability Margin[J],IEEE Transactions on Power Systems, 2003,18(2): 969-971
    [102] Papiya Duttal, A. K. Sinha,Voltage Stability Constrained Multi-objective Optimal Power Flow using Particle Swarm Optimization[C],First International Conference on Industrial and Information Systems, ICIIS 2006, August,Sri Lanka,2006:161-166
    [103] A.K. Sinhaa, D. Hazarika, A Comparative Study Of Voltage Stability Indices In A Power System[J],Electrical Power and Energy Systems, 2000,22(8):589–596
    [104] F. C. V. Malange, D. A. Alves, L. C. P. Silva, Alternative Continuation Method for Loading Margin Improvement and Transmission Losses Reduction[C], Transmission and Distribution Conference and Exposition,Latin America, IEEE/PES,2004:11-16
    [105] M. Tripathy, S. Mishra, Optimizing Voltage Stability Limit and Real Power Loss in a Large Power System using Bacteria Foraging[C], International Conference on Power Electronics, Drives and Energy Systems, PEDES '06,2006:1-6
    [106] 莫宏伟,人工免疫系统原理及其应用[M],哈尔滨:哈尔滨工业大学出版社,2002
    [107] S Forrest, S.A Hofmeyr, A Somayaji, Computer Immunology[J], Communications of the ACM,1997, 40(10): 88-96
    [108] L N de Castro, F J Von Zuben, Learning and Optimization Using the Clonal Selection Principle[J],IEEE Transactions on Evolutionary Computation, 2002, 6(3): 239-251
    [109] J Timmis, M Neal, J Hunt, Data Analysis with Artificial Immune System, Cluster Analysis and Kohonen Networks[C], IEEE Conf on System, Man and Cybernetics (SMC)Tokyo, Japan, 1999: 922-927
    [110] D H Kim, Tuning of a PID Controller Using Immune Network Model and Fuzzy Set[C], Proceedings of IEEE International Symposium on Industrial Electronics, 2001(3): 1656-1661.
    [111] J S Chun, J P Lim, H K Jung, Optimal Design of Synchronous Motor with Parameter Using Immune Algorithm [J], IEEE Transactions Energy Conversion, 1999, 14(3): 610-615
    [112] Liao G.C, Application Of An Immune Algorithm To The Short-Term Unit Commitment Problem In Power System Operation[J], IEE Proceedings: Generation, Transmission and Distribution, 2006,153(3):309-320
    [113] Liao Gwo-Ching, Tsao Ta Peng, Using Chaos Search Immune Genetic And Fuzzy System For Short-Term Unit Commitment Algorithm[J], International Journal of Electrical Power and Energy Systems2006,28(1):1-12
    [114] Ishak S.,Abidin A.F., Rahman T.K.A, Static Var Compensator Planning Using Artificial Immune System For Loss Minimisation And Voltage Improvement[C],National Power and Energy Conference, PECon 2004 Proceedings, 2004,41-45
    [115] Xiong Hugang, Cheng Haozhong, Zhang Wenjun,etc,Optimal Reactive Power Compensation Planning With Improving Voltage Stability Margin In Deregulated Environment[J], WSEAS Transactions on Circuits and Systems, 2006 ,5(1):104-110
    [116] Eduardo G.Carrano, Frederico G.Guimaraes, Ricardo H.C.Takahashi, Electric Distribution Network Expansion Under Load-Evolution Uncertainty Using An Immune System Inspired Algorithm[J],IEEE Transactions on Power Systems,2007, 22(2):852-861
    [117] Xu Le, Chow Moyuen, Timmis Jon,etc, Power Distribution Outage Cause Identification With Imbalanced Data Using Artificial Immune Recognition System (AIRS) Algorithm[J].IEEE Transactions on Power Systems,2007, 22(1):198-204
    [118] Huang, Shyh Jier, Application Of Immune-Based Optimization Method For Fault-Section Estimation In A Distribution System[J], IEEE Transactions on Power Delivery,2002,17(2):779-784
    [119] Xiong Hao, Sun Caixin,Artificial Immune Network Classification Algorithm For Fault Diagnosis Of Power Transformer[J], IEEE Transactions on Power Delivery,2007,22(2):930-935
    [120] Wang H.F, Li H, Chen H,Application Of Cell Immune Response Modelling To Power System Voltage Control By STATCOM[J],IEE Proceedings: Generation, Transmission and Distribution,2002,149(1):102-107.
    [121] H.Song, B.Lee, YH.Moon, Reactive Optimal Power Flow Incorporating Margin Enhancement Constraints With Nonlinear Interior Point Method[J], IEE Proceedings: Generation, Transmission and Distribution,2005,152(6): 961-968
    [122] Lou Suhua, Wu Yaowu, Xiong Xinyin, etc, A Parallel PSO Approach To Multi-Objective Reactive Power Optimization With Static Voltage Stability Consideration[C], Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference, PES TD.2006,5:172-176
    [123] Menezes, T.V., da Silva, L CP.,etc, V.F. MVAR Management On The Pre-Dispatch Problem For ImprovingVoltage Stability Margin[J], IEE Proceedings: Generation, Transmission and Distribution, 2004,151(6):665–672
    [124] B. Venkatesh, G. Sadasivam, M. Abdullah, A New Optimal Reactive Power Scheduling Method For Loss Minimization And Voltage Stability Margin Maximization Using Successive Multi-Objective Fuzzy LP Technique [J], IEEE Transactions On Power Systems, 2000,15(2):844-851
    [125] Souza Lima Evandro E, Filomeno Luis, Assessing Eigenvalue Sensitivities[J], IEEE Transactions On Power Systems,2000,15(1): 299–307
    [126] Nallan HC, Rastgoufard P, Computational Voltage Stability Assessment Of Large-Scale Power Systems[J], Electric Power Systems Research,1997,38(3):177–181
    [127] Berizzi A, Bresesti P, Marannino P, etc, System-Area Operating Margin Assessment And Security Enhancement Against Voltage Collapse[J], IEEE Transactions On Power Systems,1996,11(3):1451-1462
    [128] 黄席樾,张著洪,基于免疫应答原理的多目标优化免疫算法及其应用[J],信息与控制,2003,32(3):208-213
    [129] Carlos A, Coello Coello, Nareli Cruz Cortes, An Approach To Solve Multi-Objective Optimization Problems Based On An Artificial Immune System, http://www.lania.mx/~ccoello/EMOO/EMOOjournals.html
    [130] Xueguang Shao,Longjiu Cheng, Wensheng Cai, An Adaptive Immune Optimization Algorithm For Energy Minimization Problems[J],Journal Of Chemical Physics,2004,120(24):11401-11406
    [131] Mario Villalobos-Arias, Carlos A, Coello Coello, Convergence Analysis of a Multi-objective Artificial Immune System Algorithm,2007,10, http://www.lania.mx/~ccoello/EMOO/villalobos04.pdf.gz
    [132] 吴际舜,侯志俭,电力系统潮流计算的计算机方法[M],上海:上海交通大学出版社,2000 年
    [133] Huang Wei, Xu Chunli, Zhang Jianhua,etc, Study Of Reactive Power Optimization Based On Immune Genetic Algorithm[C], InProc: IEEE PES Transmission And Distribution Conference And Exposition, 2003,1:186–90
    [134] Xiong Hugang, Cheng Haozhong, Multi-Objective Optimal Reactive Power Flow Incorporating Voltage Stability, WSEAS Transactions on Power Systems[J],2006,3(1):613~619
    [135] W. Xu, Y. Zhang, L.C.P. da Silva,etc, Competitive Procurement Of Dynamic Reactive Powersupport Service For Transmission Access [C], Proceeding of IEEE PES Summer Meeting, Seattle, 2000,1:543-548
    [136] F. Capitanescu, T. V. Cutsem, Evaluation Of Reactive Power Reserves With Respect To Contingencies[C], Bulk Power System Dynamics and Control, Onomichi, Japan, August,2001:26-31
    [137] L. Bao, Z. Y. Huang, W. Xu, Online Voltage Stability Monitoring Using Var Reserves [J], IEEE Transactions On Power Systems, 2003, 18(4):1461-1469
    [138] Carson W .Taylor(王伟胜 译), 电力系统电压稳定分析[M], 北京:中国电力出版社,2002,6
    [139] Feng Dong, Badrul H. Chowdhury, Mariesa L. Crow, etc, Improving Voltage Stability by Reactive Power Reserve Management, IEEE Transactions On Power Systems[J], 2005, 20(1): 338-345
    [140] 何仰赞,温增银,电力系统分析(下册)[M],武汉:华中科技大学出版社,1995.10
    [141] Lo.Habiballah. R Ghosh-Roy, M.R. Irving, Markov Chains For Networks Multi-Partitioning Large Power System State Estimation[J], Electric Power Systems Research, 1998,45(2):135-140
    [142] C.S. Chang, L.R. Lu, F.S.Wen, Power System Network Partitioning Using Tabu Search[J], Electric Power Systems Research, 1999(49):55-61
    [143] 刘大鹏,唐国庆,陈珩,基于 Tabu 搜索的电压控制分区[J],电力系统自动化,2002,18(3):18-22
    [144] 胡泽春,王锡凡,王秀丽,陈皓勇,用于无功优化控制分区的两层搜索方法[J],电网技术,2005, 29(24): 37-41
    [145] N. Muller, V.H. Quintana, A Sparse Eigenvalue-Based Approach For Partitioning Power Networks[J], IEEETransactions On Power Systems, 1992,7(2):520-527
    [146] 郭庆来,孙宏斌,基于无功源控制空间聚类分析的无功电压分区[J],电力系统自动化,2005,29(10): 36-40
    [147] Hiroyuki Mori, Koichi Takeda, Parallel Simulated Annealing For Power System Decomposition[J], IEEE Transactions On Power Systems,1994,9(2):789-795
    [148] Margaret, H.dunham, Data mining: Introductory And Advanced Topics[M], Prentice Hall, Upper Saddle River, N.J, 2002
    [149] Mehmed Kantardzic, Data Mining: Concept Models Methods and Algorithms[M], Wiley-IEEE Press, N.J, 2002
    [150] Chun Jang-Sung, Jung Hyun-Kyo, Hahn Song-Yop, A Study on Comparison of Optimization Performances between Immune Algorithm and other heuristic Algorithms[J], IEEE Transactions On Magnetics, 1998, 34(5):123-129
    [151] D. Hazarika, S. Bhuyan, S.P. Chowdhury, Line Outage Contingency Analysis Including The System Islanding Scenario[J], Electrical Power and Energy Systems, 2006 ,28(4):232–243
    [152] Hamoud G. Assessment Of Available Transfer Capability Of Transmission System[J], IEEE Transactions On Power System, 2000,15(1):27-32
    [153] Transmission Transfer Capability Task Force, Available Transmission Capability Definitions And Determination [R], North-American Electric Reliability Council Princeton, New-Jersey, June 1996
    [154] 王成山,王兴刚,考虑静态电压稳定约束并计及负荷和发电机出力不确定性因素的概率最大输电能力快速计算[J],中国电机工程学报.2006,26(16): 46-51
    [155] Santiago Grijalva, Peter W. Sauer, James D. Weber, Enhancement of Linear ATC Calculations by the Incorporation of Reactive Power Flows[J],IEEE Transactions On Power Systems,2003,18(2):619-624
    [156] 汪峰,白小民,基于最优潮流方法的传输容量计算研究[J],中国电机工程学报,2002,22(11):35-40
    [157] 黄伟,黄民翔,甘德强,考虑电压稳定的电网至少传输容量评估[J],电力系统自动, 2006,30(22):25:28
    [158] 潘雄,徐国禹,基于最优潮流并计及静态电压稳定性约束的区域间可用输电能力计算[J],中国电机工程学报, 2004, 24 (12): 34-39
    [159] Takehara Arisa, Nagata Masaki, Tanaka Kazuyuki, Fast Evaluation Methods Of ATC With Thermal Constraints And Voltage Stability Constraints[C], Proceedings of the IEEE Power Engineering Society Transmission and Distribution Conference,2002, 2: 875-880
    [160] Cheng YChung, T.S. Chung, C.Y. Yu CW, Dynamic Voltage Stability Constrained ATC Calculation By A QSS Approach[J],International Journal of Electrical Power and Energy Systems,2006,28(6): 408-412
    [161] I. Musirin, T.K. Abdul Rahman, Estimating Maximum Loadability for Weak Bus Identification Using FVSI[J], IEEE Power Engineering Review, 2002,22(11):50-52
    [162] M. Moghavemmi, F.M. Omar, Technique For Contingency Monitoring And Voltage Collapse Prediction[J], IEE IEE Proceedings: Generation, Transmission and Distribution,1998, 145(11):634-640
    [163] Mohamed A, Jasmon G B, Voltage Contingency Selection Technique For Security Assements[J], IEE Proceedings: Generation, Transmission and Distribution,1989, 136(1):24 - 28
    [164] M.H.Haque, Determination Of Steady-State Voltage Stability Limit Using P-Q Curve[J], IEEE Power Engineering Review, 2002,22(4): 71-72
    [165] M.H. Haque, Novel Method Of Assessing Voltage Stability Of A Power System Using Stability Boundary In P-Q Plane[J], Electric Power Systems Research, 2003,64(1): 35-40
    [166] M.Sobierajski, M.Fulczyk, Use Of P-Q Curve With Rectangular Probability Distribution Of Bus Load In Voltage Stability Study[C], 2004 IEEE PES Power Systems Conference and Exposition, 2004,1:130-135
    [167] M.Obierajski, K.Wilkosz, J.Bertsch, etc, Prompt Identification Of Weak Transmission Lines Regarding Voltage Collapse[C], International Conference On Power System Management And Control, 2002, 488:285-290
    [168] R. Paosateanpun, S. Chusanapiputt, S. Phoomvuthisarn, etc, The Line P-Q Curve for Steady-State Voltage Stability Analysis[C], 2006 International Conference on Power System Technology,2006:1-7
    [169] S.Salamat Sharif, James H. Taylor, etc, A Real-Time Implementation Of Optimal Reactive Power Flow[J], IEEE Power Engineering Review, 2000,20(8):47-51
    [170] Sharif S S,Taylor J H, Dynamic Optimal Reactive Power Flow[C],American Control Conference,USA,1998: 3410-3414
    [171] Hong Yingyi, Liao Csongming, Short-Term Scheduling Of Reactive Power Controllers[J], IEEE Transactions On Power Systems, 1995,10(2): 860-868
    [172] El Araby, E.E. Yorino, Naoto, An Approach For Allocating Var Service In The Electricity Market Against Voltage Collapse[C], 7th International Power Engineering Conference, IPEC2005, 2005:1-6
    [173] Enrique Lobato Miguelez, Francisco M. Echavarren Cerezo, etc, On The Assignment Of Voltage Control Ancillary Service Of Generators In Spain[J], IEEE Transactions On Power Systems, 2007,22(1):367-376
    [174] Carlos Salle, Ancillary Services: An Overview[J], IEEE Transactions On Power Systems, 1997, 26(7): 1011-1017
    [175] Federal Energy Regulatory Commission, Principle for Efficient and Reliable Reactive power Supply and Consumption[R], 2005.2
    [176] Yue Zhao, Malcolm R. Irving, Yonghua Song, A Cost Allocation and Pricing Method for Reactive Power Service in the New Deregulated Electricity Market Environment[C], IEEE/PES Transmission and Distribution Conference & Exhibition: Asia and Pacific, Dalian, China 2005:1-6
    [177] 任晓娟,邓佑满,高中压配电网动态无功优化算法的研究[J],中国电机工程学报,2003,23(1): 31-36
    [178] 赵登福,刘昱,夏道止,考虑开关动作次数约束的配电网无功电压控制方法的研究[J],西安交通大学学报, 2003, 37(8):783-786
    [179] 周任军,段献忠,计及调控成本和次数的配电网无功优化策略[J],中国电机工程学报,2005,25(9): 21-27
    [180] 方兴,郭志忠,配电网时变无功电压优化方法[J],电力系统自动化, 2005, 29(9):40 - 44
    [181] 何佳,吴耀武,娄素华,等, 基于微粒群优化算法的电力系统动态无功优化[J],电网技术,2007, 31(2): 47-52
    [182] 沈茂亚,丁晓群,自适应免疫粒子群算法在动态无功优化中应用[J],电力自动化设备,2007, 27 (1): 31-35
    [183] 王秀丽,李正文,胡泽春,高压配电网无功/电压的日分段综合优化控制[J],电力系统自动化,2006, 30(7):5-9
    [184] El Araby, E.E. Yorino, Naoto, An Approach For Allocating Var Service In The Electricity Market Against Voltage Collapse[C], 7th International Power Engineering Conference, IPEC 2005, 2005:1-6
    [185] Shangyou Hao, A Reactive Power Management Proposal For Transmission Operators[J], IEEE Transactions On Power Systems, 2003,18(4): 1374-1381
    [186] X. Lin, A.K. David , C.W. Yu, Reactive Power Optimisation With Voltage Stability Consideration In Power Market Systems[J], IEE Proceedings: Generation, Transmission and Distribution, 2003,150(3): 305-310
    [187] A. Augugliaro, L. Dusonchet, M.G. Ippolito, Multiobjective Design Of Distributed Reactive Power Production In A Deregulated Electric Market[J],Electrical Power and Energy Systems, 2005, 27(3):205–214
    [188] 熊虎岗,程浩忠,徐敬友, 基于提高系统无功备用容量的无功优化调度[J],电网技术, 2006,30(23): 36-40

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700