土壤粘土矿物混合光谱分解方法研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文以黑龙江省鹿鸣地区采集粘土矿物为样本,在详细研究粘土矿物光谱信息机理和吸收特征的基础上,基于混合光谱分解模型对采集数据进行线性分解和非线性分解,反演粘土矿物的含量,并对成矿趋势进行定位预测。
     论文研究内容包括:研究光谱特征的可识别性;研究混合光谱线性模型的建立与线性解算方法;研究混合光谱非线性模型的建立与非线性解算方法;研究分解算法的性能评估方法,对提取结果进行定量分析并进行优化算法研究。
     主要的研究成果包括:在黑龙江省鹿鸣地区,针对采集的土壤粘土矿物近红外光谱数据,基于混合光谱分解模型,采用矩阵运算法、带约束的最小二乘法线性分解方法和线性规划方法和非线性约束性优化方法分解的方法处理进行矿物含量的提取研究,对比分析算法的优劣后提出优化算法,提取结果与已知矿物含量和已有资料吻合较好,可为成矿预测提供科学依据。
With the rapid development of economy and accelerate industrialization process, the demand for mineral resources increases day by day,short of mineral resources not only restrict the sustained and stable economic development, but also relate to the security of national resources. To improve the efficiency of exploration, remote sensing information extraction technology for rock is an important approach which has been widely applied to resource exploration.
     Mixed spectral decomposition method is an important part of remote sensing information extraction technology for rock and mineral. Mixed spectral decomposition method is a calculating method based on the spectra-physics- mathematical model. The establishment of spectra-physics-mathematical model began from the mechanism of spectrum, when the light goes into the interior material, will produce the behavior of absorption, this absorption of such behavior is the spectral response of internal structure of matter, trace elements and characterization types. Just as material has this physical mechanism, so starting from the physics of spectrum, the quantitative model of the extraction of material information is possible.
     Just as a kind of electromagnetic wave, light has wave-particle duality. According to electromagnetic theory of matter, the production of all matter spectrum has strict physical mechanism, as clay minerals in soil has its inherent characteristics of reflection, absorption, transmission and radiation of electromagnetic wave, so it has its own unique spectral characteristics. Spectral characteristics of clay minerals in soils is mainly composed of components, material within the crystal structure, the influence of physical and chemical characteristics, generally, spectral characteristics of clay minerals in soils is relatively stable. Therefore, the spectral characteristics of clay minerals in soils can be differentiated.
     Soil clay minerals in the near infrared spectrum range has diagnosis. Near infrared spectroscopy is vibrational spectra of molecular spectra, it is the fundamental frequency of molecular vibration frequency multiplier and cooperation, including a large number of functional groups characteristic information. Modern near-infrared spectrometer is fast on the test samples, and is the measurement of preventing samples and testers. Near-infrared spectral data collected up has nm sample interval, but rich data also brings redundancy, resulting in the information efficiency of near-infrared spectral data is low. So enhanced the characteristic information, mainly used the envelope removed method to normalize the background value, enhanced the information of near-infrared spectral data, searched the absorption peak position and quantified the information, including depth, width of absorption, absorption symmetry and the extraction of the absorption area, and in the end, got near infrared spectral data on feature space optimization.
     The mixed spectrum model of clay minerals in soil includes linear model and nonlinear model, using programming software to realize matrix operations, with binding of the least squares and linear programming for solution based linear model, and the nonlinear constrained optimization based nonlinear model, inverse the content of soil clay minerals, and have the verification with real content of the known mineral phase, screening algorithm.
     This research provides a feasible method for near-infrared spectral information characteristic extraction and retrieval of soil clay minerals, and offers a new direction and extension for the practical application of spectroscopy. Near-infrared spectroscopy as a hyper spectral remote sensing rock extraction technology, is able to develop its skill to full in terms of soil clay quantitative inversion.
引文
[1]王润生.遥感地质技术发展的战略思考.国土资源遥感[J],2008,(1):1-12.
    [2]甘甫平,王润生著.遥感岩矿信息提取基础与技术方法研究[M].北京:地质出版社,2004.
    [3]童庆禧,张兵,郑兰芬.高光谱遥感—原理、技术与应用,高等教育出版社.
    [4]吴瑾光.近代傅里叶变换红外光谱技术及应用(上卷),北京:科学技术文献出版社,1994,251-281.
    [5] Herschel W Investigation of the Powers of the smatic Colours to heat and illuminate Objects;with Remarks that prove the different Refrangibility of radiant Heat.To which is added an Inquiry into the Method of viewing the Sun advantageously with Telescopes of large Apertures and high magnifying Powers,Phil-osophical Transactions,1800,90:255-326.
    [6]陈述彭,童庆禧,郭华东主编.遥感信息机理研究.北京:科学出版社,1998:228-231
    [7] Ben-Gera I.,,K.H.Norris.Direct spectrophotometric determination of fat and moisture in meat products,Journal Food Science,1968,33:64.
    [8] V.C.法默著,应育浦,汪寿松,李春庚等译.矿物的红外光谱,科学出版社.
    [9] Mc Caig,T.N.Extending the use of visible/near-infrared reflectance spectrophotometers to measure color of food and agricultural products,Food Research International,2002,35(g):731-736.
    [10] De Boever J.L,Cotyn B.Q,De Brabander D.L,et al.Prediction of the feeding value of grass silages by chemical parameters,in vitro digestibility and near-infrared reflectance spectroscopy, Animal Feed Science and Technology,1996,60(1):103-115.
    [11]李庆波,汪喻,徐可欣等.牛奶主要成分含量近红外光谱快速测量法,食品科学,2002,23(6):121-124.
    [12] Woo,Young-Ah,Kim.Hyo-Jin,Cho.Jung Hwan.Identification of Herbal Medicines Using Patern Recognition Techniques with Near-Infrared Reflectance Spectra, Microchemical Journal, 1999,63(1):61-70.
    [13] Watanabe Eiju,Yamashita Yuichi,Maki Atsushi,et al.Cerebral blood flow measurement during epilepsy using multi-channel near infra-red spectroscopic topography,Neuroscience Research,1997,28(Supplement 1):300.
    [14] http://speclab.cr.usgs.gov/spectral-lib.html.
    [15] Clark R 1999.Spectroscopy of Rocks and Minerals,and Principles of Spectroscopy,http://speclab.cr.usgs.gov(last revised June 25.1999).
    [16]王润生,王青华,张宗贵等.矿产资源调查评价中遥感新技术新方法应用研究.中国地质调查局重点科研项目研究成果报告.2002.6北京.
    [17]武子玉.矿物近红外光谱信息提取及应用研究[D].吉林:吉林大学.2005.
    [18] Ramsey M.S.,Christensen P.R. Mineral abundance determination: Quantitative deconvolution of thermal emission spectra[J]. Journal of Geophysical Research, 1998,103(B1):577-596.
    [19] Zhen Lanfen,etal.,Study on Mineral Exploration by Infrared Multispectral Approaeh, in the Proceedings of the 1lth Asian Conference on RemoteSensing Vol II Q-29,1990.
    [20] Zhen Lanfen Tong Qing Xi et al,.Mineral exploration by use of infrared multispectral remote sensing in China.In the Confence“Remote sensing:an operational technology for the mining petroleum industries”London,1990.
    [21]王晋年,郑兰芬,童庆禧.成象光谱图象光谱吸收鉴别模型与矿物填图研究[J].环境遥感,1996.
    [22]闫柏琨,甘甫平,王润生,王振超,杨苏明.基于光谱分解的Clementine UV/V IS/NIR数据月表矿物填图[J]。国土资源遥感,2009.4.
    [23]甘甫平,王润生.高光谱遥感技术在地质领域中的应用[J]。国土资源遥感,2007.
    [24]白继伟.基于高光谱数据库的光谱匹配技术研究[D].北京:中国科学院遥感应用研究所.
    [25]刘天乐.基于高光谱遥感的矿物光谱特征分析和提取[D].武汉:中国地质大学.
    [26] Hunt G R.Spectroscopic properties of rocks and minerals,in Handbook of physical properties of rocks,Volumn I ,(R.S.Carmichael,ed)CRC press,Boca Raton,1982,295-385.
    [27]Hapkeetal.BidirectionalReflectance Spectroscopy.I.Theory.J.Geophy.Res.1981.86:3039-3054
    [28] Clark R N, Gallagher A J, Swayze G A. Material absorption band depth mapping of imaging spectrometer data using a complete band shape least-squares fit with library reference spectra.In:Proceedings of the Second Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) Workshop, JPL Publication 90-54,1990,176-186.
    [29]王桂松.线性混合模型理论的新发展[J].北京工业大学学报,2000.
    [30]应天玉,李明泽,范文义.基于IDL的混合光谱分解模型的实现[J].东北林业大学学报,2007.11.
    [31]刘成,王丹丽,李笑梅。用混合像元线性模型提取中等植被覆盖区的粘土蚀变信息[J]。遥感技术与应用,2003.4.
    [32]薛绮,匡纲要,李智勇。基于线性混合模型的高光谱图像端元提取[J].遥感技术与应用,2004.6.
    [33]朱述龙.基于混合像元的遥感图像分类技术[J].解放军测绘学院学报.1995.
    [34]陶秋香.非线性混合光谱模型及植被高光谱遥感分类若干问题研究[D].山东:山东科技大学.
    [35]谭成印.黑龙江省主要金属矿产构造-成矿系统基本特征[D].北京:中国地质大学,2009.
    [36] F.J.朗斯塔夫编,邢顺洤,王行信,幸国强,杜智文,刘先德译.粘土矿物和资源地质学[M].黑龙江:黑龙江科学技术出版社,1985.
    [37]张乃娴,李幼琴,赵惠敏,姬素荣.粘土矿物研究方法.粘土矿物研究方法[M].北京:科学技术出版社,1990.
    [38]浙江省地质科学研究所.粘土和粘土矿物译文选辑[C].浙江:浙江省地质局情室,1981.
    [39]黑龙江省区域地层表编写组编著.东北地区区域地层表-黑龙江省分册[M].北京:地质出版社,1979.
    [40]谢伯承,薛绪掌,刘伟东,王纪华,王国栋.基于包络线法对土壤光谱特征的提取及其分析[J].土壤学报,2005.
    [41] O.Mutanga,A.K.Skidmore,H.H.T.Prins.Predicting in situ pasture quality in the Kruger National Park,South Africa,using continuum-removed absorption features.Remote Sensing of Environment,2004,89:393-408.
    [42] Green A A, Berman M, Switzer P, Craig M D. A transforma-tion for ordering multispectral data in terms of image quality with implications for noise removal. IEEE Transactions on Geoscience and Remote Sensing, 1998,26(1):65-74.
    [43] Dennison P E, Roberts D A. Endmember Selection for Multiple Endmember Spectral Mixture A nalysis Using Endmember Average RMSE[J].Remote Sensing of Environment, 2003,87:123-135.
    [44] John C.Price.An Approach for Analysis of Reflectance Spectra.Remote Sensing of Environment,1998,64:316-330.
    [45] Fuan Tsai,William Philpot.Derivative Analysis of Hyperspectral Data.Remote Sensing of Environment,1998,66:41-51.
    [46] F.A.Druse,A.B.Lefkoff,J.W.Boardman,K.B.Heidebrecht.The Spectral Image Processing System(SIPS) - Interactive Visualization and Analysis of Imaging Spectrometer Data.Remote Sensing of Environment,1993,44:145-163.
    [47] Meer F van der,Bakker W.Cross correlogram spectral matching:application to surface mineralogical mapping by using AVIRIS data from Cuprite,Nevada.Remote Sensing of Environment,1997,61:371-382.
    [48] Adams J B, Smith M O, Gillespie A R. Imaging spectroscopy:Interpretation based on spectral mixture analysis. In:Pieters, CM, Englert P A J (eds), Remote Geochemical Analysis:Elementatl and Mineralogic Composition, UK:Cambridge University Press, 1993, 145-166.
    [49]龚纯,王正林编著.精通MATLAB最优化计算[M].北京:电子工业出版社,2009.
    [50]周建兴,岂兴明等编著.MATLAB从入门到精通[M].北京:人民邮电出版社,2008.
    [51]谢革.一种给予线性规划的项目资金管理模式[J].广西科学院学报.2000.11.
    [52] Ph ilips D T, Ravindran A , Solberg J J. Operations reaserch: principles and practice, Wiley, New York, 1976.
    [53]余雪雷.线性规划问题的一种改进算法[D].吉林:吉林大学.
    [54]曾玲.线性规划与生产决策[J].桂林电子工业学院学报.1998.2.
    [55]汪峰.电力市场短期运行优化问题研究[D]中国电力科学研究院, 2003.
    [56]安劲萍.线性规划在经济分析中的应用[J].中央财经大学学报, 2005, (01).
    [57]孙庭锋.浅析线性规划在企业生产计划中的应用[J].商业经济, 2006, (03).
    [58]黄贵东,丁文英.基于线性规划的生产计划优化研究[J].物流技术, 2006, (02).
    [59]王树祥,武新霞,卜少利.线性规划在企业生产计划中的应用及模型的建立和求解[J].中国电力教育, 2007, (S2).
    [60]白国仲.线性离散规划及其应用[D].武汉:华中师范大学,2004.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700