含硫小分子高效有机太阳能电池给体材料的分子设计
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
在过去十年里,有机聚合物太阳能电池的研究突飞猛进,因其原料电池成本低廉,最大光电转换效率(PCE)已经突破10%。然而,有机小分子太阳能电池的PCE因吸收光谱和相应的能量损耗不匹配,其PCE也比有机聚合物太阳能电池低.使得有机小分子研究受限。因此,本文采用DFT方法,选用苯并二噻吩和齐聚噻吩作为给体片段,选择不同的受体片段,通过分子构建模式、拓扑结构、给受体片段组成与比例等因素,设计和研究系列枝杈型及星型给体分子。本研究旨在设计出具有与受体分子能级匹配、强的光吸收和高电荷载流子迁移率等性质的含硫有机小分子给体材料,从而提高有机小分器件的PCE。
     首先筛选合适的太阳能电池(OSC)给体材料构筑模块。设计系列共轭给体分子(DmAn,m=1-4,n=1-7,D=苯并二噻吩,A=苯并恶二唑),通过改变D/A片段比例、拓扑结构,来调节材料的光电子性质。发现增加受体片段的比例可以降低LUMO能级从而设计窄带系(Eg)分子。与线型构型相比,互相垂直的给体和受体片段构型可以观测到设计分子的光谱发生明显的红移。然而线型结构分子吸收增强。D-A-D分子相对于D-D拓扑结构,具有优异的光电性能。此外,D-A-D拓扑结构比多垂直连接的受体片段的拓扑结构具有更佳的光电性质。D-A-D型给体分子(m=2-4)的空穴重组能小于单给体组成(DAn)的分子。尽管如此,D-D型分子比DAn分子的电子重组能小,主要是由于第二个给体片段的存在。并且,电荷转移也依赖于分子的形状,枝杈型或各向异性X,H,π,n及正方形因高维度,显示出比线型异构体高的电荷迁移率.相对于系列PDI基受体分子,建议相应匹配的给体分子,为构造太阳能电池器件提供理论依据。
     利用DFT方法采用双波段重叠策略,为了提高材料的溶解性,设计了五个X-型各向异性低能隙给体分子(D1-D5)。通过调节PDI1的P1和P2位置的取代基,构建一系列新的PDI受体分子是为了与设计的给体分子相匹配。设计的给体包含给体片段苯并二噻吩(DF)作为核,电子受体片段(A1到A5)及三呋喃环和乙炔基三呋喃环作为桥(分别为B1和B2)。TD-DFT计算的给体分子吸收带覆盖了可见光和近红外区。给体片段DF和多枝杈B1和B2贡献短波吸收和中等波长区域,光谱的中间和长波长区域归因于受体片段和给受体片段间电荷转移吸收。所设计给体中,D1有理想的最低能隙、前线分子轨道能级和强的宽吸收是由于其具有强的吸电子片段。与空穴重组能相比,电子重组能较低,表明五个受体分子有利于电子转移。采用P21/c空间群预测结晶态D1的迁移率。D1显示出高迁移率(μe=2.00cm2/V.s和μh=1.7×10-2cm2/V.s)。计算所得D1的开路电压Voc为1.02V。所设计的给体分子和PDI衍生物受体相匹配,可以应用于高性能的太阳能电池件。为了进一步探讨分子各向异性对3D多枝化合物的吸收性质的影响,我们以并噻吩为给体(DF)单元,通过乙炔作为π桥(Ps)连接吡啶-噻二唑受体(AF)单元,再与不同的中心原子结合,设计并研究了不同的共轭的三臂及四臂星形分子。三臂及四臂星形分子的中心原子分别为N、B和C、Si。结合密度泛函理论(DFT)和时间依赖密度泛函理论(TD-DFT)两种方法来探究中心原子对两种不同拓扑结构(即“core-D-π-A”和“core-A-π-D”)类型分子的光学,电子及电荷转移性质的影响。“core-D-π-A”型分子(N3-Mol,B3-Mol,Si4-Mol和C4-Mol)的HOMO能级比“core-A-π-D”型分子(N3-RMol,B3-RMol,Si4-RMol和C4-RMol)更理想。“core-A-π-D”型分子的λmax值与“core-D-π-A”型分子相比发生了显著红移。三臂型分子N3-Mol和N3-Rmol在所设计的不同分子中λmax值最大。有趣的是,B3-RMol和C4-RMol分子的λmax波长几乎相同。然而,以B和Si为中心原子的三臂及四臂型分子的吸收带强度与以N和C为中心原子的分子相比更强。C4-RMol,Si4-RMol,B3-RMol和N3-RMol分子与C4-Mol,Si4-Mol,B3-Mol和N3-Mol分子相比分别发生了59,14,28和39nm的红移。重组能和迁移率的研究结果都表明四臂型分子与三臂型分子相比电荷转移性质更加优异,这是由于前者具有更好的维度。因此,光电子和电荷转移性质的分析结果证实本文设计的三臂及四臂星形分子是一种十分具有应用前景的有机太阳能电池给体材料。本文得到的结果可以为今后高效有机光伏小分子给体的研究提供更多的思路。
Harvesting sunlight energy is regarded as being one of the most important ways to dealgrowing global energy demands using photovoltaic technology. Organic photovoltaics (OPV)is a field of applied research which has been growing speedily in the last decade leading to acurrent record value of power-conversion efciency (PCE) of10%. One major motive forthis boom is a potentially low-cost production of solar modules on flexible polymer substrate.However, the PCE of OPVS based on the small molecular donors is comparably smaller thanthose based on polymer. The lower PCE is confined because of the poor mismatch betweenthe absorption spectra of the small organic molecules and that of sun which in turn causesenergy lose. To this end, the research activities include the designing and investigation ofsmall branched or star shape donor molecules based on the different molecular strategies,configurations, topologies, donor-acceptor ratios and compositions by using theoreticaldensity functional theory (DFT) approaches. The aim of the research was to design optimalorganic donor small molecules with improved parameters like appropriate energy levels withrespect to the acceptor molecules, strong visible light absorption and sufficient high chargecarrier mobility, which can be used as potential candidates for small molecular OPV withhigher PCE.
     The first part of thesis focuses to screen out proper building blocks for the design oforganic solar cell (OSC) donor materials. Hence, Varying ratio of D/A fragments, topologiesand their effects on the optical and electronic properties of a series of conjugated donormolecules (DmAnwhere m=1-4and n=1-7while D=benzodithiophene and A=benzooxadiazole) are explored for OPV applications. An increase in the ratio of acceptorfragments lowers the LUMO energy level and narrows the Eg for the designed molecules. Inthe case of molecules containing more vertically bonded acceptor fragments with donorfragment, a significant red shift in the absorption wavelength of the final donor molecules isobserved as compared to linearly bonded ones. While, the linear binding side of donorfragments assisted considerably intensify the absorption bands. D-A-D topology moleculesexhibit more significant optical and electronic characteristics than those of D-D topology. Inaddition, D-A-D topology shows prominent affect over the factor of having more verticalbonded fragments in terms of opto-electro properties. All donor molecules (m=2-4) of D-A-Dtype exhibit lower λhthan those of1donor containing (DAn) molecules. Nevertheless, D-Dtype molecules show only lower λethan DAnmolecules due to the presence of second donorfragment. Furthermore, charge transfer phenomenon is also shape dependent, branched or anisotropic X, H, π, n, and square shapes display higher charge transfer rate thancorresponding linear isomers because of having better dimensionality. Finally, the designeddonor molecules and matched acceptor molecules hold immense potential to construct solarcells devices.
     Secondly, employing a double overlapping wave band strategy based on DFT, five X-shape anisotropic low energy gap donor compounds (D1-D5) have been designed for solarcells applications possessing good solubility. A series of new PDIs acceptor molecules arebuilt to match each designed donor in terms of frontier molecular orbital energy levels bytuning substituents at P1and P2positions of PDI1. The designed donors consist of centralelectron donor fragment benzodithiophene (DF), electron accepting fragments (A1to A5) andterfuran and ethynyl-terfuran bridges (B1and B2respectively). The absorption bands of thedesigned donors based on TD-DFT not only cover the visible region but also extend toinfrared region of spectrum. The multibranched π-conjugated B12-DF-B22donor fragmentprovides the strong and broad short wavelength π–π*absorption while the anisotropicmultibranched intramolecular charge transfer (ICT) between the B12-DF-B22donor and Afavors fragment the strong and broad middle and long wavelength absorption. In addition,PDIs also exhibit complementary absorptions in the visible range of solar spectrum. Amongdesigned donors, D1exhibits ideal lowest band gap, FMO energy levels and exclusivebroadest absorption because of the strongest electron withdrawing fragment. The lower λevalues as compared to λhillustrate that these five donors would be favorable for electrontransfer. The carrier mobility of D1in the crystalline state has been predicted using P21/cspace group. D1displays higher carrier mobilities for μe=2.00cm2/V.s and μh=1.7×10-2cm2/V.s. The calculated Voc of D1is1.02V. The designed donors and PDIs acceptors aresuitable and recommended for high performance solar cell devices.
     Thirdly, with the aim to investigate further the effect of molecular anisotropy on theabsorption properties of3D multi-branched compounds, we have designed and investigatedconjugated three and four arms star shape molecules with bithiophene as donor (DF)fragment connected to pyridine-thiadiazole as acceptor fragment (AF) via ethyne as π-spacer(Ps) in the arms linking with different central core atoms. The central cores in three and fourarms molecules are N, B and C, Si respectively. A combination of density functional theory(DFT) and Time-dependent-DFT (TD-DFT) approaches is applied to understand the effect ofdifferent central cores on the optical, electronic and charge transport properties in twodifferent topologies i.e.“core-D-π-A” and “core-A-π-D”. HOMO energy levels of the “core- D-π-A” type molecules (N3-Mol, B3-Mol, Si4-Mol and C4-Mol) are more ideal related tothose of “core-A-π-D” type molecules (N3-RMol, B3-RMol, Si4-RMol and C4-RMol). Theλmaxvalues of “core-A-π-D” type molecules are significantly red shifted than those of “core-D-π-A” type molecules. Three arms N3-Mol and N3-RMol display the largest λmaxamong therespective designed molecules. Interestingly, B3-RMol and C4-RMol show more a less sameλmaxwavelength. However, in case of three and four arms molecules absorption bands of Band Si cores containing molecules are of strong intensity as compared to those containing Nand C cores respectively. The molecules C4-RMol, Si4-RMol, B3-RMol and N3-RMol showa red shift of59,14,28and39nm than λmaxof C4-Mol, Si4-Mol, B3-Mol and N3-Mol. Bothreorganization energy and mobility results reveal that four arms molecules are better chargetransport materials than three arms molecules because of better dimensionality. Thus, opticalelectronic and charge transport properties analysis confirms that these designed three and fourarms molecules can act as promising donor materials for organic solar cells. We believe thatthe present results can also provide a potential information to develop small molecular donorsfor highly efficient organic photovoltaics.
引文
1. Troshin, P.A. and N.S. Sariciftci, Supramolecular Chemistry for OrganicPhotovoltaics, in Supramolecular Chemistry.2012, John Wiley&Sons, Ltd.
    2. Becquerel, A.-E.,[J]. Comptes Rendus de l' Academie des Sciences Serie IIa:Sciencesde la Terre et des Planets,1839.9: p.561-567.
    3. Smith., W., Effect of Light on Selenium During the Passage of An Electric Current [J].Nature,1873.7(173): p.303-303.
    4. Hertz., H., Ueber einen Einfluss des ultravioletten Lichtes auf die electrischeEntladung [J]. Annalen der Physik und Chemie,1987.267(8): p.983–1000.
    5. Pope., H.K.a.M., Photovoltaic Efect in Organic Crystals [J]. The Journal ofChemical Physics Letters,1959.30(2): p.585.
    6. Espinosa, N.H., M.; Angmo, D.; Krebs, F. C., Solar cells with one-day energypayback for the factories of the future [J]. Energy&Environmental Science2012.5(1): p.5117-5132.
    7. Tang, C.W., Two-layer organic photovoltaic cell [J]. Applied Physics Letters,1986.48(2): p.183.
    8. Hiramoto, M., H. Fujiwara, and M. Yokoyama, Three-layered organic solar cell witha photoactive interlayer of codeposited pigments [J]. Applied Physics Letters,1991.58(10): p.1062.
    9. Yu, G., et al., Polymer Photovoltaic Cells: Enhanced Efficiencies via a Network ofInternal Donor-Acceptor Heterojunctions [J]. Science,1995.270(5243): p.1789-1791.
    10. Solar Energy Technologies and Applications". Canadian Renewable Energy Network.Retrieved2007-10-22.[J].
    11. IEA Says Solar May Provide a Third of Global Energy by2060". BloombergBusinessweek. December1,2011.[J].
    12. Forrest, S.R., The path to ubiquitous and low-cost organic electronic appliances onplastic [J]. Nature,2004.428(6986): p.911-8.
    13. Zhu, X.Y., Q. Yang, and M. Muntwiler, Charge-transfer excitons at organicsemiconductor surfaces and interfaces [J]. Acc Chem Res,2009.42(11): p.1779-87.
    14. Markov, D.E., et al., Simultaneous enhancement of charge transport and excitondiffusion in poly(p-phenylene vinylene) derivatives [J]. Physical Review B,2005.72(4): p.045217.
    15. O'Regan, B. and M. Gr tzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films [J]. Nature,1991.353(6346): p.737-740.
    16. Santra, P.K. and P.V. Kamat, Mn-doped quantum dot sensitized solar cells: a strategyto boost efficiency over5%[J]. J Am Chem Soc,2012.134(5): p.2508-11.
    17. Moon, S.-J., et al., Sb2S3-Based Mesoscopic Solar Cell using an Organic HoleConductor [J]. The Journal of Physical Chemistry Letters,2010.1(10): p.1524-1527.
    18. Drechsel, J., et al., Efficient organic solar cells based on a double p-i-n architectureusing doped wide-gap transport layers [J]. Applied Physics Letters,2005.86(24): p.244102.
    19. W hrle, D. and D. Meissner, Organic Solar Cells [J]. Advanced Materials,1991.3(3):p.129-138.
    20. Morel, D.L., et al., High-efficiency organic solar cells [J]. Applied Physics Letters,1978.32(8): p.495.
    21. Cai, W., X. Gong, and Y. Cao, Polymer solar cells: Recent development and possibleroutes for improvement in the performance [J]. Solar Energy Materials and SolarCells,2010.94(2): p.114-127.
    22. Pandey, R. and R.J. Holmes, Organic Photovoltaic Cells Based on ContinuouslyGraded Donor–Acceptor Heterojunctions [J]. IEEE Journal of SelectedTopics in Quantum Electronics,2010.16(6): p.1537-1543.
    23. Thompson, B.C. and J.M. Frechet, Polymer-fullerene composite solar cells [J].Angew Chem Int Ed Engl,2008.47(1): p.58-77.
    24. Zhang, W., et al., Synthesis and photovoltaic properties of functional dendriticoligothiophenes [J]. Journal of Polymer Science Part A: Polymer Chemistry,2011.49(8): p.1865-1873.
    25. Mayerhoffer, U., et al., Outstanding short-circuit currents in BHJ solar cells based onNIR-absorbing acceptor-substituted squaraines [J]. Angew Chem Int Ed Engl,2009.48(46): p.8776-9.
    26. Zhou, J., et al., Small Molecules Based on Benzo[1,2-b:4,5-b′]dithiophene Unit forHigh-Performance Solution-Processed Organic Solar Cells [J]. Journal of theAmerican Chemical Society,2012.134(39): p.16345-16351.
    27. Kanibolotsky, A.L., I.F. Perepichka, and P.J. Skabara, Star-shaped pi-conjugatedoligomers and their applications in organic electronics and photonics [J]. Chem SocRev,2010.39(7): p.2695-728.
    28. Ma, W., et al., Thermally Stable, Efficient Polymer Solar Cells with NanoscaleControl of the Interpenetrating Network Morphology [J]. Advanced FunctionalMaterials,2005.15(10): p.1617-1622.
    29. Huo, L., et al., Replacing alkoxy groups with alkylthienyl groups: a feasible approachto improve the properties of photovoltaic polymers [J]. Angew Chem Int Ed Engl,2011.50(41): p.9697-702.
    30. Huo, L., et al., Low band gap dithieno[3,2-b:2',3'-d]silole-containing polymers,synthesis, characterization and photovoltaic application [J]. Chem Commun (Camb),2009(37): p.5570-2.
    31. Scharber, M.C., et al., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards10%Energy-Conversion Efficiency [J]. Advanced Materials,2006.18(6):p.789-794.
    32. Coakley, K.M. and M.D. McGehee, Conjugated Polymer Photovoltaic Cells [J].Chemistry of Materials,2004.16(23): p.4533-4542.
    33. Roncali, J., Synthetic Principles for Bandgap Control in Linear pi-ConjugatedSystems [J]. Chem Rev,1997.97(1): p.173-206.
    34. van Mullekom, H., Developments in the chemistry and band gap engineering ofdonor–acceptor substituted conjugated polymers [J]. Materials Science andEngineering: R: Reports,2001.32(1): p.1-40.
    35. Roncali, J., Molecular Engineering of the Band Gap of π-Conjugated Systems: FacingTechnological Applications [J]. Macromolecular Rapid Communications,2007.28(17): p.1761-1775.
    36. Wong, B.M. and J.G. Cordaro, Electronic Properties of Vinylene-Linked HeterocyclicConducting Polymers: Predictive Design and Rational Guidance from DFTCalculations [J]. J Phys Chem C Nanomater Interfaces,2011.115(37): p.18333-18341.
    37. Brédas, J.L., Relationship between band gap and bond length alternation in organicconjugated polymers [J]. The Journal of Chemical Physics,1985.82(8): p.3808.
    38. Wudl, F., M. Kobayashi, and A.J. Heeger, Poly(isothianaphthene)[J]. The Journal ofOrganic Chemistry,1984.49(18): p.3382-3384.
    39. Pei, Q., et al., Electrochromic and highly stable poly(3,4-ethylenedioxythiophene)switches between opaque blue-black and transparent sky blue [J]. Polymer,1994.35(7): p.1347-1351.
    40. Burroughes, J.H., et al., Light-emitting diodes based on conjugated polymers [J].Nature,1990.347(6293): p.539-541.
    41. McDonald, R.N. and T.W. Campbell, The Wittig Reaction as a PolymerizationMethod1a [J]. Journal of the American Chemical Society,1960.82(17): p.4669-4671.
    42. Gilch, H.G. and W.L. Wheelwright, Polymerization of α-halogenated p-xylenes withbase [J]. Journal of Polymer Science Part A-1: Polymer Chemistry,1966.4(6): p.1337-1349.
    43. Neef, C.J. and J.P. Ferraris, MEH-PPV: Improved Synthetic Procedure andMolecular Weight Control [J]. Macromolecules,2000.33(7): p.2311-2314.
    44. Shen, P., et al., Effect of3D π π Stacking on Photovoltaic and ElectroluminescentProperties in Triphenylamine-containing Poly (p-phenylenevinylene) Derivatives [J].Macromolecules,2008.41(15): p.5716-5722.
    45. Hoppe, H., et al., Photovoltaic action of conjugated polymer/fullerene bulkheterojunction solar cells using novel PPE-PPV copolymers [J]. Journal of MaterialsChemistry,2004.14(23): p.3462.
    46. Zhang, Z.-B., et al., The First High Molecular Weight Poly(N-alkyl-3,6-carbazole)s[J]. Macromolecules,2002.35(6): p.1988-1990.
    47. Morin, J.-F. and M. Leclerc, Syntheses of Conjugated Polymers Derived fromN-Alkyl-2,7-carbazoles [J]. Macromolecules,2001.34(14): p.4680-4682.
    48. Blouin, N., A. Michaud, and M. Leclerc, A Low-Bandgap Poly(2,7-Carbazole)Derivative for Use in High-Performance Solar Cells [J]. Advanced Materials,2007.19(17): p.2295-2300.
    49. Lu, J., et al., Crystalline low band-gap alternating indolocarbazole andbenzothiadiazole-cored oligothiophene copolymer for organic solar cell applications[J]. Chem Commun (Camb),2008(42): p.5315-7.
    50. Hou, J., et al., Bandgap and Molecular Energy Level Control of Conjugated PolymerPhotovoltaic Materials Based on Benzo[1,2-b:4,5-b′]dithiophene [J]. Macromolecules,2008.41(16): p.6012-6018.
    51. Brabec, C.J., et al., A Low-Bandgap Semiconducting Polymer for PhotovoltaicDevices and Infrared Emitting Diodes [J]. Advanced Functional Materials,2002.12(10): p.709-712.
    52. Gurau, M.C., et al., Measuring molecular order in poly(3-alkylthiophene) thin filmswith polarizing spectroscopies [J]. Langmuir,2007.23(2): p.834-42.
    53. Lee, O.P., et al., Efficient small molecule bulk heterojunction solar cells with high fillfactors via pyrene-directed molecular self-assembly [J]. Adv Mater,2011.23(45): p.5359-63.
    54. Mishra, A., E. Mena-Osteritz, and P. Bauerle, Synthesis, photophysical andelectrochemical characterization of terpyridine-functionalized dendriticoligothiophenes and their Ru(II) complexes [J]. Beilstein J Org Chem,2013.9: p.866-76.
    55. Noma, N., T. Tsuzuki, and Y. Shirota, Thiophene octamer as a new class of photo-active material for photoelectrical conversion [J]. Advanced Materials,1995.7(7): p.647-648.
    56. Li, Z., et al., Solution Processable Rhodanine-Based Small Molecule OrganicPhotovoltaic Cells with a Power Conversion Efficiency of6.1%[J]. Advanced EnergyMaterials,2012.2(1): p.74-77.
    57. Zhou, J., et al., Small molecules based on benzo[1,2-b:4,5-b']dithiophene unit forhigh-performance solution-processed organic solar cells [J]. J Am Chem Soc,2012.134(39): p.16345-51.
    58. Lee, J.W., Y.S. Choi, and W.H. Jo, Diketopyrrolopyrrole-based small molecules withsimple structure for high VOC organic photovoltaics [J]. Organic Electronics,2012.13(12): p.3060-3066.
    59. Welch, G.C., et al., A modular molecular framework for utility in small-moleculesolution-processed organic photovoltaic devices [J]. Journal of Materials Chemistry,2011.21(34): p.12700.
    60. Huang, Y., et al., Solution processed small molecule bulk heterojunction organicphotovoltaics based on a conjugated donor–acceptor porphyrin [J]. Journal ofMaterials Chemistry,2012.22(41): p.21841.
    61. Fitzner, R., et al., Dicyanovinyl-Substituted Oligothiophenes: Structure-PropertyRelationships and Application in Vacuum-Processed Small Molecule Organic SolarCells [J]. Advanced Functional Materials,2011.21(5): p.897-910.
    62. Haid, S., et al., Dicyanovinylene-Substituted Selenophene–Thiophene Co-oligomersfor Small-Molecule Organic Solar Cells [J]. Chemistry of Materials,2011.23(20): p.4435-4444.
    63. Steinberger, S., et al., A-D-A-D-A-type oligothiophenes for vacuum-depositedorganic solar cells [J]. Org Lett,2011.13(1): p.90-3.
    64. Zeng, S., et al., D-pi-A-pi-D type benzothiadiazole-triphenylamine based smallmolecules containing cyano on the pi-bridge for solution-processed organic solar cellswith high open-circuit voltage [J]. Chem Commun (Camb),2012.48(86): p.10627-9.
    65. Kopidakis, N., et al., Bulk heterojunction organic photovoltaic devices based onphenyl-cored thiophene dendrimers [J]. Applied Physics Letters,2006.89(10): p.103524.
    66. Shang, H., et al., New X-shaped oligothiophenes for solution-processed solar cells [J].Journal of Materials Chemistry,2011.21(26): p.9667.
    67. Shang, H., et al., A solution-processable star-shaped molecule for high-performanceorganic solar cells [J]. Adv Mater,2011.23(13): p.1554-7.
    68. Kroto, H.W.H., J. R.; O'Brien, S. C.; Curl, R. F.; Smalley, R. E., C60:Buckminsterfullerene [J]. Nature,1985.318((6042)): p.162-163.
    69. Haddock, J.N., et al., Fullerene based n-type organic thin-film transistors [J]. OrganicElectronics,2005.6(4): p.182-187.
    70. Hummelen, J.C., et al., Preparation and Characterization of Fulleroid andMethanofullerene Derivatives [J]. The Journal of Organic Chemistry,1995.60(3): p.532-538.
    71. Wienk, M.M., et al., Efficient methano[70]fullerene/MDMO-PPV bulk heterojunctionphotovoltaic cells [J]. Angew Chem Int Ed Engl,2003.42(29): p.3371-5.
    72. Xu, Z., et al., Vertical Phase Separation in Poly(3-hexylthiophene): FullereneDerivative Blends and its Advantage for Inverted Structure Solar Cells [J]. AdvancedFunctional Materials,2009.19(8): p.1227-1234.
    73. Zhao, G., Y. He, and Y. Li,6.5%Efficiency of polymer solar cells based on poly(3-hexylthiophene) and indene-C(60) bisadduct by device optimization [J]. Adv Mater,2010.22(39): p.4355-8.
    74. He, Y., et al., Indene-C(60) bisadduct: a new acceptor for high-performance polymersolar cells [J]. J Am Chem Soc,2010.132(4): p.1377-82.
    75. Voroshazi, E., et al., Novel bis-C60derivative compared to other fullerene bis-adducts in high efficiency polymer photovoltaic cells [J]. Journal of MaterialsChemistry,2011.21(43): p.17345.
    76. Anthony, J.E., et al., n-Type organic semiconductors in organic electronics [J]. AdvMater,2010.22(34): p.3876-92.
    77. Li, C. and H. Wonneberger, Perylene imides for organic photovoltaics: yesterday,today, and tomorrow [J]. Adv Mater,2012.24(5): p.613-36.
    78. Langhals, H., S. Demmig, and H. Huber, Rotational barriers in perylene fluorescentdyes [J]. Spectrochimica Acta Part A: Molecular Spectroscopy,1988.44(11): p.1189-1193.
    79. Wicklein, A., M.-A. Muth, and M. Thelakkat, Room temperature liquid crystallineperylene diester benzimidazoles with extended absorption [J]. Journal of MaterialsChemistry,2010.20(39): p.8646.
    80. Li, G., R. Zhu, and Y. Yang, Polymer solar cells [J]. Nat Photon,2012.6(3): p.153-161.
    81. Cowan, S.R., A. Roy, and A.J. Heeger, Recombination in polymer-fullerene bulkheterojunction solar cells [J]. Physical Review B,2010.82(24): p.245207.
    82. Garcia-Belmonte, G., et al., Charge carrier mobility and lifetime of organic bulkheterojunctions analyzed by impedance spectroscopy [J]. Organic Electronics,2008.9(5): p.847-851.
    83. Liang, Y., et al., For the bright future-bulk heterojunction polymer solar cells withpower conversion efficiency of7.4%[J]. Adv Mater,2010.22(20): p. E135-8.
    84. Loser, S., et al., A naphthodithiophene-diketopyrrolopyrrole donor molecule forefficient solution-processed solar cells [J]. J Am Chem Soc,2011.133(21): p.8142-5.
    85. Cook, S., R. Katoh, and A. Furube, Ultrafast Studies of Charge Generation inPCBM:P3HT Blend Films following Excitation of the Fullerene PCBM [J]. TheJournal of Physical Chemistry C,2009.113(6): p.2547-2552.
    1. Levine., N.,[J]. Quantum Chemistry. Prentice Hall, Englewood Cliffs, New Jersey,1991: p.455–544.
    2. F, J., Introduction to computational Chemistry[M][J]. Chichester, England: JohnWiley and Sons,2007: p.98–149.
    3. D. R. Hartree, P., The wave mechanics of an atom with a non-coulomb central field[J]. Theory and methods Cambridge Phil. Soc,1928.24: p.89-110.
    4. Slater, J.C., A Simplification of the Hartree-Fock Method [J]. Physical Review,1951.81(3): p.385-390.
    5. Miehlich, B., et al., Results obtained with the correlation energy density functionals ofbecke and Lee, Yang and Parr [J]. Chemical Physics Letters,1989.157(3): p.200-206.
    6. Taylor, D.P., W.P. Hess, and M.I. McCarthy, Structure and Energetics of theWater/NaCl(100) Interface [J]. The Journal of Physical Chemistry B,1997.101(38): p.7455-7463.
    7. Baranek, P., et al., Ab initio study of the cation vacancy at the surface and in bulkMgO [J]. Physical Chemistry Chemical Physics,2000.2(17): p.3893-3901.
    8. R.G. Parr, R.G.Y.W., Density-Functional Theory of Atoms and Molecules [J].Oxford University Press, USA,1994.
    9. Lang, N.D. and W. Kohn, Theory of Metal Surfaces: Work Function [J]. PhysicalReview B,1971.3(4): p.1215-1223.
    10. Hohenberg, P. and W. Kohn, Inhomogeneous Electron Gas [J]. Physical Review,1964.136(3B): p. B864-B871.
    11. Vignale, G. and M. Rasolt, Density-functional theory in strong magnetic fields [J].Phys Rev Lett,1987.59(20): p.2360-2363.
    12. Hestenes, M.R., Multiplier and gradient methods [J]. Journal of Optimization Theoryand Applications,1969.4(5): p.303-320.
    13. Kohn, W. and L.J. Sham, Self-Consistent Equations Including Exchange andCorrelation Effects [J]. Physical Review,1965.140(4A): p. A1133-A1138.
    14. Gell-Mann, M. and K.A. Brueckner, Correlation Energy of an Electron Gas at HighDensity [J]. Physical Review,1957.106(2): p.364-368.
    15. Losada, M. and S. Leutwyler, Water hexamer clusters: Structures, energies, andpredicted mid-infrared spectra [J]. The Journal of Chemical Physics,2002.117(5): p.2003.
    16. Perdew, J.P., Density-functional approximation for the correlation energy of theinhomogeneous electron gas [J]. Physical Review B,1986.33(12): p.8822-8824.
    17. Perdew, J.P., K. Burke, and M. Ernzerhof, Generalized Gradient ApproximationMade Simple [J]. Physical Review Letters,1996.77(18): p.3865-3868.
    18. Tao, J., et al., Climbing the density functional ladder: nonempirical meta-generalizedgradient approximation designed for molecules and solids [J]. Phys Rev Lett,2003.91(14): p.146401.
    19. Staroverov, V.N., et al., Comparative assessment of a new nonempirical densityfunctional: Molecules and hydrogen-bonded complexes [J]. The Journal of Chemical Physics,2003.119(23): p.12129.
    20. Zhao, Y. and D.G. Truhlar, Design of density functionals that are broadly accurate forthermochemistry, thermochemical kinetics, and nonbonded interactions [J]. The Journal ofPhysical Chemistry A,2005.109(25): p.5656-5667.
    21. Zhao, Y., B.J. Lynch, and D.G. Truhlar, Development and assessment of a new hybriddensity functional model for thermochemical kinetics [J]. The Journal of Physical ChemistryA,2004.108(14): p.2715-2719.
    22. Runge, E. and E.K.U. Gross, Density-Functional Theory for Time-DependentSystems [J]. Physical Review Letters,1984.52(12): p.997-1000.
    23. Marques, M.A. and E.K. Gross, Time-dependent density functional theory [J]. AnnuRev Phys Chem,2004.55: p.427-55.
    24. Zein, S., et al., Assessment of the exchange-correlation functionals for the physicaldescription of spin transition phenomena by density functional theory methods: all the same?[J]. J Chem Phys,2007.126(1): p.014105.
    25. Woon, D.E. and T.H. Dunning, Benchmark calculations with correlated molecularwave functions. I. Multireference configuration interaction calculations for the second rowdiatomic hydrides [J]. The Journal of Chemical Physics,1993.99(3): p.1914.
    26. Raffenetti, R.C., General contraction of Gaussian atomic orbitals: Core, valence,polarization, and diffuse basis sets; Molecular integral evaluation [J]. The Journal ofChemical Physics,1973.58(10): p.4452.
    27. Fujita, T., H. Nakai, and H. Nakatsuji, Ab initio molecular orbital model of scanningtunneling microscopy [J]. The Journal of Chemical Physics,1996.104(6): p.2410.
    28. Bredas, J.L., et al., Charge-transfer and energy-transfer processes in pi-conjugatedoligomers and polymers: a molecular picture [J]. Chem Rev,2004.104(11): p.4971-5004.
    29. Wang, L., et al., Computational methods for design of organic materials with highcharge mobility [J]. Chem Soc Rev,2010.39(2): p.423-34.
    30. Kongsted, J., et al., The n→π*Electronic Transition in Microsolvated Formaldehyde.A Coupled Cluster and Combined Coupled Cluster/Molecular Mechanics Study [J]. TheJournal of Physical Chemistry A,2004.108(41): p.8624-8632.
    1. K se, M.E., et al., Theoretical Studies on Conjugated Phenyl-Cored ThiopheneDendrimers for Photovoltaic Applications [J]. Journal of the American ChemicalSociety,2007.129(46): p.14257-14270.
    2. Loser, S., et al., A Naphthodithiophene-Diketopyrrolopyrrole Donor Molecule forEfficient Solution-Processed Solar Cells [J]. Journal of the American ChemicalSociety,2011.133(21): p.8142-8145.
    3. Jiang, Y., et al., Tuning optical and electronic properties of star-shaped conjugatedmolecules with enlarged π-delocalization for organic solar cell application [J]. J.Mater. Chem. A,2013.1(28): p.8270.
    4. Chakraborty, C., et al., Star-shaped polyfluorene: Design, synthesis, characterizationand application towards solar cells [J]. European Polymer Journal,2014.52: p.181-192.
    5. Huang, J.H., et al., A ternary cascade structure enhances the efficiency of polymersolar cells [J]. Journal of Materials Chemistry,2010.20(14): p.2820-2825.
    6. Sirringhaus, H., Device Physics of Solution-Processed Organic Field-EffectTransistors [J]. Advanced Materials,2005.17(20): p.2411-2425.
    7. Fleetham, T.B., Z. Wang, and J. Li, Exploring Cyclometalated Ir Complexes as DonorMaterials for Organic Solar Cells [J]. Inorganic Chemistry,2013.52(13): p.7338-7343.
    8. Wang, X., et al., A furan-bridged D-π-A copolymer with deep HOMO level: synthesisand application in polymer solar cells [J]. Polym. Chem,2011.2(12): p.2872-2877.
    9. Mikroyannidis, J.A., et al., Low band gap conjugated small molecules containingbenzobisthiadiazole and thienothiadiazole central units: synthesis and application forbulk heterojunction solar cells [J]. J. Mater. Chem.,,2011.21(12): p.4679-4688.
    10. Mushrush, M., et al., Easily Processable Phenylene Thiophene-Based Organic Field-Effect Transistors and Solution-Fabricated Nonvolatile Transistor Memory Elements[J]. Journal of the American Chemical Society,2003.125(31): p.9414-9423.
    11. Wang, J.-L., Q. Xiao, and J. Pei, Benzothiadiazole-Based D π-A π-D Organic Dyeswith Tunable Band Gap: Synthesis and Photophysical Properties [J]. Organic Letters,2010.12(18): p.4164-4167.
    12. Leblebici, S.Y., et al., Near-Infrared Azadipyrromethenes as Electron Donor forEfficient Planar Heterojunction Organic Solar Cells [J]. ACS Appl. Mater. Interfaces,2011.3(11): p.4469-4474.
    13. Ando, S., et al., n-Type Organic Field-Effect Transistors with Very High ElectronMobility Based on Thiazole Oligomers with Trifluoromethylphenyl Groups [J].Journal of the American Chemical Society,2005.127(43): p.14996-14997.
    14. Botelho, A.L., et al., Structure and Optical Bandgap Relationship of pi-ConjugatedSystems [J]. PLoS One,2014.9(1): p. e86370.
    15. Takahashi, T., et al., Synthesis and Spectral Properties of a Highly Soluble Push PullType of Quinoidal Thiophenes [J]. Organic Letters,2005.7(20): p.4313-4316.
    16. Yamaguchi, Y., et al., New Fluorophores with Rod-Shaped Polycyano π-ConjugatedStructures: Synthesis and Photophysical Properties [J]. Organic Letters,2006.8(4):p.717-720.
    17. Mühlbacher, D., et al., High Photovoltaic Performance of a Low-Bandgap Polymer [J].Advanced Materials,2006.18(21): p.2884-2889.
    18. Sanjaykumar, S.R., et al., Synthesis and Characterization of a NovelNaphthodithiophene-Based Copolymer for Use in Polymer Solar Cells [J].Macromolecules,2012.45(17): p.6938-6945.
    19. Nakano, M., et al., Isomerically pure anthra[2,3-b:6,7-b']-difuran (anti-ADF),-dithiophene (anti-ADT), and-diselenophene (anti-ADS): selective synthesis,electronic structures, and application to organic field-effect transistors [J]. J OrgChem,2012.77(18): p.8099-111.
    20. Osaka, I., et al., Naphthodithiophenes as building units for small molecules topolymers; a case study for in-depth understanding of structure–property relationshipsin organic semiconductors [J]. J. Mater. Chem. C,2013.1(7): p.1297-1304.
    21. Lin, L.-Y., et al., New A-A-D-A-A-Type Electron Donors for Small Molecule OrganicSolar Cells [J]. Organic Letters,2011.13(18): p.4962-4965.
    22. Casanova, D., F.o.P. Rotzinger, and M. Gra tzel, Computational Study of PromisingOrganic Dyes for High-Performance Sensitized Solar Cells [J]. J. Chem. TheoryComput.,2010.6(4): p.1219-1227.
    23. Hendsbee, A.D., et al., Electron deficient diketopyrrolopyrrole dyes for organicelectronics: synthesis by direct arylation, optoelectronic characterization, and chargecarrier mobility [J]. J. Mater. Chem. A,2014.2(12): p.4198.
    24. Michael P. Boone, et al.,2,6-Bis(tributyltin)benzo[1,2-b:5,4-b’]dithiophene: a newsynthon for organic semiconductors [J]. Arkivoc,2009: p.90-101.
    25. Fan, W., D. Tan, and W.Q. Deng, Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study [J]. Chem. Phys. Phys. Chem.,2012.13(8): p.2051-60.
    26. Rudberg, E., E.H. Rubensson, and P. Sa ek, Kohn Sham Density Functional TheoryElectronic Structure Calculations with Linearly Scaling Computational Time andMemory Usage [J]. J. Chem. Theory Comput.,2010.7(2): p.340-350.
    27. Preat, J., Photoinduced Energy-Transfer and Electron-Transfer Processes in Dye-Sensitized Solar Cells: TDDFT Insights for Triphenylamine Dyes [J]. J. Phys. Chem.C,2010.114(39): p.16716-16725.
    28. Amat, P. and R. Nifosì, Spectral “Fine” Tuning in Fluorescent Proteins: The Case ofthe GFP-Like Chromophore in the Anionic Protonation State [J]. J. Chem. TheoryComput.,2012.9(1): p.497-508.
    29. Yong, X. and J.P. Zhang, A rational design strategy for donors in organic solar cells:the conjugated planar molecules possessing anisotropic multibranches andintramolecular charge transfer [J]. J. Mater. Chem.,2011.21(30): p.11159-11166.
    30. Zade, S.S., N. Zamoshchik, and M. Bendikov, Oligo-and Polyselenophenes: ATheoretical Study [J]. Chemistry–A European Journal,2009.15(34): p.8613-8624.
    31. Gordon, M.S., The isomers of silacyclopropane [J]. Chemical Physics Letters,1980.76(1): p.163-168.
    32. Takimiya, K., et al., Facile synthesis, structure, and properties of benzo[1,2-b:4,5-b']dichalcogenophenes [J]. J Org Chem,2005.70(25): p.10569-71.
    33. Prezhdo, O.V., Assessment of theoretical approaches to the evaluation of dipolemoments of chromophores for nonlinear optics [J]. Advanced Materials,2002.14(8):p.597-600.
    34. Hutchison, G.R., M.A. Ratner, and T.J. Marks, Intermolecular Charge Transferbetween Heterocyclic Oligomers. Effects of Heteroatom and Molecular Packing onHopping Transport in Organic Semiconductors [J]. Journal of the American ChemicalSociety,2005.127(48): p.16866-16881.
    35. Blouin, N., et al., Toward a rational design of poly(2,7-carbazole) derivatives for solarcells [J]. J Am Chem Soc,2008.130(2): p.732-42.
    36. Gromov, E.V., et al., Theoretical study of the low-lying excited singlet states of furan[J]. Journal of Chemical Physics,2003.119(2): p.737-753.
    37. Pan, H., et al., Synthesis and Thin-Film Transistor Performance of Poly(4,8-didodecylbenzo[1,2-b:4,5-b‘]dithiophene)[J]. Chemistry of Materials,2006.18(14): p.3237-3241.
    38. Zade, S.S., N. Zamoshchik, and M. Bendikov, Oligo-and polyselenophenes: atheoretical study [J]. Chemistry,2009.15(34): p.8613-24.
    39. Lin, B.C., et al., Charge Transport Properties of Tris(8-hydroxyquinolinato)aluminum(III): Why It Is an Electron Transporter [J]. Journal ofthe American Chemical Society,2004.127(1): p.66-67.
    40. Lin, Z., et al., Low Band Gap Star-Shaped Molecules Based on Benzothia(oxa)diazolefor Organic Photovoltaics [J]. J Phys Chem C,2011.115(30): p.15097-15108.
    41. Vlachopoulos, N., et al., Very Efficient Visible-Light Energy Harvesting andConversion by Spectral Sensitization of High Surface-Area Polycrystalline Titanium-Dioxide Films [J]. Journal of the American Chemical Society,1988.110(4): p.1216-1220.
    42. Cnops, K., et al.,8.4%efficient fullerene-free organic solar cells exploiting long-range exciton energy transfer [J]. Nat Commun,2014.5: p.3406.
    43. Veldman, D., S.C.J. Meskers, and R.A.J. Janssen, The Energy of Charge-TransferStates in Electron Donor-Acceptor Blends: Insight into the Energy Losses in OrganicSolar Cells [J]. Advanced Functional Materials,2009.19(12): p.1939-1948.
    44. Li, Y., et al., Theoretical Characterization of the PC60BM:PDDTT Model for anOrganic Solar Cell [J]. J. Phys. Chem. C,2011.115(44): p.21865-21873.
    45. Scharber, M.C., et al., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards10%Energy-Conversion Efficiency [J]. Advanced Materials,2006.18(6):p.789-794.
    1. Nozik, A.J. and J. Miller, Introduction to solar photon conversion [J]. Chem Rev,2010.110(11): p.6443-5.
    2. Armaroli, N. and V. Balzani, The future of energy supply: Challenges andopportunities [J]. Angew Chem Int Ed Engl,2007.46(1-2): p.52-66.
    3. Shin, W.S., et al., Effects of functional groups at perylene diimide derivatives onorganic photovoltaic device application [J]. Journal of Materials Chemistry,2006.16(4): p.384-390.
    4. Walzer, K., et al., Highly efficient organic devices based on electrically dopedtransport layers [J]. Chem Rev,2007.107(4): p.1233-71.
    5. Cheng, Y.J., S.H. Yang, and C.S. Hsu, Synthesis of conjugated polymers for organicsolar cell applications [J]. Chem Rev,2009.109(11): p.5868-923.
    6. Loser, S., et al., A naphthodithiophene-diketopyrrolopyrrole donor molecule forefficient solution-processed solar cells [J]. J Am Chem Soc,2011.133(21): p.8142-5.
    7. Huang, J.H., et al., A ternary cascade structure enhances the efficiency of polymersolar cells [J]. Journal of Materials Chemistry,2010.20(14): p.2820-2825.
    8. Roquet, S., et al., Three-dimensional tetra(oligothienyl)silanes as donor material fororganic solar cells [J]. Journal of Materials Chemistry,2006.16(29): p.3040-3045.
    9. Yong, X. and J.P. Zhang, A rational design strategy for donors in organic solar cells:the conjugated planar molecules possessing anisotropic multibranches andintramolecular charge transfer [J]. Journal of Materials Chemistry,2011.21(30): p.11159-11166.
    10. Shang, H., et al., A solution-processable star-shaped molecule for high-performanceorganic solar cells [J]. Adv Mater,2011.23(13): p.1554-7.
    11. Cremer, J. and P. Bauerle, Star-shaped perylene-oligothiophene-triphenylamine hybridsystems for photovoltaic applications [J]. Journal of Materials Chemistry,2006.16(9):p.874-884.
    12. Veldman, D., S.C.J. Meskers, and R.A.J. Janssen, The Energy of Charge-TransferStates in Electron Donor-Acceptor Blends: Insight into the Energy Losses in OrganicSolar Cells [J]. Advanced Functional Materials,2009.19(12): p.1939-1948.
    13. Vlachopoulos, N., et al., Very Efficient Visible-Light Energy Harvesting andConversion by Spectral Sensitization of High Surface-Area Polycrystalline Titanium-Dioxide Films [J]. Journal of the American Chemical Society,1988.110(4): p.1216-1220.
    14. Choulis, S.A., et al., Investigation of transport properties in polymer/fullerene blendsusing time-of-flight photocurrent measurements [J]. Applied Physics Letters,2003.83(18): p.3812-3814.
    15. Scharber, M.C., et al., Design Rules for Donors in Bulk-Heterojunction Solar Cells—Towards10%Energy-Conversion Efficiency [J]. Advanced Materials,2006.18(6):p.789-794.
    16. Chen, H.-Y., et al., Polymer solar cells with enhanced open-circuit voltage andefficiency [J]. Nature Photonics,2009.3(11): p.649-653.
    17. Michinobu, T., et al., Band-gap tuning of carbazole-containing donor–acceptor typeconjugated polymers by acceptor moieties and π-spacer groups [J]. Polymer,2008.49(1): p.192-199.
    18. Omer, K., et al., Electrochemical behavior and electrogenerated chemiluminescenceof star-shaped D-A compounds with a1,3,5-triazine core and substituted fluorenearms [J]. Journal of the American Chemical Society,2010.132(31): p.10944-10952.
    19. Shi, S., et al., Porphyrin-containing D-[small pi]-A conjugated polymer withabsorption over the entire spectrum of visible light and its applications in solar cells[J]. Journal of Materials Chemistry,2012.22(22): p.11006-11008.
    20. Takimiya, K., et al., Facile synthesis, structure, and properties of benzo[1,2-b:4,5-b']dichalcogenophenes [J]. J Org Chem,2005.70(25): p.10569-71.
    21. Dang, T.T.M., et al., Synthesis and characterization of poly(benzodithiophene)derivative for organic thin film transistors [J]. Journal of Polymer Science Part A:Polymer Chemistry,2007.45(22): p.5277-5284.
    22. Miyata, Y., T. Nishinaga, and K. Komatsu, Synthesis and structural, electronic, andoptical properties of oligo(thienylfuran)s in comparison with oligothiophenes andoligofurans [J]. The Journal of organic chemistry,2005.70(4): p.1147-1153.
    23. Gidron, O., Y. Diskin-Posner, and M. Bendikov, Alpha-oligofurans [J]. Journal of theAmerican Chemical Society,2010.132(7): p.2148-2150.
    24. Yiu, A., et al., Side-chain tunability of furan-containing low-band-gap polymersprovides control of structural order in efficient solar cells [J]. Journal of the AmericanChemical Society,2012.134(4): p.2180-2185.
    25. Woo, C.H., et al., Incorporation of furan into low band-gap polymers for efficientsolar cells [J]. J Am Chem Soc,2010.132(44): p.15547-9.
    26. Wang, X., et al., A furan-bridged D-π-A copolymer with deep HOMO level: synthesisand application in polymer solar cells [J]. Polymer Chemistry,2011.2(12): p.2872.
    27. Zhang, J., et al., Solution-Processable Star-Shaped Molecules with TriphenylamineCore and Dicyanovinyl Endgroups for Organic Solar Cells [J]. Chemistry ofMaterials,2010.23(3): p.817-822.
    28. Fan, W., D. Tan, and W.Q. Deng, Acene-modified triphenylamine dyes for dye-sensitized solar cells: a computational study [J]. Chem. Phys. Phys. Chem.,2012.13(8): p.2051-60.
    29. Blouin, N. and M. Leclerc, Poly(2,7-carbazole)s: structure-property relationships [J].Acc Chem Res,2008.41(9): p.1110-9.
    30. Wang, D.L., et al., Synthesis and quantum chemical study of PDI derivatives withphenylalkynyl groups at the bay position [J]. Journal of Molecular Structure,2009.938(1-3): p.245-253.
    31. Asir, S., A.S. Demir, and H. Icil, The synthesis of novel, unsymmetrically substituted,chiral naphthalene and perylene diimides: Photophysical, electrochemical, chiropticaland intramolecular charge transfer properties [J]. Dyes and Pigments,2010.84(1): p.1-13.
    32. Becke, A.D., Density-functional thermochemistry. III. The role of exact exchange [J].Journal of Chemical Physics,1993.98(7): p.5648.
    33. Mohakud, S. and S.K. Pati, Large carrier mobilities in octathio[8]circulene crystals: atheoretical study [J]. Journal of Materials Chemistry,2009.19(25): p.4356-4361.
    34. Preat, J., Photoinduced Energy-Transfer and Electron-Transfer Processes in Dye-Sensitized Solar Cells: TDDFT Insights for Triphenylamine Dyes [J]. J. Phys. Chem.C,2010.114(39): p.16716-16725.
    35. Gordon, M.S., The isomers of silacyclopropane [J]. Chemical Physics Letters,1980.76(1): p.163-168.
    36. Zade, S.S., N. Zamoshchik, and M. Bendikov, Oligo-and Polyselenophenes: ATheoretical Study [J]. Chemistry–A European Journal,2009.15(34): p.8613-8624.
    37. Adamo, C. and V. Barone, Toward reliable density functional methods withoutadjustable parameters: The PBE0model [J]. Journal of Chemical Physics,1999.110(13): p.6158-6170.
    38. Yanai, T., D.P. Tew, and N.C. Handy, A new hybrid exchange–correlation functionalusing the Coulomb-attenuating method (CAM-B3LYP)[J]. Chemical Physics Letters,2004.393(1-3): p.51-57.
    39. Li, J.-H. and J.-D.C., The quantified NTO analysis for the electronic excitations ofmolecularmany-body systems [J]. Chemical Physics Letters,2011: p.362-367.
    40. Kawata, I. and H. Nitta, An excited state paired interacting orbital method [J]. J ChemPhys,2012.136(6): p.064109.
    41. Marcus, R.A. and N. Sutin, Electron transfers in chemistry and biology [J].Biochimica et Biophysica Acta (BBA)-Reviews on Bioenergetics,1985.811(3): p.265-322.
    42. Bredas, J.L., et al., Charge-transfer and energy-transfer processes in pi-conjugatedoligomers and polymers: a molecular picture [J]. Chem Rev,2004.104(11): p.4971-5004.
    43. Prezhdo, O.V., Assessment of theoretical approaches to the evaluation of dipolemoments of chromophores for nonlinear optics [J]. Advanced Materials,2002.14(8):p.597-600.
    44. Hutchison, G.R., M.A. Ratner, and T.J. Marks, Intermolecular Charge Transferbetween Heterocyclic Oligomers. Effects of Heteroatom and Molecular Packing onHopping Transport in Organic Semiconductors [J]. Journal of the American ChemicalSociety,2005.127(48): p.16866-16881.
    45. K se, M.E., et al., Theoretical Studies on Conjugated Phenyl-Cored ThiopheneDendrimers for Photovoltaic Applications [J]. Journal of the American ChemicalSociety,2007.129(46): p.14257-14270.
    46. Kose, M.E., et al., Charge transport simulations in conjugated dendrimers [J]. J PhysChem A,2010.114(12): p.4388-93.
    47. Deng, W.-Q. and W.A. Goddard, Predictions of Hole Mobilities in OligoaceneOrganic Semiconductors from Quantum Mechanical Calculations [J]. Journal ofPhysical Chemistry B,2004.108(25): p.8614-8621.
    48. Xiaodi, Y., L. Qikai, and S. Zhigang, Theoretical modelling of carrier transports inmolecular semiconductors: molecular design of triphenylamine dimer systems [J].Nanotechnology,2007.18(42): p.424029.
    49. Yang, X.D., et al., Influences of crystal structures and molecular sizes on the chargemobility of organic semiconductors: Oligothiophenes [J]. Chemistry of Materials,2008.20(9): p.3205-3211.
    50. Blouin, N., et al., Toward a rational design of poly(2,7-carbazole) derivatives for solarcells [J]. J Am Chem Soc,2008.130(2): p.732-42.
    51. Chai, S., et al., Density functional theory study on electron and hole transportproperties of organic pentacene derivatives with electron-withdrawing substituent [J].J Comput Chem,2011.32(15): p.3218-25.
    52. Lin, B.C., et al., Charge Transport Properties of Tris(8-hydroxyquinolinato)aluminum(III): Why It Is an Electron Transporter [J]. Journal ofthe American Chemical Society,2004.127(1): p.66-67.
    53. Gruhn, N.E., et al., The Vibrational Reorganization Energy in Pentacene: MolecularInfluences on Charge Transport [J]. Journal of the American Chemical Society,2002.124(27): p.7918-7919.
    54. Tang, S. and J. Zhang, Rational design of organic asymmetric donors D1-A-D2possessing broad absorption regions and suitable frontier molecular orbitals to matchtypical acceptors toward solar cells [J]. J Phys Chem A,2011.115(20): p.5184-91.
    55. Duan, Y.-A., et al., Theoretical study on charge transport properties of cyanovinyl-substituted oligothiophenes [J]. Organic Electronics,2012.13(7): p.1213-1222.
    56. Boone, M.P.,2,6-Bis(tributyltin)benzo[1,2-b:5,4-b’]dithiophene: a new synthon fororganic semiconductors [J]. Arkivoc,2008.2009(5): p.90.
    57. Masahiko Maekawa, a.,*Yusaku Suenaga,b Takayoshi Kuroda-Sowab and a.M.Munakatab, Crystal structure of9,10-bis(phenylethynyl)anthracene [J]. J. Chem. Soc.,Dalton Trans,1999: p.4357-4362.
    58. Steffen, A., et al.,2,5-Bis(p-R-arylethynyl)rhodacyclopentadienes show intensefluorescence: denying the presence of a heavy atom [J]. Angew Chem Int Ed Engl,2010.49(13): p.2349-53.
    59. Nguyen, P., et al., Well-Defined Conjugated Rigid-Rods as Multifunctional Materials:Linear and Nonlinear Optical Properties and Liquid Crystalline Behavior, inApplications of Organometallic Chemistry in the Preparation and Processing ofAdvanced Materials[M], J. Harrod and R. Laine, Editors.1995, Springer Netherlands.p.333-347.
    60. Stephen L. Mayo, B.D.O., and William A. Goddard III, DREIDING: A GenericForce Field for Molecular Simulations [J]. J. Phys. Chem,1990.94: p.8897-8909
    61. Yang, G.Y., et al., Synthesis and nonlinear optical properties of fluorine-containingnaphthalocyanines [J]. Chemistry,2003.9(12): p.2758-62.
    1. O'Regan, B. and M. Gratzel, A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2films [J]. Nature,1991.353(6346): p.737-740.
    2. Armsaroli, N. and V. Balzani, The Future of Energy Supply: Challenges andOpportunities [J]. Angewandte Chemie International Edition,2007.46(1-2): p.52-66.
    3. Dennler, G., M.C. Scharber, and C.J. Brabec, Polymer-Fullerene Bulk-HeterojunctionSolar Cells [J]. Advanced Materials,2009.21(13): p.1323-1338.
    4. Xia, C., et al., Characterization, Supramolecular Assembly, and Nanostructures ofThiophene Dendrimers [J]. Journal of the American Chemical Society,2004.126(28): p.8735-8743.
    5. Ma, C.-Q., et al., Solution-Processed Bulk-Heterojunction Solar Cells Based onMonodisperse Dendritic Oligothiophenes [J]. Advanced Functional Materials,2008.18(20):p.3323-3331.
    6. Leliège, A., et al., Triphenylamine/Tetracyanobutadiene-Based D-A-D π-ConjugatedSystems as Molecular Donors for Organic Solar Cells [J]. Organic Letters,2011.13(12): p.3098-3101.
    7. Delbaere, S.p., et al., Bridging the Visible: The Modulation of the Absorption byMore than450nm [J]. Organic Letters,2010.12(18): p.4090-4093.
    8. Li, W., et al., Benzothiadiazole-Based Linear and Star Molecules: Design, Synthesis,and Their Application in Bulk Heterojunction Organic Solar Cells [J]. Chemistry of Materials,2009.21(21): p.5327-5334.
    9. Cravino, A., et al., A star-shaped triphenylamine [small pi]-conjugated system withinternal charge-transfer as donor material for hetero-junction solar cells [J]. ChemicalCommunications,2006(13): p.1416-1418.
    10. Roquet, S., et al., Triphenylamine Thienylenevinylene Hybrid Systems with InternalCharge Transfer as Donor Materials for Heterojunction Solar Cells [J]. Journal of theAmerican Chemical Society,2006.128(10): p.3459-3466.
    11. Leriche, P., et al., Molecular Engineering of the Internal Charge Transfer inThiophene Triphenylamine Hybrid π-Conjugated Systems [J]. The Journal of OrganicChemistry,2007.72(22): p.8332-8336.
    12. Sun, X., et al., X-shaped oligothiophenes as a new class of electron donors for bulk-heterojunction solar cells [J]. The Journal of Physical Chemistry B,2006.110(15): p.7702-7707.
    13. Ma, C.-Q., et al., Functionalized3D Oligothiophene Dendrons and Dendrimers—Novel Macromolecules for Organic Electronics [J]. Angewandte Chemie,2007.119(10): p.1709-1713.
    14. M. J. Frisch, G.W.T., H. B. Schlegel, G. E. Scuseria,, et al.,[J]. Gaussian, Inc.,Wallingford CT,2009.
    15. Adamo, C. and V. Barone, Toward reliable density functional methods withoutadjustable parameters: The PBE0model [J]. The Journal of Chemical Physics,1999.110(13):p.6158.
    16. Ernzerhof, M. and G.E. Scuseria, Assessment of the Perdew–Burke–Ernzerhofexchange-correlation functional [J]. The Journal of Chemical Physics,1999.110(11): p.5029.
    17. Hariharan, P.C. and J.A. Pople, Accuracy of AH n equilibrium geometries by singledeterminant molecular orbital theory [J]. Molecular Physics,1974.27(1): p.209-214.
    18. Frisch, M.J., J.A. Pople, and J.S. Binkley, Self‐consistent molecular orbital methods25. Supplementary functions for Gaussian basis sets [J]. The Journal of Chemical Physics,1984.80(7): p.3265-3269.
    19. Shuai, Z., L. Wang, and C. Song, Hopping Mechanism, in Theory of ChargeTransport in Carbon Electronic Materials.2012, Springer Berlin Heidelberg. p.7-41.
    20. Cao, L., et al., Carbon dots for multiphoton bioimaging [J]. J Am Chem Soc,2007.129(37): p.11318-9.
    21. Hutchison, G.R., M.A. Ratner, and T.J. Marks, Hopping Transport in ConductiveHeterocyclic Oligomers: Reorganization Energies and Substituent Effects [J]. Journal of theAmerican Chemical Society,2005.127(7): p.2339-2350.
    22. Norton, J.E. and J.-L. Brédas, Polarization Energies in Oligoacene SemiconductorCrystals [J]. Journal of the American Chemical Society,2008.130(37): p.12377-12384.
    23. Troisi, A. and G. Orlandi, Dynamics of the Intermolecular Transfer Integral inCrystalline Organic Semiconductors [J]. The Journal of Physical Chemistry A,2006.110(11):p.4065-4070.
    24. Song, Y., et al., A Cyclic Triphenylamine Dimer for Organic Field-Effect Transistorswith High Performance [J]. Journal of the American Chemical Society,2006.128(50): p.15940-15941.
    25. Materials Studio; Accelrys:[J]. San Diego, CA,2005.
    26. Zou, L.Y., et al., Theoretical Study on Photophysical Properties of MultifunctionalElectroluminescent Molecules with Different π-Conjugated Bridges [J]. The Journal ofPhysical Chemistry A,2008.112(47): p.12172-12178.
    27. Lin, B.C., et al., Charge Transport Properties of Tris(8-hydroxyquinolinato)aluminum(III): Why It Is an Electron Transporter [J]. Journal of theAmerican Chemical Society,2004.127(1): p.66-67.
    28. Gruhn, N.E., et al., The vibrational reorganization energy in pentacene: Molecularinfluences on charge transport [J]. Journal of the American Chemical Society,2002.124(27):p.7918-7919.
    29. Lin, Z., et al., Low Band Gap Star-Shaped Molecules Based on Benzothia(oxa)diazolefor Organic Photovoltaics [J]. The Journal of Physical Chemistry C,2011.115(30): p.15097-15108.
    30. Brédas, J.-L., et al., Charge-Transfer and Energy-Transfer Processes in π-ConjugatedOligomers and Polymers: A Molecular Picture [J]. Chemical Reviews,2004.104(11): p.4971-5004.
    31. M. Maekawa, Y.S., T. Kuroda-Sowab and M. Munakatab,[J]. J. Chem. Soc., DaltonTrans.,2000: p.4160.
    32. Steffen, A., et al.,2,5-Bis(p-R-arylethynyl)rhodacyclopentadienes Show IntenseFluorescence: Denying the Presence of a Heavy Atom [J]. Angewandte Chemie,2010.122(13): p.2399-2403.
    33. Nguyen, P., et al., Well-Defined Conjugated Rigid-Rods as Multifunctional Materials:Linear and Nonlinear Optical Properties and Liquid Crystalline Behavior, in Applications ofOrganometallic Chemistry in the Preparation and Processing of Advanced Materials[M], J.Harrod and R. Laine, Editors.1995, Springer Netherlands. p.333-347.
    34. Wang, C., et al., Theoretical comparative studies of charge mobilities for molecularmaterials: Pet versus bnpery [J]. Organic Electronics,2008.9(5): p.635-640.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700