棉花蔗糖非酵解型蛋白激酶GhSnRK2的克隆及功能分析
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
非生物胁迫会导致全球范围内大多作物减产。植物所处的环境在不断变化中,当植物遭受到压力时,会对它们的生长发育不利。非生物胁迫在植物代谢中出现的频率、效率和持续性已经是当代社会关注的焦点。植物中非生物胁迫起始时会激活一些起始原件,然后激活信号转导通路,导致压力响应相关基因的表达和生理变化。植物持续遭受非生物胁迫会导致代谢改变和生物分子的损伤。植物通过上调抗氧化酶,可溶性糖和渗透分子来应对这些胁迫,从而做出防御机制。植物学家已经充分利用现代分子遗传手段来解决非生物胁迫带来的难题,这已经是大家关注的焦点和热点。在我们的研究中,GhSnRK2基因克隆到载体pCAMBIA2301后通过农杆菌GV3101介导的蘸花法转化拟南芥。我们获得了40个阳性植株。RT-PCR分析表明GhSnRK2已经转化到拟南芥中,在不同的转基因株系的后代中都有检测到表达。GhSnRK2-GFP的亚细胞定位表明,GFP信号显示该蛋白定位在细胞核中。过表达GhSnRK2基因的拟南芥植株在抗旱,抗冷,耐ABA和氯化钠能力方面都有提高。相对于非转基因植株,转基因植株的种子对ABA和氯化钠有更好的耐受能力。用10%PEG处理后,GhSnRK2被诱导表达。通过比较过表达GhSnRK2植株和野生型植株,发现转基因植株的相对含水量和脯氨酸含量都比野生型高。组织特异性分析,发现GhSnRK2主要在根中表达。过表达GhSnRK2的转基因植株在正常条件和压力诱导下,压力响应基因RD29A,RD29B, P5CS1, ABI3和ABI5的表达量都有上调。病毒介导的基因沉默进一步解释了GhSnRK2的功能。在VIGS干扰的植株中,GhSnRK2的表达量下调,说明VIGS技术通过干扰基因表达能有效的研究基因的功能。我们的研究表明,通过基因操作,GhSnRK2基因可以提高植物对非生物胁迫的耐受能力。
Abiotic stress has been responsible for the reduction in yield of most major crop plant worldwide; Plants are regularly exposed to changes in environmental conditions which they perceive as stresses when it becomes detrimental. However, the occurrence of abiotic stress response in plants metabolism, efficiency and sustainability is attaining substantial significance in the contemporary world. Initiation of abiotic stress in plant activate some initial sensors, which then activate protein signaling pathways, resulting in stress-responsive gene expression and physiological changes. Continuous exposure to these abiotic stresses results in altered metabolism and damage to biomolecules. Plants develop defense mechanisms to tolerate these stresses by upregulation of enzymatic and non-enzymatic antioxidants, compatible solutes and osmolytes molecules. However, the use of modern genetics approaches in effectively dealing with abiotic stress complications has been the major focus of plant molecular biologists.In the present study, expression vector pCAMBIA2301, that carries GhSnRK2gene, was transformed into Arabidopsis thaliana by Agrobacterium tumifascen GV3101mediated transformation. About40resistant transgenic plants were obtained. RT-PCR analyses showed that GhSnRK2gene had been integrated into the Arabidopsis genome of the transgenic plants and was well expressed in offspring seed of different transgenic lines. Subcellular localization of GhSnRK2-GFP protein revealed that, green fluorescent protein (GFP) signals were localized in the nuclei. In contrast to wild-type plants, the transgenic plants overexpressing GhSnRK2showed increased tolerance to drought, cold, abscisic acid and salt stress, suggesting that GhSnRK2acts as a positive regulator in response to cold and drought stress. GhSnRK2gene was induced by10%PEG treatment. Plants overexpressing GhSnRK2revealed evidence of reduced water loss, elevated relative water content and proline accumulation. Tissue specificity analysis revealed that GhSnRK2gene is abundantly expressed in the root. Under normal and stressed conditions, stress inducible genes; RD29A, RD29B, P5CS1, ABI3, CBF1and ABI5showed increased expression level in the GhSnRK2overexpressed plants than Wild-type. Virus induced gene silencing was further used to elucidate the function of GhSnRK2gene in cotton plants. It was observed from the result that transcript level of GhSnRK2gene was downregulated in VIGS plant. Drought stress assay demonstrated that silencing GhSnRK2gene alleviated drought tolerance in cotton plant. Hence, VIGS technique can inevitably be used as an effective means to study gene function by knocking down expression of distinctly expressed genes. This research suggested that through gene manipulation approaches, inception of GhSnRK2gene functions will permit enhancement of plant tolerance to abiotic stress
引文
Albright L.M., Huala E., and Ausubel F. M. Prokaryotic signal transduction mediated by sensor and regulator protein pairs. Annu. Rev. Genet.1989,23:311-336.
    Anderberg R.J., Walker-Simmons M.K. Isolation of a wheat cDNA clone for an abscisic acid-inducible transcript with homology to protein kinase. Proc Natl Acad Sci USA.1992,89:10183-10187.
    Ankenbauer R.G., Best E.A., Palanca C.A., and Nester E.W. Mutants of the Agrobacterium tumefaciens virA gene exhibiting acetosyringone-independent expression of the vir region. Mol. Plant-Microbe Interact 1991,4:400-406.
    Araus J.L., Slafer G.A., Reynolds M.P., Royo C. Plant breeding and drought in C3 cereals:What should we breed for? Ann Bot (Lond) 2002,89:925-940.
    Arnon D.I. Copper enzymes in isolated chloroplasts. Polyphenoloxidase in Beta vulgaris, Plant Physiol.1949,24:1
    Artus N.N., Uemura M., Steponkus P.L., Gilmour S.J., Lin C., Thomashow M.F. Constitutive expression of the cold-regulated Arabidopsis thaliana COR15a gene affects both choroplast and protoplast freezing tolerance. Proc. Natl. Acad. Sci. USA.1996,93:13404-13409.
    Ashraf M., Athar H.R., Harris P.J.C., Kwon T.R. Some prospective strategies for improving crop salt tolerance. Adv Agron 2008,97:45-110
    Baena-Gonzalez E., Sheen J. Convergent energy and stress signaling. Trends Plant Sci.2008,13:474-482.
    Bari R., Jones J.D. Role of plant hormones in plant defence responses. Plant MolBiol.2009,69: 473-488.
    Barker R. F., Idler K. B., Thompson D. V., and Kemp J. D. Nucleotide sequence of the T-DNA region from the Agrobacterium tumefaciens octopine Ti-plasmid pTil5955. Plant Mol. Biol.1983, 2:335-350.
    Bates L., Waldren R.P., Teare I.D. Rapid determination of free proline for water stress studies. Plant and Soil 1973,39:205-207
    Baulcombe D.C:Fast forward genetics based on virus-induced gene silencing. Curr Opin Plant Biol 1999,2(2):109-113.
    Becker A., Lange M. VIGS-genomics goes functional. Trends Plant Sci.2010,15:1-4
    Belin C., de Franco P.O., Bourbousse C., Chaignepain S., Schmitter J.M., Vavasseur A. et al. Identification of features regulating OST1 kinase activity and OST1 function in guard cells. Plant Physiol.2006,141:1316-1327.
    Blum A. Crop responses to drought and the interpretation of adaptation. J Plant Growth Regul 1996,20:135-148.
    Bohnert H.J., Nelson D.E., Jensen R.G. Adaptations to environmental stresses. Plant Cell 1995, 7:1099-1111.
    Bolton G.W., Nester E.W., and Gordon M.P. Plant phenolic compounds induce expression of the Agrobacterium tumefaciens loci needed for virulence. Science 1986,232:983-985.
    Boudsocq M., Barbier-Brygoo H., Lauriere C. Identification of nine SNF1-related protein kinase 2 activated by hyperosmotic and saline stresses in Arabidopsis thaliana. J Biol Chem 2004,279: 41758-41766.
    Boudsocq M., Lauriere C. Osmotic signaling in plants. Multiple pathways mediated by emerging kinase families. Plant Physiol 2005,138:1185-1194.
    Bray E.A. Plant responses to water deficit. Trends Plant Sci 1997,2:48-54.
    Browse J., Xin Z. Temperature sensing and cold acclimation. Curr Opin Plant Biol 2001; 4:241-246.
    Brubaker C.L., and Wendel J.F. Reevaluating the origin of domesticated cotton (Gossypium hirsutum; Malvaceae) using nuclear restriction fragment length polymorphisms (RFLPs). Am. J. Bot.1994,81,1309-1326.
    Brubaker C.L., Bourland F.M. and Wendel J.F. The origin and domestication of cotton. In:Smith C.W., and Cothren J.T. (eds),'Cotton:Origin, History, Technology and Production'. Wiley, New York.1999, pp.3-31.
    Bruce W.B., Edmeades G.O., Barker T.C. Molecular and physiological approaches to maize improvement for drought tolerance. J Exp Bot 2002,53:13-25.
    Buchanan C.D., Lim S., Salzman R.A., Kagiampakis I., Morishige D.T., Weers B.D., Klein R.R., Pratt L.H., Cordonnier-Pratt M.M., Klein P.E. Sorghum bicolor's transcriptome response to dehydration, high salinity and ABA. Plant Mol Biol 2005,58:699-720.
    Bunqard D., Fuerth B.J., Zeng P.Y., Faubert B., Maas N.L., Viollet B. et al. Signaling kinase AMPK activates stress-promoted transcription via histone H2B phosphorylation. Science. 2010,329:1201-1205.
    Burch-Smith T.M., Schiff M., Liu Y.L., Dinesh-Kumar S.P. Efficient virus-induced gene silencing in Arabidopsis. Plant Physiology 2006,142:21-27.
    Byrne M. C., Koplow J., David C., Tempe J., and Chilton M.D. Structure of T-DNA in roots transformed by Agrobacterium rhizogenes. J. Mol. Appl. Genet.1983,2:201-209.
    Canto C., Auwerx J. AMP-activated protein kinase and its downstream transcriptional pathways. Cell Mol Life Sci 2010,67:3407-3423.
    Carling D., Zammit V.A., Hardie D.G. A common bicycle protein kinase cascade inactivates the regulatory enzymes of fatty acid and cholesterol biosynthesis. FEBS Lett.1987,223:217-222.
    Celenza J.L., Carlson M. A yeast gene that is essential for release from glucose repression encodes a protein kinase. Science 1986,233:1175-1180.
    Chen W.J., Zhu T. Networks of transcription factors with roles in environmental stress response. Trends Plant Sci.2004,9:591-596
    Chikano H., Ogawa M., Ikeda Y., Koizumi N., Kusano T., Sano H. Two novel genes encoding SNF1-related protein kinases from Arabidopsis thaliana:differential accumulation of AtSR1 and AtSR2 transcripts in response to cytokinins and sugars, and phosphorylation of sucrose synthase by AtSR2. Mol Gen Genet.2001,264:674-681.
    Chinnusamy V., Jagendorf A., Zhu J.K. Understanding and improving salt tolerance in plants, Crop Sci.2005,45 437e448.
    Chinnusamy V., Schumaker K., Zhu J.K. Molecular genetics perspectives on cross-talk and specificity in abiotic stress signaling in plants. J Exp Bot 2003,55(395):225-236
    Cho K., Agrawal G.K., Jwa N.S., Kubo A., Rakwal R. Rice OsSIPK and its orthologs:a "central master switch" for stress responses. Biochem Biophys Res Commun.2009,379:649-653.
    Christie P. J. Agrobacterium tumefaciens T-complex transport apparatus:a paradigm for a new family of multifunctional transporters in eubacteria. J. Bacteriol.1997,179:3085-3094. Claussen W. Proline as a measure of stress in tomato plants. Plant Sci 168:241-248.
    Close T.J. Dehydrins:a commonality in the response of plants to dehydration and low temperature. Physiol Plant 1997,100:291-296.
    Clough and Bent. Floral dip:a simplified method for Agrobacterium-mediated transformation of Arabidopsis thaliana. Plant J 1998,16(6):735-743
    Coello P., Hey S.J., Halford N.G. The sucrose non-fermenting-1-related (SnRK) family of protein kinases:potential for manipulation to improve stress tolerance and increase yield. J Exp Botany. 2011,62:883-893.
    Cui Li., Jian-Min Y., Yun-Zhou L., Zhen-Cai Z., Qiao-Li W., and Yan L. Silencing the SpMPK1, SpMPK2, and SpMPK3 Genes in Tomato Reduces Abscisic Acid-Mediated Drought Tolerance Int. J. Mol. Sci.2013,14,21983-21996。
    Das A., and Pazour G. J. Delineation of the regulatory region sequences of Agrobacterium tumefaciens virB operon. Nucleic Acids Res.1989,17:4541-4550.
    Das A., Stachel S., Ebert P., Allenza P., Montoya A., and Nester E. Promoters of Agrobacterium tumefaciens Ti-plasmid virulence genes. Nucleic Acids Res.1986,14:1355-1364.
    Das R., Pandey G.K. Expressional analysis and role of calcium regulated kinases in abiotic stress signaling. Curr Genomics.2010,11:2-13.
    de la Riva, G. A., J. Gonzalez-Cabrera, R. Vazquez-Padron, and C. Ayra-Pardo. Agrobacterium tumefaciens:a natural tool for plant transformation. Electron. J. Biotechnol.1998,1:1-16.
    Delay D., Cizeau J., and Delmotte F. Synthesis of aryl glycosides as vir gene inducers of Agrobacterium tumefaciens. Carbohydr.1992, Res.225:179.
    Delmotte F.M., Delay D., Cizeau J., Guerin B., and Leple J.C. Agrobacterium vir-inducing activities of glycosylated acetosyringone, acetovanillone, syringaldehyde and syringic acid derivatives. Phytochemistry 1991,30:3549-3552.
    Dinesh-Kumar S.P., Anandalakshmi R., Marathe R., Schiff M., Liu Y:Virus-induced gene silencing. Methods Mol Biol 2003,236:287-294.
    Doty S. L., Yu M. C., Lundin J. I., Heath J. D., and Nester E. W. Mutational analysis of the input domain of the VirA protein of Agrobacterium tumefaciens. J. Bacteriol.1996,178:961-970.
    Duan J, Zhang M, Zhang H, Xiong H, Liu P, et al. (2012) OsMIOX, a myoinositol oxygenase gene, improves drought tolerance through scavenging of reactive oxygen species in rice (Oryza sativa L.). Plant Sci 196:143-151.
    Dye F., Berthelot K., Griffon B., Delay D., and Delmotte F. M. Alkylsyringamides, new inducers of Agrobacterium tumefaciens virulence genes. Biochimie 1997,79:3-6.
    Finkelstein R.R., Gampala S.S., Rock C.D. Abscisic acid signaling in seeds and seedlings. Plant Cell (Suppl) 2002,14:S15-S45.
    Fioozabady E., Deboer D.L., and Merlo D.J. Transformation of cotton (Gossypium hirsutum L.) by Agrobacterium tumefaciens and regeneration of transgenic plants. Plant Mol. Biol.1987,10: 105-116.
    Gao X., Britt Jr R.C., Shan L., He P. Agrobacterium-Mediated Virus-Induced Gene Silencing Assay In Cotton. J. Vis. Exp. (54), e2938, DOI:10.3791/2938 (2011).
    Garfinkel D. J., Simpson R. B., Ream L.W., White F. F., Gordon M. P., and Nester E. W. Genetic analysis of crown gall:fine structure map of the T-DNA by site-directed mutagenesis. Cell.1981, 27:143-153.
    Garfinkel D. J., and Nester E. W. Agrobacterium tumefaciens mutants affected in crown gall tumorigenesis and octopine catabolism. J. Bacteriol.1980,144:732-743.
    Gelvin, S. B. Agrobacterium and plant genes involved in T-DNA transfer and integration. Annu. Rev. Plant Physiol. Plant Mol. Biol.2000,51:223-256.
    Genoud T., Metraux J.P. Crosstalk in plant cell signaling:structure and function of the genetic network. Trends in Plant Science 1999,4:503-507.
    Glaszmann J.C., Kaw R.N., Khush G.S. Genetic divergence among cold tolerant rices (Oryza satva L.) Euphytica.1990,45:95-104.
    Gosal S.S., Wani S.H., Kang M.S. Biotechnology and drought tolerance. J. Crop Improv 2009, 23:19-54.
    Granier C., Tardieu F. Water deficit and spatial pattern of leaf development variability in responses can be simulated using a simple model of leaf development. Plant Physiol 1999,119:609-620.
    Guo-Tao H., Shi-Liang M., Li-Ping B., Li Z., Hui M., Ping J., Jun L., Ming Z., Hawes M.C., Gunawardena U., Miyasaka S., Zhao X. The role of root border cells in plant defense. Trends Plant Sci 2000,5:128-133.
    Haake V., Cook D., Riechmann J.L., Pineda O., Thomashow M.F., Zhang J.Z. Transcription factor CBF4 is a regulator of drought adaptation in Arabidopsis. Plant Physiol 2002,130:639-648.
    Halford N.G., Hardie D.G. SNF1-related protein kinases:global regulators of carbon metabolism in plants? Plant Mol Biol.1998,37:735-748.
    Halford N.G., Hey S., Jhurreea D., Laurie S., McKibbin R.S, et al. Metabolic signaling and carbon portioning:role of Snfl-related (SnRK1) protein kinase. J Exp Botany 2003,54:467-475.
    Halford N.G., Hey S.J. Snfl-related protein kinases (SnRKs) act within an intricate network that links metabolic and stress signalling in plants. Biochem J 2009,419:247-259.
    Hannah M.A., Heyer A.G., Hincha D.K. A global survey of gene regulation during cold acclimation in Arabidopsis thaliana. PLoS Genet.2005,1:e26.
    Hardie D.G. Plant protein serine/threonine kinases:classification and functions. Annu Rev Plant Physiol Plant Mol Biol.1999,50:97-131.
    Hardie D.G., AMP-activate/SNF1 protein kinases:conserved guardians of cellular energy. Nature.2007,8:774-785.
    Hardie D.G., Carling D., Sim A.T.R. The AMP-activated protein kinase-a multisubstrate regulator of lipid metabolism. Trends Biochem Sci 1989,14:20-23.
    Harmon A.C. Calcium-regulated protein kinases of plants. Gravitat Space Biol Bull.2003,16:83-90.
    Hasegawa P.M., Bressan R.A., Zhu J.K., Bohnert H.J. Plant cellular and molecular responses to high salinity. Annu Rev Plant Physiol Plant Mol Biol 2000,51:463-499.
    Hauser F., Waadt R., Schroeder J.I. Evolution of abscisic acid synthesis and signaling mechanisms. Curr Biol.2011,21:R346-R355.
    Hawes M.C., Gunawardena U., Miyasaka S., Zhao X. The role of root border cells in plant defense. Trends Plant Sci 2000,5:128-133.
    Hedbacker K., Carlson M. SNF1/AMPK pathways in yeast. Front biosci.2008,13:2408-2420.
    Hey S.J., Byrne E., Halford N.G. The interface between metabolic and stress signaling. Ann Botany.2010,105:197-203.
    Hirayama T., Shinozaki K. Perception and transduction of abscisic acid signals:keys to the function of the versatile plant hormone ABA. Trends Plant Sci.2007,12(8):343-351.
    Holappa L.D., Walker-Simmons M.K. The wheat abscisic acid-responsive protein kinase mRNA, PKABA1, is up-regulated by dehydration, cold temperature, and osmotic stress. Plant Physiol. 1995,108:1203-1210.
    Holzberg S., Brosio P., Gross C., Pogue G.P. Barley stripe mosaic virus-induced gene silencing in a monocot plant. The Plant Journal 2002,30:315-327.
    Hong S.P., Carlson M. Regulation of snfl protein kinase in response to environmental stress. J Biol Chem 2007,282:16838-16845.
    Hooykaas P.J.J., Hofker M., den Dulk-Ras H., and Schilperoort R.A. A comparison of virulence determinants in an octopine Ti plasmid, a nopaline Ti plasmid, and an Ri plasmid by complementation analysis of Agrobacterium tumefaciens mutants. Plasmid.1984,11:195-205.
    Horsch R. B., Klee H. J., Stachel S., Winans S. C., Nester E. W., Rogers S. G., and Fraley R. T. Analysis of Agrobacterium tumefaciens virulence mutants in leaf disks. Proc. Natl. Acad. Sci. USA 1986,83:2571-2575.
    Hrabak E.M., Chan C.W.M., Gribskov M., Harper J.F., Choi J.H., Halford N., et al. The Arabidopsis CDPK-SnRK superfamily of protein kinases. Plant Physiol.2003,132:666-680.
    Hsieh T.H., Lee J.T., Yang P.T., Chiu L.H., Charng Y., Wang Y.C., Chan M.T. Heterology expression of the Arabidopsis C-repeat/dehydration response element binding factor 1 gene confers elevated tolerance to chilling and oxidative stresses in transgenic tomato. Plant Physiol. 2002,129:1086-1094.
    Huang C J., Qian Y.J., Li Z.H. et al. Virus-induced gene silencing and its application in plant functional genomics. Sci China Life Sci.2012,55:99-108
    Hu H., Dai M., Yao J., Xiao B., Li X., Zhang Q., Xiong L. Overexpressing a NAM, ATAF, and CUC (NAC) transcription factor enhances drought resistance and salt tolerance in rice. Proc Natl Acad Sci USA2006,103:12987-12992.
    Ikeda Y., Koizumi N., Kusano T., Sano H. Specific binding of a 14-3-3 protein to autophosphorylated WPK4, an SNFl-related wheat protein kinase, and to WPK4-phosphorylated nitrate reductase. J Biol Chem.2000,275:31695-31700.
    Ikeda Y., Koizumi N., Kusano T., Sano H. Sucrose and cytokinin modulation of WPK4, a gene encoding a SNF1-related protein kinase from wheat. Plant Physiol.1999,121:813-820.
    Ingram J., Bartel D. The molecular basis of dehydration tolerance in plants. Annu Rev Plant Physiol Plant Mol Biol 1996,47:377-403.
    Jin S., Prusti R. K., Roitsch T., Ankenbauer R. G., and Nester E. W. Phosphorylation of the VirG protein of Agrobacterium tumefaciens by the autophosphorylated VirA protein:essential role in biological activity of VirG. J. Bacteriol.1990,172:4945-4950.
    Jin S., Roitsch T., Ankenbauer R. G., Gordon M. P., and Nester E. W. The VirA protein of Agrobacterium tumefaciens is autophosphorylated and is essential for vir gene regulation. J. Bacteriol.1990,172:525-530.
    Jin S., Song Y.N., Deng W.Y., Gordon M. P., and Nester E. W. The regulatory VirA protein of Agrobacterium tumefaciens does not function at elevated temperatures. J. Bacteriol.1993, 175:6830-6835.
    Jonak C., Hirt H. Glycogen synthase kinase 3/SHAGGY-like kinases in plants:an emerging family with novel functions. Trends Plant Sci 2002,7:457-461.
    Jones L., Keining T., Eamens A., et al. Virus-induced gene silencing of argonaute genes in Nicotiana benthamiana demonstrates that extensive systemic silencing requires Argonautel-like and Argonaute4-like genes. Plant Physiol.2006,141:598-606
    Jouanin L., Bouchez D., Drong R. F., Tepfer D., and Slightom J. L. Analysis of TR-DNA/plant junctions in the genome of a Convolvulus arvensis clone transformed by Agrobacterum rhizogenes strain A4. Plant Mol. Biol.1989,12:75-85.
    Kasuga M., Liu Q., Miura S., Yamaguchi-Shinozaki K., Shinozaki K. Improving plant drought, salt, and freezing tolerance by gene transfer of a single stress-inducible transcription factor. Nat Biotechnol 1999,17:287-291.
    Kavi Kishor P. B., Zonglie H., Cuo-Hua M., Chein-An A.H., and Desh Pal S. V. Overexpression of Al-Pyrroline-5-Carboxylate Synthetase Increases Proline Production and Confers Osmotolerance in Transgenic Plants Plant Physiol. (1995)108:1387-1394
    Kim J. Perception, transduction, and networks in cold signaling. J Plant Biol.2007,50(2):139-147
    Kim M., Lim J. H., Ahn C. S., et al. Mitochondria-associated hexokinases play a role in the control of programmed cell death in Nicotiana benthamiana. Plant Cell.2006,18:2341-2355
    Kim Y.K., Lee J.Y., Cho H.S., et al. Inactivation of organellar glutamyl and seryl-tRNA synthetases leads to developmental arrest of chloroplasts and mitochondria in higher plants. J Biol Chem.2005,280:37098-37106.
    Klee H. J., White F. F., Iyer V. N., Gordon M. P., and Nester E. W. Mutational analysis of the virulence region of an Agrobacterium tumefaciens Ti plasmid. J. Bacteriol.1983,153:878-883.
    Knight H., Knight M.R. Abiotic stress signalling pathways:specificity and cross-talk. Trends Plant Sci.2001,6:262-267
    Knight H., Veale E.L., Warren G.J., Knight M.R. The sfr6 mutation in Arabidopsis suppresses low temperature induction of genes dependent on the CRT/DRE sequence motif. Plant Cell. 1999,11:875-886.
    Kobayashi Y., Murata M., Minami H., Yamamoto S., Kagaya Y. Abscisic acid-activated SNRK2 protein kinases function in the gene-regulation pathway of ABA signal transduction by phosphorylating ABA response element binding factors. Plant J 2005,44:939-949.
    Kobayashi Y., Yamamoto S., Minami H., Kagaya Y., and Hattori T. Differential Activation of the Rice Sucrose Nonfermentingl-Related Protein Kinase2 Family by Hyperosmotic Stress and Abscisic Acid. Plant cell 2004,16:1163-1177.
    Koh S., Lee S.C., Kim M.K., Koh J.H., Lee S., An G., et al. T-DNA tagged knockout mutation of rice OsGSKl, an orthologue of Arabidopsis BIN2, with enhanced tolerance to various abiotic stresses. Plant Mol Biol 2007,65:453-466.
    Ko J.H., Yang S.H., Han K.H. Upregulation of an Arabidopsis RING-H2 gene, XERICO, confers drought tolerance through increased abscisic acid biosynthesis. Plant J 2006,47:343-355
    Kumar N., Bhatt R.P. Transgenics:An emerging approach for cold tolerance to enhance vegetables production in high altitude areas. Indian J. Crop Sci.2006,1:8-12.
    Lacomme C:Milestones in the development and applications of plant virus vector as gene silencing platforms. In Current Top Microbiology and Immunology.; 2011:1-17.
    Lee Y.W., Jin S., Sim W.S., and Nester E. W. Genetic evidence for direct sensing of phenolic compounds by the VirA protein of Agrobacterium tumefaciens. Proc. Natl. Acad. Sci. USA.1995, 92:12245-12249.
    Lemmers M., DeBeuckeleer M., Holsters M., Zambryski P., Depicker A., Hernalsteens J. P., Van Montagu M., and Schell J. Internal organization, boundaries and integration of Ti-plasmid DNA in nopaline crown gall tumours. J. Mol. Biol.1980,144:353-376.
    Levitt J. Responses of Plants to Environmental Stress, water, radiation, salt and other stresses. 1980, Academic Press, New York.
    Levitt J., In:Chilling, Freezing, and High Temperature Stress. Vol.1. New York:Academic Press. 1980. Responses of plants to environmental stress
    Li J., Wang X.Q., Watson M.B., Assmann S.M. Regulation of abscisic acid-induced stomatal closure and anion channels by guard cell AAPK kinase. Science 2000,287:300-303.
    Lin Z., Yin K., Wang X., et al. Virus induced gene silencing of AtCDC5 results in accelerated cell death in Arabidopsis leaves. Plant Physiol Biochem.2007,45:87-94
    Lo'pez-Pe'rez L., Martinez-Ballesta Mdel C., Maurel C., Carvajal M. Changes in plasma membrane lipids, aquaporins and proton pump of broccoli roots, as an adaptation mechanism to salinity. Phytochemistry 2009,70:492-500.
    Lopez-Molina L., Mongrand S., McLachlin D.T., Chait B.T., Chua N.H. ABI5 acts downstream of ABI3 to execute an ABA-dependent growth arrest during germination. Plant J.2002,32:317-328.
    Livak K. J and Schmittgen T. D. Analysis of Relative Gene Expression Data Using Real-Time Quantitative PCR and the 2DDCT Method. METHODS 2001,25,402-408
    Lopez-Molina L., Mongrand S., Chua N.H.A postgermination developmental arrest checkpoint is mediated by abscisic acid and requires the ABI5 transcription factor in Arabidopsis Proceedings of the National Academy of Sciences, USA 2001,98,4782-4787.
    Lu R., Malcuit I., Moffett P., Ruiz M.T., Peart J., Wu A. J., Rathjen J.P., Bendahmane A., Day L., Baulcombe D.C:High throughput virus-induced gene silencing implicates heat shock protein 90 in plant disease resistance. EMBO J 2003,22(21):5690-5699.
    Lu R., Martin-Hernandez A.M., Peart J.R., Malcuit I., Baulcombe D.C:Virus-induced gene silencing in plants. Methods 2003b,30(4):296-303.
    Luan S. Signaling drought in guard cells. Plant Cell Environ 2002,25:229-237.
    Ludlow M.M., Muchow R.C. A critical evaluation of traits for improving crop yields under water-limited environments. Adv Agron 1990,43:107-153.
    Lundquist R.C., Close T.J., and Kado C.I. Genetic complementation of Agrobacterium tumefaciens Ti plasmid mutants in the virulence region. Mol. Gen. Genet.1984.193:1-7.
    Luo Z., Zang M., Guo W. AMPK as a metabolic tumor suppressor:control of metabolism and cell growth. Fut Oncol.2010,6:457-470.
    Mahfouz M.M., Kim S., Delauney A.J., Verma D.P., Arabidopsis TARGET OF RAPAMYCIN interacts with RAPTOR, which regulates the activity of S6 kinase in response to osmotic stress signals. Plant Cell 2006,18:477-490.
    McGee S.L., Van Denderen B.J., Howlett K.F., Mollica J., Schertzer J.D., Kemp B.E. et al. AMP-activated protein kinase regulates GLUT4 transcription by phosphorylating histone deacetylase 5. Diabetes.2008,57:860-867.
    McLean, B. G., Greene E. A., and Zambryski P. C. Mutants of Agrobacterium VirA that activate the vir gene expression in the absence of the inducer acetosyringone. J. Biol. Chem.1994, 269:2645-2651.
    Mikolajczyk M., Awotunde O.S., Muszynska G., Klessi D.F., Dobrowolska G. Osmotic stress induces rapid activation of a salicylic acid-induced protein kinase and a homolog of protein kinase ASK1 in tobacco cells. Plant cell 2000,12:165-178
    Mishra N.S., Tuteja R., Tuteja N., Signaling through MAP kinase networks in plants. Arch Biochem Biophys 2006,452:55-68.
    Mizoguchi M., Umezawa T., Nakashima K., Kidokoro S., Takasaki H., Fujita Y. et al. Two closely related subclass Ⅱ SnRK2 protein kinases cooperatively regulate drought-inducible gene expression. Plant Cell Physiol.2010,51:842-847.
    Morris J. W., and Morris R. O. Identification of an Agrobacterium tumefaciens virulence gene inducer from the pinaceous gymnosperm Pseudotsuga menziesii. Proc. Natl. Acad. Sci. USA 1990, 87:3614-3618.
    Mukhopadhyay A., Vij S., Tyagi A.K. Overexpression of a zinc-finger protein gene from rice confers tolerance to cold, dehydration, and salt stress in transgenic tobacco. Proc Natl Acad Sci USA.2004,101:6309-6314.
    Mustilli A.C., Merlot S., Vavasseur A., Fenzi F., and Giraudat J. Arabidopsis OST1 Protein Kinase Mediates the Regulation of Stomatal Aperture by Abscisic Acid and Acts Upstream of Reactive Oxygen Species Production. Plant Cell 2002,14:3089-3099
    Ohba H., Steward N., Kawasaki S., Berberich T., Ikeda Y., Koizum I.N. et al. Diverse response of rice and maize genes encoding homologs of WPK4, an SNF1-related protein kinase from wheat, to light, nutrients, low temperature and cytokinins. Mol Gen Genet.2000,263:359-366.
    Oztur Z.N.,Talame V., Deyholos M., Michalowski C.B., Galbraith D.W., Gozukirmizi N., Tuberosa R., Bohnert H J. Monitoring large-scale changes in transcript abundance in drought-and salt-stressed barley. Plant Mol Biol 2002,48:551-573.
    Parida A.K., Dasgaonkar V.S., Phalak M.S., Umalkar G.V., Aurangabadkar L.P. Alterations in photosynthetic pigments, protein, and osmotic components in cotton genotypes subjected to short-term drought stress followed by recovery. Plant Biotechnology Reports 2007,1:37-48.
    Pazour G.J., and Das A. Characterization of the VirG binding site of Agrobacterium tumefaciens. Nucleic Acids Res.1990,18:6909-6913.
    Pazour G. J., Ta C. N., and Das A. Mutants of Agrobacterium tumefaciens with elevated vir gene expression. Proc. Natl. Acad. Sci. USA 1991,88:6941-6945.
    Pei Z.M., Kuchitsu K., Ward J.M., Schwarz M., Schroeder J.I. Differential abscisic acid regulation of guard cell slow anion channels in Arabidopsis wild-type and abi1 and abi2 mutants. Plant cell 1997,9(3):409-423.
    Percy R.G., and Wendel J.F. Allozyme evidence for the origin and diversification of Gossypium barbadense L. Theor. Appl. Genet.,1990,79,529-542.
    Petranovic D., Tyo K., Vemuri G.N., Nielsen J. Prospects of yeast systems biology for human health:integrating lipid, protein and energy metabolism. FEMS Yeast Res.2010,10:1046-1059.
    Pitzschke A., Schikora A., Hirt H., MAPK cascade signalling networks in plant defence. Curr Opin Plant Biol 2009,12:421-426.
    Poels J., Spasic M.R., Callaerts P., Norga K.K. Expanding roles for AMP-acticated protein kinases in neuronal survival and autophagy. BioEssays 2009,31:944-952.
    Polge C. Thomas M. SNFl/AMPK/SnRKl kinases, global regulators at the heart of energy control? Trends Plant Sci.2006,12:20-28.
    Poroyko V., Hejlek L.G., Spollen W.G., Springer G.K., Nguyen H.T., Sharp R.E., Bohnert HJ. The maize root transcriptome by serial analysis of gene expression. Plant Physiol 2005,138:1700-1710.
    Purkayastha A., Dasgupta I. Virus-induced gene silencing:a versatile tool for discovery of gene functions in plants. Plant Physiol Biochem.2009,47:967-976
    Qiu Q.S., Guo Y., Quintero F.J., Pardo J.M., Schumaker K.S., Zhu J.K. Regulation of vacuolar Na?/H? exchange in Arabidopsis thaliana by the salt-overly-sensitive (SOS) pathway. J Biol Chem 2004,279:207-215
    Rafalski V.A., Brunet A. Energy metabolism in adult neural stem cell fate. Prog Neurobiol.2011,93:182-203.
    Rasolofo P.R. Screening rice cultivars at seedling stage and anthesis for low temperature tolerance in Madagascar. IRRN.1986,11:12-13.
    Ratcliff F., Martin-Hernandez A. M., Baulcombe D. C. Tobacco rattle virus as a vector for analysis of gene function by silencing. Plant J.2001,25:237-245
    Ripoll M., Albert A. SnRK2.6/OST1 from Arabidopsis thaliana:cloning, expression, purification, crystallization and preliminary X-ray analysis of K50N and D160A mutants. Acta Crystallogr F Struct Biol Crystallizat Commun.2011,67:364-368.
    Rodriguez M.C., Petersen M., Mundy J., Mitogen-activated protein kinase signaling in plants. Annu Rev Plant Biol 2010,61:621-649.
    Ruvkin G. B., and Ausubel F. M. A general method for site-directed mutagenesis in prokaryotes. Nature.1979,289:85-88.
    Saini J.P., Tandon J.P. Evaluating rices for cold tolerance. IRRN.1985,10:9-10.
    Sanghera G.S., Zarger M.A., Anwar A., Singh S.P., Ahmad N., Rather M.A. Studies on spikelet fertility and incidence of leaf blast on certain IRCTN rice genotypes under temperate conditions. Paper presented at National Symposium on plant Protection Strategies for sustainable Agri-Horticulture, SKAUST-Jammu.2001, Oct 12-13, p.125.
    Sano H., Youssefian S. Light and nutritional regulation of transcripts encoding a wheat protein kinase homolog is mediated by cytokinins. Proc Natl Acad Sci USA.1994,91:2582-2586.
    Schroeder J.I., Kwak J.M., Allen G.J. Guard cell abscisic acid signalling and engineering drought hardiness in plants. Nature 2001,410:327-330.
    Scott J.W., Oakhill J.S., Van Denderen B.J. AMPK/SNF1 structure:a menage a trois of energy-sensing. Front Biosci.2009,14:596-610.
    Senay S., Fikret Y., Sebnem K., and Sebnem E. The effect of salt stress on growth, chlorophyll content, lipid peroxidation and antioxidative enzymes of pumpkin seedling. African Journal of Agricultural Research.2011,6(21):4920-4924
    Senthil-Kumar M., Mysore K.S:New dimensions for VIGS in plant functional genomics. Trends Plant Sci.2011,16(12):656-665.
    Senthil-Kumar M., Mysore KS:Virus-induced gene silencing can persist for more than 2 years and also be transmitted to progeny seedlings in Nicotiana benthamiana and tomato. Plant Biotech J 2011,9:797-806.
    Shinozaki K., Yamaguchi-Shinozaki K. Molecular responses to dehydration and low temperature: differences and cross-talk between two stress signaling pathways. Curr Opin Plant Biol 2000, 3:217-223
    Shinozaki K., Yamaguchi-Shinozaki K., Seki M. Regulatory network of gene expression in the drought and cold stress responses. Curr Opin Plant Biol 2003,6:410-417.
    Singh B.D. Plant Breeding. Kalyani Publishers.2000, pp.443-460.
    Song Y.N., Shibuya M., Ebzuka Y., and Sankawa U. Identification of plant factors inducing virulence gene expression in Agrobacterium tumefaciens. Chem. Pharm. Bull.1991,39:2347-2350.
    Spencer P.A., and Towers G.H.N. Specificity of signal compounds detected by Agrobacterium tumefaciens. Phytochemistry 1988,27:2781-2785.
    Stachel S. E., and Zambryski P. C. virA and virG control the plantinduced activation of the T-DNA transfer process of A. tumefaciens. Cell.1986,46:325-333.
    Stachel S. E., An G., Flores C., and Nester E. W. A Tn3 lacZ transposon for the random generation of galactosidase gene fusions:applicaton to the analysis of gene expression in Agrobacterium. EMBO J.1985,4:891-898.
    Stachel S. E., Messens E., Van Montagu M., and Zambryski P. Identification of the signal molecules produced by wounded plant cells that activate T-DNA transfer in Agrobacterium tumefaciens. Nature 1985,318:624-629.
    Stachel S.E., Nester E.W., and Zambryski P. C. A plant cell factor induces Agrobacterium tumefaciens vir gene expression. Proc. Natl. Acad. Sci. USA 1986,83:379-383.
    Steponkus P.L. Role of the plasma membrane in freezing injury and cold acclimation. Annu. Rev. Plant Physiol.1984,35:543-584.
    Steponkus P.L., Uemura M., Webb M.S. A contrast of the cryostability of the plasma membrane of winter rye and spring oat-two species that widely differ in their freezing tolerance and plasma membrane lipid composition. In:Steponkus P L, editor. Adv.Low-Temperature Biol. Vol.2. London:JAI Press; 1993, pp.211-312.
    Suzuki K., Hattori Y., Uraji M., Ohta N., Iwata K., Murata K., Kato A., and Yoshida K. Complete nucleotide sequence of a plant tumorinducing Ti plasmid. Gene.2000,242:331-336.
    Taishi O., Yoshida R., Maruyama K., Yamgguchi-Shinozaki K., Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana Proc Natl Acad Sci U S A 2004,101:17306-17311
    Tamminen I., Makela P., Heino P., Palva E.T. Ectopic expression of ABI3 gene enhances freezing tolerance in response to abscisic acid and low temperature in Arabidopsis thaliana. Plant J. 2001,25:1-8.
    Tessa M., Burch-Smith, Michael S., Yule L., and Dinesh-Kumar S.P. Efficient Virus-Induced Gene Silencing in Arabidopsis Plant Physiology.2006, Vol.142, pp.21-27
    Thomashow M.F. So what's new in the field of plant cold acclimation? Lots! Plant Physiol. 2001,125:89-93.
    Turk S.C., Van Lange R.P., Regensburg-Tuink T. J.G., and Hooykaas P. J. J. Localization of the VirA domain involved in acetosyringone-mediated vir gene induction in Agrobacterium tumefaciens. Plant Mol. Biol.1994,25:899-907.
    Tzfira T., and Citovsky V., Partners-in-infection:host proteins involved in the transformation of plant cells by Agrobacterium. Trends Cell Biol.2002,12:121-128.
    Tzfira T., and V., Citovsky. From host recognition to T-DNA integration:the function of bacterial and plant genes in the Agrobacterium-plant cell interaction. Mol. Plant Pathol.2000,1:201-212.
    Tzfira T., Rhee Y., Chen M.H., Kunik T., and Citovsky V. Nucleic acid transport in plant-microbe interactions:the molecules that walk through the walls. Annu. Rev. Microbiol.2000,54:187-219. Umbeck P., Johnson G., Barton K. and Swain W. Genetically transformed cotton (Gossypium hirsutum L.) plants. Bio-Technology 1987,5:263-265.
    Umezawa T., Nakashima K., Miyakawa T., Kuromori T., Tanokura M., Shinozaki K. et al. Molecular basis of the core regulatory network in ABA responses:sensing, signaling and transport. Plant Cell Physiol.2010,51:1821-1839.
    Umezawa T., Sugiyama N., Mizoguchi M., Hayashi S., Myouga F., Yamaguchi-Shinozaki K. et al. Type 2C protein phosphatases directly regulate abscisic acid-activated protein kinases in Arabidopsis. Proc Natl Acad Sci USA.2009,106:17588-17593.
    Umezawa T., Yoshida R., Maruyama K., Yamaguchi-Shinozaki K., Shinozaki K. SRK2C, a SNF1-related protein kinase 2, improves drought tolerance by controlling stress-responsive gene expression in Arabidopsis thaliana. Proc Natl Acad Sci. USA.2004,101:17306-173011.
    Valliyodan B., Nguyen H.T. Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Plant Biol 2006,9(2):189-195
    Wang W., Guan K.L. AMP-activated protein kinase and cancer. Acta Physiol.2009,196:55-63.
    Wang X., Xu W., Xu Y., Chong K., Xu Z., Xia G. Wheat RAN1, a nuclear small G protein, is involved in regulation of cell division in yeast. Plant Sci 2004,167:1183-1190.
    Wang Z.Q., Yuan Y.Z., Ou J,Q., Lin Q.H., Zhang C.F. Glutamine synthetase and glutamate dehydrogenase contribute differentially to proline accumulation in leaves of wheat (Triticum aestivum) seedlings exposed to different salinity. Plant Physiol 2007,164:695-701.
    Wani S.H., Gosal S.S. Introduction of OsglyⅡ gene into Indica rice through particle bombardment for increased salinity tolerance. Biol. Plant 2011,00
    Wani S.H., Sandhu J.S., Gosal S.S. Genetic engineering of crop plants for abiotic stress tolerance. In:Malik C.P., Kaur B., Wadhwani C. Advanced Topics in Plant Biotechnology and Plant Biology. New Delhi:MD Publications 2008,149-183.
    Wendel J.F. New World tetraploid cottons contain Old World cytoplasm. Proc. Natl Acad. Sci. USA.1989,86:4132-4136.
    Wendel J.F., Small R.L., Cronn R.C., and Brubaker C.L. Genes, jeans, and genomes: reconstructing the history of cotton.1999, Pp.133-161 In:van Raamsdonk L.W.D., and den Nijs J.C.M. (eds), Plant Evolution in Man-Made Habitats. Proceedings of the Ⅶth International Symposium of the International Organization of Plant Biosystematists. Hugo de Vries Laboratory, Amsterdam, The Netherland
    Wilson W.A., Hawley S.A., Hardie D.G. The mechanism of glucose repression/derepression in yeast:SNF1 protein kinase is activated by phosphorylation under derepressing conditions, and this correlates with a high AMP:ATP ratio. Curr Biol.1996,6:1426-1434.
    Winans S.C. An Agrobacterium two-component regulatory system for the detection of chemicals released from plant wounds. Mol. Microbiol.1991,5:2345-2350.
    Wurzinger B., Mair A., Pfister B., Teige M. Cross-talk of calcium-dependent protein kinase and MAP kinase signaling. Plant Signal Behav 2011,6:8-12.
    Xin Z., Browse J. Cold comfort farm:the acclimation of plants to freezing temperatures. Plant Cell Environ.2001,23:893-902.
    Xiong L., and Ishitani M. Stress signal transduction:components, pathways, and network integration. In AK Rai, T Takabe, eds, Abiotic Stress Tolerance in Plants. Springer, Dordrecht, the Netherlands 2006, pp 3-29.
    Xiong L., Ishitani M., Lee H., and Zhu J.K. The Arabidopsis LOS5/ABA3 locus encodes a molybdenum cofactor sulfurase and modulates cold and osmotic stress responsive gene expression. Plant cell 2001b,13:2063-2083.
    Xiong L., Lee B., Ishitani M., Lee H., Zhang C., Zhu J.K. FIERY1 encoding an inositol polyphosphate 1-phosphatase is a negative regulator of abscisic acid and stress signaling in Arabidopsis. Genes Dev.2001,15:1971-1984
    Xu D., Duan X.,Wang B., Hong B., Ho T., Wu R. Expression of a late embryogenesis abundant protein gene, hval, from barley confers tolerance to water deficit and salt stress in transgenic rice. Plant Physiol 1996,110:249-257.
    Yadav N. S., Van der Leyden J., Bennett D. R., Barnes W. M., and Chilton M.D. Short direct repeats flank the T-DNA on a nopaline Ti plasmid. Proc. Natl. Acad. Sci. USA.1982,79:6322-6326.
    Yanjuan J., Gang L., and Diqiu Yu. Activated Expression of WRKY57 Confers Drought Tolerance in Arabidopsis. Mol Plant 2012,5 (6):1375-1388.
    Yasar F., Ellialtioglu S., Yildiz K. Effect of salt stress on antioxidant defense systems, lipid peroxidation, and chlorophyll content in green bean. Russian J. Plant Physiol.2008,55(6):782-786.
    Yoshida R., Hobo T., Ichimura K., Mizoguchi T.,Takahashi F., Aronso J., Ecker J.R., and Shinozaki K. ABA-activated SnRK2 protein kinase is required for dehydration stress signaling in Arabidopsis Plant Cell Physiol 2002,43:1473-1483.
    Yoshida R., Umezawa T., Mizoguchi T., Takahashi S., Takahashi F., Schinozaki K. The regulatory domain of SRK2E/OST1/SnRK2.6 interacts with ABI1 and integrates ABA and osmotic stress signals controlling stomatal closure in Arabidopsis. J Biol Chem.2006,281:5310-5318.
    Younis M.E., Hasaneen M.N.A., Tourky M.N.S. Plant growth, metabolism and adaptation in relation to stress conditions. XXIV. Salinity biofertility interactive effects on proline, glycine and various antioxidants in Lactuca sativa. Plant Omics J 2009,2:197-205.
    Yu L.X., Setter T.L. Comparative transcriptional profiling of placenta and endosperm in developing maize kernels in response to water deficit. Plant Physiol 2003,131:568-582.
    Zambryski P., Holsters M., Kruger K., Depicker A., Schell J., Van Montagu M., and Goodman H. M. Tumor DNA structure in plant cells transformed by A. tumefaciens. Science.1980,209:1385-1391.
    Zhang H., Mao X., Wang C., Jing R. Overexpression of a common wheat gene TaSnRK2.8 enhances tolerance to drought, salt and low temperature in Arabidopsis. PLoS ONE 2010,5: e16041.
    Zhang J., Vemuri G., Nielsen J. Systems biology of energy homeostasis in yeast. Curr Opin Microbiol.2010a,13:382-388.
    Zhu J.K. Plant salt tolerance. Trends Plant Sci 2001,6:66-71
    Zhu J.K. Salt and drought stress signal transduction in plants. Annu Rev Plant Biol 2002,53:247-273
    Zou Y., Wang Y., Wang L., Yang L., Wang R., et al. miR172b Controls the Transition to Autotrophic Development Inhibited by ABA in Arabidopsis. PLoS ONE 2013,8(5):e64770.
    Zupan J., and Zambryski P. The Agrobacterium DNA transfer complex. Crit. Rev. Plant Sci.1997, 16:279-295.
    Zupan J., Muth T.R., Draper O., and Zambryski P. The transfer of DNA from Agrobacterium tumefaciens into plants:a feast of fundamental insights. Plant J.2000,23:11-28.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700