rhbFGF、rhIGF-I与人工骨复合促进犬牙周组织再生的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:本实验通过人工构建5只杂种犬慢性牙周病模型,继而将重组人碱性成纤维细胞生长因子(Recombinant human basic fibroblast growth factor,rhbFGF)和重组人胰岛素样生长因子(Recombinant human insulin-like growth factor-I,rhIGF-I)分别及共同与人工骨(Bio-oss)复合,植入犬Ⅱ度根分叉牙周病模型,并配合引导性组织再生术(Guided issue regeneration,GTR)的治疗。观察分析动物模型的牙周组织修复和再生情况,并探讨两种生长因子对促进牙周组织再生的作用及效果,为其在牙周病临床治疗中的应用提供理论依据。
     方法:
     1.动物模型的建立及分组:选用健康、成年杂种犬5只,将形成的慢性Ⅱ度根分叉病变的上下颌第2、3、4前磨牙,共计48颗牙,随机分为5组,包括3个实验组,1个对照组和1个空白对照组,实验组A:rhbFGF/rhIGF-I/Bio-oss/GTR;实验组B:rhbFGF/Bio-oss/GTR;实验组C:rhIGF-I/Bio-oss/GTR;对照组D:单纯GTR手术;空白对照组E:翻瓣术。
     2.分别在rhbFGF和/或rhIGF-I复合人工骨的植入术前及术后12周记录颊侧根分叉部位的牙周探诊深度(periodontal depth,PD)和附着水平(attachment level,AL);术后2、4、12周拍摄X光片,观察牙槽骨新生情况。
     3.术后12周处死实验犬,制取实验区组织块(含牙、牙槽骨、牙周膜)进行切片,HE、Masson染色和组织学测量,观察牙周组织(牙槽骨、牙骨质和牙周膜)的新生情况。
     结果:
     1.临床检查:术后12周犬模型病变区的PD和AL均有不同程度改善,依次为A、B/C、D和E组;
     2.X线检查:实验组A、B、C牙槽骨几乎充满前磨牙的根分叉,并可见较清晰的骨硬板;对照组D新生骨量较实验组少,而多于对照组E;对照组E由少量稀疏骨小梁充填在缺损底部,骨密度较低,骨硬板模糊;
     3.组织学观察:
     3.1 HE染色可见,实验组A、B、C缺损区可见新生牙槽骨充填根分叉区,其成骨密度较高,钙化良好;新生的牙周纤维细小稠密、富含血管,其方向与根面垂直或接近垂直;新生牙骨质覆盖根分又大部分区域;实验组均未见骨粘连和根吸收等不良愈合。对照组D有部分新生的牙槽骨,呈层状较成熟,牙骨质覆盖根面并向冠方延伸;在牙周间隙内有纤维穿行。对照组E仅有个别缺损区出现少量的新生牙槽骨,且其上方有较多的上皮细胞和非骨性结缔组织覆盖。
     3.2 Masson染色可见,实验组A、B、C呈现明显的红染区,外周有少量蓝色着染区;对照组DMasson染色为红-蓝相间,骨小梁中心为红色区域:空白对照组E呈现明显的蓝色,周围有少量的红染区。
     4.组织学测量:实验组新生牙槽骨高度、新生牙骨质高度及新生牙周组织的指标均高于对照组及空白对照组(P<0.05),各实验组相比较,A组的各指标虽在数值上较B、C组略高,但统计学分析,三组均无显著性差异(P>0.05)。
     结论:
     1.通过人工制备犬根分叉部位的骨缺损并辅以稳定的局部刺激因素的方法,可以制备出可靠的、近似于临床的犬牙周病Ⅱ度根分叉病变动物模型,以用于各种牙周组织再生治疗的动物实验研究。
     2.通过对动物模型的临床检查、组织学观察、组织学测量,结果证明rhbFGF和/或rhIGF-I与Bio-oss复合材料具有良好的骨引导性和骨诱导性,用于犬Ⅱ度根分叉缺损的修复可明显促进牙周组织再生(牙槽骨牙骨质的再生及牙周新附着的形成)。
     3.本实验的结果证明应用rhbFGF和/或rhIGF-I与人工骨复合材料对犬牙周病Ⅱ度根分叉病变模型的牙周组织再生优越于单纯的引导性牙周组织再生术。
     4.本实验结果分析表明单独应用rhbFGF、rhIGF-I和此两种生子因子联合应用对牙周组织再生的质量上无显著性差异。
Objective:In this experiment study, the artificial construct five dogs with chronic periodontal disease model, and then the recombinant human basic fibroblast growth factor (recombinant human basic fibroblast growth factor, rhbFGF) and recombinant human insulin-like growth factor (recombinant human insulin-like growth factor-I, rhIGF-I), either separately or simultaneously with the artificial bone (Bio-oss) composite, implanted into dogs degreeⅡfurcation periodontal disease model, and with guided tissue regeneration (Guided issue regeneration, GTR) treatment, observation of animal models of periodontal tissue repair and regeneration, and to explore two kinds of growth factors to promote periodontal tissue regeneration and the effect of clinical treatment of periodontal disease in itsapplication to provide a theoretical basis.
     Methods:
     1. The formation of five dogs with chronicⅡfurcation of the mandibular first premolar 2,3,4, for a total of 48 teeth were randomly divided into 5 groups, including the three experimental groups, a control group and a blank control group, experimental group A:rhbFGF/rhIGF-I/ Bio-oss/GTR; experimental group B:rhbFGF/Bio-oss/GTR; experimental group C:rhIGF-I/Bio-oss/GTR; the control group D:GTR surgery alone; the blank control group E:flap operation.
     2. Before implant rhbFGF and/or rhIGF-I composite bone graft and after 12 weeks,record buccal side of the bifurcation site of periodontal probing depth (periodontal depth,PD)and attachment level (attachment level,AL);after 2,4,12 weeks taken surgery X-rays to observe the new situation of alveolar bone.
     3. Dogs were sacrificed 12 weeks after surgeried, slice the preparation experimental tissue zone (including dental, alveolar bone, periodontal ligament), HE, Masson staining and histological measurements, observe periodontal tissue (alveolar bone, teeth bone and periodontal membrane) of the new situation.
     Results:
     1. The clinical examination:after 12 weeks the PD and AL of dogs's model were improved to varying degrees, followed by A, B/C, D and E group;
     2. X-ray examination:the experimental group A, B, C alveolar bone almost are filling the molar furcation, and the bone can be seen more clearly hard board; control group D were higher than the experimental group, less new bone, but more than the control group E; control group E are filling with a few sparse trabecular bone in the bottom of the low bone mineral density, bone hard plate fuzzy;
     3. histological observation:HE staining, the experimental group A, B, C shows that new bone defect filling furcation, which become higher bone mineral density, calcium good; new born periodontal fiber small dense, rich in blood vessels, the direction perpendicular or nearly perpendicular to the root surface; new cementum covering most areas of the root bifurcation; the experimental group showed no bone adhesion and root absorption of malunion. Control group D, some new alveolar bone was layered over mature cementum covering the root surface to the coronal extension; fibers within the periodontal gap crossed. The control group E appears only a small number of individual defect new bone, and it has more epithelial cells and non-bone connective tissue covering. Masson staining in the experimental group A, B, C showed obvious red stained area with peripheral small amount of blue stained area; control group D Masson staining red-blue, red area of trabecular bone center; blank control group E showed obvious blue, surrounded by a small amount of red staining area;
     4. tissue measurements can be seen in all experimental groups a high degree of new bone, new cementum height and new indicators of periodontal tissue were higher than that and the control group (P<0.05), compared with the experimental group, A group of the indicator, although numerically higher than B, C group was slightly higher, but the statistical analysis, three groups were not significantly different (P>0.05).
     Conclusion:
     1. Through artificial canine furcation bone defect site and supported by a stable method of local incentives that can be prepared reliable and similar to clinical periodontal disease in dogs II furcation Animal models, to be used for a variety of periodontal tissue regeneration therapy in animal study.
     2. By clinical examination of animal models, histological observation, histological measurements, the results show rhbFGF and/or rhIGF-I and Bio-oss composite material has good bone and bone induction guide for dog II degree of root bifurcation defects can significantly promote alveolar bone, cementum and periodontal regeneration and new attachment formation.
     3. The experimental results proved to use rhbFGF and/or rhIGF-I and bone composite to treatment canine periodontal diseaseⅡfurcation periodontal regeneration model is superior to simple guiding periodontal tissue regeneration.
     4. The experimental results show that alone rhbFGF, rhIGF-I and these two factors combination on the periodontal tissue regeneration (regeneration of alveolar bone, cementum regeneration, periodontal membrane formation) the quality was no significant difference.
引文
1. WattFM,Hogan BL.Out of Eden:stem cells and their niches [J]. Science. 2000:25,287(5457):1427-1430.
    2. Dogan A,Ozdemir A,Kubar A,et al. Healing of artificial fenestration defects by seeding of fibroblast like cells derived form regenerated periodontal ligament in a dog:a preliminary study[J].Tissue Eng,2003;9(6):1189-1196.
    3. 欧龙,刘宏伟,庞劲凡,等.自体牙周膜细胞移植对狗牙周组织再生的影响[J].中华口腔医学杂志,2000;35(1):44-46.
    4. Zhao M,Jin Q,Berry JE,et al.Cementoblast delivery for periodontal tissue engineering.J Periodontol,2004;75(1):154-161.
    5. 侯建霞,曹采方,孟焕新.牛成牙骨质细胞在体内形成牙骨质样组织的初步研究[J].中华口腔医学杂志,2003:38(1):70-72.
    6. 尹晓华,周懿,李杨.牙周组织工程研究进展[J].中国修复重建外科杂志,2007:21(2):165-170.
    7. 何悦,张志愿,蒋欣泉,等.犬骨髓基质细胞向成骨细胞诱导分化的实验研究[J].口腔颌面外科杂志,2006:3(16):209—214.
    8. 欧龙,马良,刘宏伟,等.自体骨髓干细胞移植狗牙周缺损处引导组织再生的实验观察[J].现代口腔医学杂志,2005,19(4):390-393.
    9. 尹战海,张璐,王金堂,等.“双相”组织工程软骨修复兔关节骨软骨缺损[J].中国修复重建外科杂志,2005;19(8):652—657.
    10. Trentz OA,Hoerst rup SP,Sun L K,et al. Osteoblasts response to allogenic and xenogenic solvent dehydrated cancellous bone in vitro [J].Biomaterials. 2003;24(20):3417.
    11.张翼,王贻宁,赵艳,等.人牙周韧带细胞和β—磷酸三钙多孔生物陶瓷的牙周组织工程研究.口腔医学研究,2005:21(3):243—245.
    12.钱鋆,张兆锋,沈尊理,侯明钟.冻干脱钙骨表面纳米结构对细胞行为的影响.中国矫形外科杂志,2005:13(12):911-914.
    13. Trejo PM,Wehman R,Caffesse R,Treatment of intraosseous defeats with bioabsorhable barriers alone orin combination with decalcified freeze-dried bone allograft:a randomized clinical trial[J].J Periodontol.2000; 71(12):1852-1861.
    14.李裕标,杨志明,秦廷武,李秀群.异种脱钙骨基质复合成骨细胞异位成骨的实验研究.广西医科大学学报,2008;25(1):27-29.
    15. Kon E,Muraglia A,Corsi A,et al. Autologous bone mar row stromal cells loaded
    onto porous hydroxyapatite ceramic accelerate bone repair in criticalsize defect s of sheep long bones [J].J Biomed Mater Res,2000;49(3):328.
    16. Maeda H,Kasuga T,Nogami M,et al.Preparation of bone like apatite composite for tissue engineering scaffold[J].Science and Technology of Advanced Materials,2005;6(1):48.
    17.17.W ilkins RM,C him enti BT,Rifkin RM.Percutaneou s treatment of long bone nonunions:the use of autologous bone marrow and allograft bone matrix.Orthopedics,2003;26(Suppl 5):549-554.
    18.强辉,王坤正,张明宇,时志斌,党晓谦.β—磷酸三钙复合成骨细胞的异位成骨[J].中国组织工程研究与临床康复,2009;13(12):2303-2304.
    19. Schepers E,Barbier L.Ducheyne P.Implant placement enhanced by bioactive glass particles of narrow size range[J].Int J Oral Maxillofac Implants.1998;13(5): 655-665.
    20.段莉,邓芳成,和红兵,生物活性玻璃引导牙周组织再生的研究.口腔医学研究,2004;20(6):607-610.
    21. Ren T,Ren J, Jia X,et al.The bone formation in vitro and mandibular defect repair using PLGA porous scaffolds.J Biomed Mater Res A,2005;74(4):562-569.
    22.廖素三,崔福斋,张伟.组织工程中胶原基纳米骨复合材料的研制[J].中国医学科学院学报,2003;25(1):36-39.
    23.陈鹏,林建华,李柱来,等.聚甲基丙烯酸-2-羟乙酯水凝胶载药(类软骨)膜的制备及性能[J].中国组织工程研究与临床康复,2009:13(12):2283-2286.
    24.倪建光,刘丹平.骨组织工程支架材料的研究进展.中国组织工程研究与临床康复,2009;13(8):1525-1528.
    25.崔福斋,廖素三,关凯,等.矿化胶原基骨材料与BMP-2复合用于兔腰椎横突间融合[J].生物骨科材料与临床研究,2003;1(1):1-5.
    26. Serre CM,Papillard M.Chavassieux P,et al.Influence of magnesium substitution on a collagen-apatite biomaterial on the production of a calcifying matrix by human osteoblasts.J Biomed Mater Res,1998;42(4):626-633.
    27.刘佳,钟良军.生长因子与牙周组织再生.临床口腔医学杂志,2007; 239(2):113-114.
    28.张国英,余占海,张小恒,等.TGF-β1对人牙周膜成纤维细胞增殖和分化的影响.山东医药,2008;48(21):35-37.
    29. Sigurdsson TJ,Tatakis DN, Less MB,et al.Periodontal Regenerative potential of space-providing expanded polytertrafluororethylene membrances and recombi-
    nant human bone morphogenetic proteins.J Periodental,1995;66(6):511-21.
    30. King GN,Hughes FJ. Effects of occlusal loading on ankylosis,bone,and cementum formation during bone morphogenetic-2-stimulated periodontal regeneration in vivo.J Periodontal,1999;70(10):1125-35.
    31. Miyaji H,Sugaya T,Kato K,et al.Dentin resorption and cementum-like tissue formation by bone morphogenetic proteins application. J Periodental,2006;77(7): 1184-93.
    32.李才良,刘宏伟,任肖华,涂晓丽.rhbFGF、rhTGF、rhBMP-2对骨髓基质细胞体外培养增殖的影响[J].实用口腔医学杂志,2002:18(5):456-459.
    33.郑磊,王前,魏宽海,等.碱性成纤维细胞生长因子对骨髓基质细胞粘附、增殖和分化的影响[J].第一军医大学学报,2000;20(2):S4-S5.
    34.吴勇,吴织芬,王勤涛,等.骨形成蛋白-2和成纤维细胞生长因子对人牙周膜细胞增殖的联合效应.牙体牙髓牙周病学杂志,2001;11(1):14-16.
    35.涂小丽.生长因子与牙周组织工程.国外医学生物医学工程分册,2002;2(25):70-73.
    36. Nemoto E,Shimonishi M,Nitta Y,et al.The involvement of(platelet-derived growth factor and insulin-like growth factor-1 receptors signaling during mineralized nodule formation by humam periodontal ligamentcells.J Periodont Res,2004;39(6):388-397.
    37.刘佳,钟良军.生长因子与牙周组织再生.临床口腔医学杂志,2007;2(23):113-115.
    38. Palioto DB,Coletta RD,Graner E,et al.The influence of enamel matrix derivative associated with insulinlike growth factor-I on periodontal ligament fibroblasts[J].J Periodontol.2004;75(4):498—504.
    39.范芹,刘建国,梁颖,等.不同浓度IGF-1作用下大鼠正畸牙牙周组织学变化.广东医学,2007;31(8):686-687.
    40.冯萍,刘琪,高丽,等.转化生长因子-β1和碱性成纤维细胞生长因子对人牙周膜成纤维细胞增殖的影响. 广东牙病防治,2005;13(4):270-272.
    41.吉建新,廖伟娇,邱志辉,等.bFGF和IGF-I对人PDL细胞在牙面生长的影响.中国热带医学,2006:6(11):2076-2078.
    42.吉建新,廖伟娇,邱志辉,等.碱性成纤维细胞生长因子和胰岛素样生长因子-I对牙周膜细胞增殖的影响[J].广东医学,2005;26(5):606-608.
    43.石瑾,武云霞.神经生长因子和重组骨形态蛋白对人牙周膜细胞增殖与分化作用的影响.山西医药杂志,2008;37(3):225-227.
    44.顾雄华,李明,顾宁,等.bFGF促进兔骨折愈合实验研究及临床应用[J].中国矫形外科杂志,1999;(6)11:34-40.
    45. Mika N,Hideki K,Keiko A,et al.Effects of Basic Fibroblast Growth Factor on Experimental Diabetic Neuropathy in Rats[J]. Diabetes,2006;55(5):1470-1477.
    46.张忠提,王振华,杨晓东,等.外源性bFGF促进骨引导再生成骨过程中VEGF水平变化及临床意义.山东医药,2007;47(14):3-5.
    47.江策,刘建国,高海涛,等.局部注射rhTGF-β1后大鼠正畸牙牙槽骨组织学的改变[J].广东医学,2007;28(12):1920-1922.
    48. Vehof J,Fisher J,Dean D,et al.Bone formation in transforming growth factor-beta-1-ccoated porous poly(propylene fumarate)scaffolds[J]. J Biomed Mater Res,2002;60(2):241-251.
    49.金波,林晓萍,等.Rh-bFGF与Bio-Oss骨胶原联合促进牙周骨缺损再生的实验研究[J].上海口腔医学,2007;16(2):196-200.
    50.鲁红,吴织芬.第四军医大学博士论文.2003.
    51.李芳,赵守亮,吴红,等.TGF-β1壳聚糖微球的制备及其缓释效果研究[J].牙体牙髓牙周病学杂志,2005;15(12):667-670.
    52.李容林,李春阳,周超美,等.壳聚糖-胶原复合rhBMP-2和bFGF膜引导牙周组织再生的实验研究[J].中国临床解剖学杂志,2007;25(4):430-432.
    53.司晓辉,刘正.骨形成蛋白2基因转染的人牙周膜成纤维细胞的骨诱导作用[J].华西口腔医学杂志,2003:21(5):347-349.
    54.尹晓华,周懿,李杨.牙周组织工程研究进展[J].中国修复重建外科杂志,2007:21(2):165-170.
    55. Lieberman JR,Le LQ,Wu L,et al.Regional gene therapy with a BMP-2 producing murine stromal cell line indinduces heterotopic an orthotopic bone formation in rodents[J].J Orthop Res,1998;16:330-339.
    56.陈美玲,罗仁惠,宋珂,曹颖光.载bFGF基因腺相关病毒与骨支架材料复合的电镜观察[J].临床口腔医学杂志,2008;24(12):733-735.
    57. Kawase T,Okuda K,Saito Y,el al.In vitro evidence that the biological effects of platelet rich plasma on periodontal ligamentcells is not mediated solely by constituent transforming-growth factor-beta or platelet-derived growth factor.J Periodontol,2005;76(5):760-767.
    1. Araujo MG,Lindhe J.GTR treatment of degree Ⅲ furcation defects following application of enamel matrix proteins.An experimental study in dogs[J].J Clin Periodontol,1998;25(6):524-530.
    2. Donos N,Seulean A,Glavind L,et al. Wound healing of degree Ⅲfureation inyolvements with GTR and/or Emdogains. A histologic study[J].J Clin Periodontol,2003;30(12):1061-1068.
    3. Yoshinori M,Mikio O.Akihito K,et al.Periodontal regeneration following the transplantation of proliferating tissue derived from the periodontal ligament into class Ⅲ fureation defects in dogs[J].Biomed Res,2006;27(3):139-147.
    4. lin L,Chen MY,Ricucci D,Rosenberg PA.Guided tissue regeneration in periapical surgery. J Endod,2010;36(4):618-25.
    5. RossaC Jr,MarcantonioE Jr.Cirelli JA,et al.Regeneration of Class Ⅲfurcation defects with basic fibroblast growth factor(b-FGF) associated with GTR.Aescirptive and histometric study in dogs[J].J Periodontol,2000; 71(5):775-784.
    6. Lourbakos A.Potempa J.Travis J,et al.infectlmmum,2001;69(8):5121-5130.
    7. 顾雄华,李明,顾宁,等.bFGF促进兔骨折愈合实验研究及临床应用[J].中国矫形外科杂志,1999(6)11:34-40.
    8. 吉建新,廖伟娇,邱志辉,等.bFGF和IGF—I.对人PDL细胞在牙面生长的影响[J].中国热带医学,2006;6(11):2076-2078.
    9.董力武,邢春艳.Bio-Gide胶原膜结合Bio-Oss多孔骨治疗牙周垂直型骨缺损的6个月临床评价[J].广东牙病防治,2004;12(1):27-29.
    10.范月静.骨形成蛋白—胶原基纳米骨修复牙周骨缺损的实验研究.天津医科大学硕士论文.2008.
    11.段莉,邓芳成,和红兵.生物活性玻璃引导牙周组织再生的研究[J].口腔医学研究,2004;6(20):607-610.
    12.詹暶,闫福华.组织工程技术修复犬牙Ⅱ度根分叉病变的研究.福建医科大学硕士论文.2005.
    13.宋忠臣,束蓉.实验性牙周炎动物模型的研究进展[J].牙体牙髓牙周病学杂志,2005:15(10):577-581.
    14. AI-Shammari KF,Kazor CE,Wang HL.Molar root anatomy and management of furcation defects[J].J Clin Pefiodonml,2001;28(8):730-740.
    15.欧龙,刘宏伟.牙周组织再生的动物实验观察[J].军医进修学院学报,1999;20(1):14-16.
    16.闫福华,郑碧琼,林敏魁,等.组织工程用于修复牙周组织缺损的动物实验研究[J].口腔医学研究,2005;21(6):593-597.
    17.李巨超,安桂荣.制备慢性牙周炎动物模型的两种方法比较[J].军区进修学院学报,1990;26(4):251-252.
    18.孟焕新主编.牙周病学第三版[M].北京.人民卫生出版社.2008:72.
    19. Villar CC,Cochran DL. Regeneration of periodontal tissues:guided tissue regeneration.Dent Clin North Am,2010;54(1):73-92.
    20. Biograft-HT as a bone graft material in the treatment of periodontal vertical defects and its clinical and radiological evaluation:Clinical study. JIndian Soc Periodontol,2009;13(3):138-44.
    21.汪涌,陈莹,徐燕.磨牙Ⅱ度根分叉病变治疗的研究进展.临床口腔医学杂志.2009:25(8):503-504.
    22.何建明,王慧明.骨形态蛋白联合引导组织再生技术修复牙周骨缺损[J].中国临床医学,2005;12(1):169-171
    23.刘晓勇,张海燕,吕婴,等.碱性成纤维细胞生长因子对人牙周膜细胞增殖与ALP活性表达的影响[J].北京口腔医学,2001:9(2):59-62.
    24. Murakami S.Takayama S,lkemwa K,et al. Regeneration of periodontal tissues by basic fibroblast growth factor[J]. J Peindotal Res,1999;34(7):425-430.
    25.谭震,宫苹,赵青.碱性成纤维细胞生长因子对成骨细胞和牙周膜成纤维细胞迁移、增殖的影响[J].华西口腔医学杂志,2005:6,23(3):201-203.
    26. Takayama S,Murakami S,ShimabukuroY,et al.Periodtal regeneration by FGF-2 (bFGF)in primate motals.J Dent Res,2001;80(12):2075-2079.
    27.班红艳,刘翔,韩丽娟,等.碱性成纤维细胞生长因子对大鼠下颌骨缺损Bio-oss植骨的影响[J].北京口腔医学,2008:5(16):253-256.
    28.郑磊,王前,魏宽海,等.碱性成纤维细胞生长因子对骨髓基质细胞粘附、增殖和分化的影响[J].第一军医大学学报,2000:20(2):S4-S5.
    29.吴勇,吴织芬,王勤涛,等.骨形成蛋白-2和成纤维细胞生长因子对人牙周膜细胞增殖的联合效应[J].牙体牙髓牙周病学杂志,2001;1(1):4-16.
    30.金波,林晓萍,等.RhbFGF与Bio-oss骨胶原联合促进牙周骨缺损再生的实验研究[J].上海口腔医学,2007:16(2):196-200.
    31. Sena K,Morotome Y,Baba O,et al.Gene expression of growth differentiation factors in the developing periodontium of rat molars.J Dent Res,2003;82(3):
    166-171.
    32.Lovschall H,Fejerskov O,Flyvbjerg A.Pulp-capping with recombinant human in-insulin-like growth factor-1(rhlGF-1)in rat molars[J].Adv Dent Res,2001;(15): 108-112.
    33.刘宏,吴织芬,王勤涛.胰岛素样生长因子-Ⅰ和骨形态发生蛋白-2对人牙周膜细胞增殖的作用[J].牙体牙髓牙周病学杂志,1999:9(1):31.
    34.鲁红,吴织芬.第四军医大学博士论文.2003.
    35.郝敬东,张锡庆,于晓东,等.IGF-I和bFGF对体外培养骨髓基质干细胞增殖及分化的影响[J].中国骨伤,2003;16(10):584-586.
    36.刘刚,胡蕴玉,马平,韩一生.碱性成纤维细胞生长因子及胰岛素样生长因子-1对体外兔关节软骨细胞的生物学效应[J].中华创伤杂志,2003;19(4):218-221.
    37.Asai Y,Hashimoto M,Fletcher HM,et aL.infect lmmun,2005;73(4):2157-2163.
    38.袁乃梅.胰岛素样生长因子和碱性成纤维细胞生长因子对人牙周膜细胞增殖的影响[J].实用口腔医学杂志,2001;17(6):492-494.
    39.吉建新,廖伟娇,邱志辉,等.碱性成纤维细胞生长因子和胰岛素样生长因子-1对牙周膜细胞增殖的影响[J].广东医学杂志,2005:26(5):605-608.
    40.钟雯怡,唐旭,王胜,等.羊富血小板胶细胞基质促牙周组织再生的动物实验研究.实用口腔医学杂志,2009;25(2):183-187.
    41.孙钦峰,朱雪梅, 杨丕山,等.骨形成蛋白-2基因促进犬牙周组织再生的体内研究.上海口腔医学,2007:16(2)211-214.
    42.赵广民,刘强,孙振军,等.重组转化生长因子-β复合同种异体骨移植修复骨缺损的实验研究.中国骨伤,2001;14(5):277-278.
    43.邹平洲,曾炳芳,张先龙.血管内皮细胞生长因子在异体皮质骨移植修复骨缺损中的作用.中国修复重建外科杂志,2005:19(8):593-596.
    44.郭建刚,赵然,等.骨组织成分与MASSON三色染色反应的关系分析[J].中医正骨,2001;13(11):5-6.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700