金属钯及其氚化物中氦行为的理论研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
核能是解决能源问题的一种理想的替代能源。在核能的利用中,材料中的氦效应是一个至关重要的问题。材料中引入氦(He)的途径主要有:贮氚材料中的氚通过p衰变而产生氦(3He);材料内部不断通过α衰变产生高能α粒子(4He);聚变反应堆第一壁材料表面不断受到氘、氚等离子体中聚变产物的轰击而产生He原子;裂变反应堆和聚变反应堆中产生的中子与结构材料发生(n,α)核反应而产生氦(4He)等。材料中产生的氦,由于其特殊的满壳层电子结构而不溶于基体材料,氦的聚集会对材料本身的宏观物理性能和力学系能产生影响,即核脆。因而,弄清楚He原子在材料中与各种缺陷的微观作用机理,对于核能工业和材料工业都是很有必要的。金属钯(Pd)是一种固氦能力很强的单质,其氚化物也是一种重要的贮氚材料,因而我们选取钯及其氚化物作为研究对象。
     本文应用第一性原理密度泛函理论和平面波赝势方法,利用VASP程序软件包系统地研究了金属Pd及其氚化物中的氦行为。计算结果如下:(1)计算了Pd中间隙位置He原子的稳定性、氦原子的迁移情况以及氦-空位小团簇(HemVn)的稳定性。结果表明:Pd中空位有很强的捕获He原子的能力;He在Pd中间隙位置的稳定情况依次是空位、八面体间隙、四面体间隙;间隙氦原子不能直接在邻近的八面体间隙之间迁移,只能先通过四面体间隙位置,再达到八面体间隙位置,即迁移路径为O-T-O;HemVn团簇形成能随着He原子浓度的增加而增加,而且没有空位的He团簇比有空位的He团簇形成能高,空位使得He更容易形成团;HemVn团簇的结合能很大程度上依赖于团簇中的He对空位的比例(He/V)而不是团簇本身的大小,当He/V的比例约等于1的时候,是团簇中最稳定的构型;HemVn团会通过发射出He原子或者空位来改变自身的氦与空位的比例从而到达稳定,稳定后的离解能大约为2.5 eV,当He/V比例小于1时,会发射空位,从而使He/V比例增加,当He/V比例大于1时,会发射出现氦原子和自间隙原子,从而使团中He/V比例降低。(2)计算了Pd中氢(H)、H-He对的稳定性情况,及Pd氚化物中氦行为,并对比分析了Pd及其氚化物中不同的氦行为。结果表明:H在Pd中间隙位置的稳定情况和He很不一样,其稳定性位置依次是八面体间隙、四面体间隙、空位;当H和He原子同时存在于Pd中相邻的八面体间隙位置时,形成一种稳定的Hocta-Heocta对;H和He原子同时位于Pd中单空位的最近邻处时,He原子易被空位捕获,H原子依然位于原来的八面体间隙为形成稳定的Hocta-Hesub对;钯氚化物中氦原子的聚集容易导致局部的晶格扭曲,相比Pd中He而言,其氚化物中更有利于He小团簇聚集。
The nuclear energy is the hope of sustainable development of energy source, and the effect of helium (He) in nuclear materials is very important in the use of nuclear energy. He in materials can be introduced by various ways, such as the beta decay of tritium in tritium-storage materials which produce 3He, the alpha decay in materials which produce high energy 4He, and so on. Because of the low solubility in the host materials, the accumulation of helium is known to result in the formation of He clusters or bubbles, which can induce large changes of micro-structure in the host lattice, leading to irradiation defect induced by swelling and high temperature embrittlement in structural materials with aging time. Thus the properties of helium atoms in materials are considered as the particular concern and it is very important to understand the micro-mechanism of helium interaction with different defects in materials. At the same time, palladium (Pd) has the strongest capacity to retain helium and its tritide is an excellent tritium-storage material, so we choose palladium and its tritide to perform our research.
     First-principles calculations based on density functional theory (DFT) have been performed to study the properties of helium behavior in palladium and its tritide. The results are as follows:(1) we calculated the properties of the vacancy, substitutional, and small helium-vacancy clusters HemVn (m, n=0-4) in palladium. The result indicates that the vacancy has the strongest ability of capturing helium atoms and the octahedral interstitial configuration is more stable than the tetrahedral one. In the palladium crystal, helium atom migrates from one octahedral interstitial site to another through the O-T-O path. The formation energies of HemVn clusters are increasing with the increase of helium atoms, and they are larger without than with vacancies. In the HemVn clusters, He is most strongly bound to large vacancies, and the binding energies mainly depend on the ratio of helium to vacancy in the clusters rather than the cluster size and the configuration is the most stable as the ratio of helium to vacancy is one. The HemVn clusters change their ratio of helium to vacancy through emitting helium atoms or vacancies to stabilize the configuration, and the dissociation energy is about 2.5 eV. When the ratio of helium to vacancy is less than one, the clusters will increase the ratio through emitting vacancies, otherwise, emitting helium atoms and self-interstitial atoms to decrease the ratio. (2) The stability of H and H-He pairs in Pd and helium behavior in Pd tritide have also been calculated, meanwhile, we compared the difference between helium behavior in Pd and its tritide. The result indicates as follows:The stability of H in Pd is different from He in Pd, the vacancy has the weakest ability of capturing the H atoms, and the octahedral interstitial configuration is more stable than the tetrahedral one. When the H and He atoms exist in the Pd in the adjacent octahedral interstitial site, they relax and form a stable Hocta-Heocta pair. When H and He atoms located simultaneously in the vicinity of a single vacancy in Pd, the He atoms can easily captured by the vacancy and the H atom remains in the original octahedral sites, then the Hocta-Hesub pair is predicted to be the lowest energy configuration. Comparing with He in Pd, the He atoms in Pd tritide can easily lead to local lattice distortions and small He clusters.
引文
[1]张崇宏,陈克勤,王引书等.金属材料中氦扩散与氦泡的形核生长研究.原子核物理评论,2001,18(1):50-55
    [2]王佩璇,宋家树.材料中的氦及氚渗透.第一版.北京:国防工业出版社,2002,1-2
    [3]Ullmaier H. Introductory remarks-helium in metals. Radiation Effects and Defects in Solids,1983,78(1-4):1-10
    [4]Gupta R P, Gupta M. Consequence of helium production from the radioactive decay of tritium on the properties of palladium tritide. Physical Review B,2002, 6601(1):014105
    [5]Barnes R S. Embrittlement of stainless steels and nikel-based alloys at high temperature induced by neutron radiation. Nature,1965,206(4991):1307-1310
    [6]Langley R A, Blewer R S. Behavior of implanted D and He in pyrolytic graphite. Journal of Nuclear Materials,1978,76&77:313-321
    [7]Bφttiger J. A review on depth profiling of hydrogen and helium isotopes within the near-surface region of solids by use of ion beams. Journal of Nuclear Materials,1978,78:161-181
    [8]Weaver H T, Camp W T. Detrapping of interstitial helium in metal tritides-NMR studies. Physical Review B,1975,12(8):3054-3059
    [9]Cost J R, Hickman R C. Helium release from type 304 stainless steel. Journal of Vacuum Science and Technology,1975,12:516-520
    [10]Andresen H, Harling O K. A new approach to simulation of helium and simultaneous damage production in fusion reactors-in reactor tritium trick. Journal of Nuclear Materials,1979,85&86:485-489
    [11]陈宝清.离子束改性原理及工艺.北京:国防工业出版社,1995,2-3
    [12]Bauer W, Wilson W D. Helium migration in metals. Report CONF710601, USA: State Univercity of New York, Albany (USA); USAEC, Washington, D.C. Radiation-induced voids in metals.1972,230-247
    [13]Wilson W D, Bisson C L. Atomistics of helium diffusion in copper and tungsten. Defects Solids Radiation Effects and Defects in Solids,1973,19:53-59
    [14]Wilson W D, Baskes M I, Bisson C L. Atomistics of helium bubble formation in face-centered-cubic metal. Physical Review B,1976,13(6):2470-2478
    [15]Melius C F, Bisson C L, Wilson W D. Quantum chemical and lattice defect hybrid approach to the calculation of defects in metals. Physical Review B, 1978,18(4):1647-1657
    [16]Ullmaier H. Proceedings of the international symposium on fundamental aspects of helium in metals. Radiation Effects and Defects in Solids,1983, 78(1-4):R1
    [17]Wichert T. Helium diffusion in metals observed by radioactive atoms using PAC. Defects Solids Radiation Effects and Defects in Solids,1983,78:177-188
    [18]Sekiguchi H, Watanabe H, Sakamoto I, et al. Diffusion of He in austenitic stainless steels studied by TDPAC. Journal of Nuclear Materials,1985, 133&134:468-472
    [19]Kogel G, Triftshauser W. Helium implantation in metals investigated by monoenergetic positions. Defects Solids Radiation Effects and Defects in Solids, 1983,78:221-230
    [20]Lewis M B, Allen W R. Range distributions of 200 keV helium in selected metals and ceramics. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,1987,22:499-503
    [21]Aono M. Quantitative surface structure analysis by low-energy ion scattering. Nuclear Instruments and Methods in Physics Research Section B:Beam Interactions with Materials and Atoms,1984,230(1-3):374-383
    [22]Rife J C, Donnelly S E, Lucas A, et al. Optical measurements of the density of helium in small bubbles in aluminium films. Physcial Review Letters,1981,46: 1220-1224
    [23]Schwahn D, Li Q, Schroeder H. Determination of gas density in helium bubbles by neutron small-angle scattering. In:Annual convention 1988 of the Austrian physical society. Australia Vienna,1988,26-30
    [24]Haubold H G, Lin J S. He bubbles in Ni:A small-angle X-ray scattering study. Journal of Nuclear Materials,1982,111:709-714
    [25]Thomas G J. Experimental studies of helium in metals. Defects Solids Radiation Effects and Defects in Solids.1983,78:37-51
    [26]Vanveen A, Evans J H, Buters WTM, et al. Precipitation in low energy helium irradiated molybdenum. Defects Solids Radiation Effects and Defects in Solids, 1983,78(1-4):53-66
    [27]Veen A V, Evans J H, Caspers L M, et al. Nucleation of helium precipitates in nickel observed by HDS. Journal of Nuclear Materials,1984,122&123: 560-564
    [28]Bisson C L, Wilson W D. Atomistics of tritium and helium-3 in metals. Report CONF-800427, USA:U.S.D.O.E,1980,78-84
    [29]Wilson W D. Theory of small cluster of helium in metals. Defects Solids Radiation Effects and Defects in Solids,1983,78(1-4):11-24
    [30]Daw M S, Baskes M I. Semiempirical quantum mechanical calculation of hydrogen embrittlement in metals. Physcal Review Letter,1983,50:1285-1288
    [31]Adams J B, Wolfer W G. Formation energies of helium-void complexes in nickel. Journal of Nuclear Materials,1989,166:235-242
    [32]Poker D B, Williams J M. Low-temperature release of ion-implanted helium from nickel. Applied Physics Letters,1982,40:851-855
    [33]Hojou K, Jittsukawa S, Suzuki M. Application of electron energy loss spectroscopy to microchemical analysis of Ti-modified austenitic stainless steel irradiated in HFIR. Journal of Nuclear Materials,1991,179-181:496-499
    [34]Katoh Y, Kohno Y, Koyama A. Microstructural response of titanium-modified austenitic stainless steels to neutron exposure of 70 dpa in FFTF/MOTA. Journal of Nuclear Materials,1994,212-215:464-470
    [35]Jitsukawa S, Hojou K, Hishinuma A. Effect of phosphorus and boron additions on helium bubble microstructure in titanium-modified austenitic stainless steels. Journal of Nuclear Materials,1991,179-181:538-541
    [36]Muroga T, Watanabe H, Yoshida N. The influence of 10B addition on the swelling suppression by phosphorus and titanium in Fe-Cr-Ni. Journal of Nuclear Materials,1994,212-215:482-486
    [37]Kurishita H, Muroga T, Watanabe H. Effect of FFTF irradiation on tensile properties of P-and Ti-modified model austenitic alloys with small amounts of boron. Journal of Nuclear Materials,1994,212-215:519-524
    [38]Yamamoto N, Nagakawa Y, Shiraishi H. The effect of MC and MN stabilizer additions on the creep rupture properties of helium implanted Fe-25%Ni-15% Cr austenitic alloy. Journal of Nuclear Materials,1995,226:185-196
    [39]Kalin B A, Chernov I I, Kalashnikov A N. Influence of alloying elements in Ni and Fe on ion-implanted helium behavior. Journal of Nuclear Materials,1996, 233-237:1142-1147
    [40]Veen A V, Eleveld H, Clement M. Helium impurity interactions in vanadium and niobium. Journal of Nuclear Materials,1994,212-215:287-292
    [41]Shimomura Y, Guinan M W, Tdelarubia Diaz. Atomistics of void formation in irradiated copper. Journal of Nuclear Materials,1993,205:374-384
    [42]McConville G T, Menke D A, West D, et al. Effect of helium growth and carbon impurities on the properties of aged metal tritides. Fusion Technology,1995,28: 1227-1232
    [43]Ryazanov A, Braski D, Schroeder H, et al. Modeling the effect of creep on the growth of helium bubbles in metals during annealing. Journal of Nuclear Materials,1996,233-237:1076-1079
    [44]Kesternich W, Ullmaier H. Mechanical properties and microstructure of helium-implanted beryllium. Journal of Nuclear Materials,2003,213:212-223
    [45]Ono K, Arakawa K, Birtcher R C. Intermittent rapid motion of helium bubbles in Cu during irradiation with high energy self-ions. Nuclear Instruments and Methods in Physical Research Section B,2003,206:114-117
    [46]Yamamoto N, Chuto T, Murase Y, et al. Correlation between embitterment and bubble microstructure in helium-implanted materials. Journal of Nuclear Materials,2004,329-333:993-997
    [47]Thorsen P A, Bilde-S(?)rensem J B, Singh B N. Bubble formation at grain boundaries in helium implanted copper. Scripta Materialia,2004,51:557-560
    [48]Chernov V M, Romanov V A, Krutskikh A O. Atomic mechanisms and energetics of thermally activated processes of helium redistribution in vanadium. Journal of Nuclear Materials,1999,271&272:274-279
    [49]Morishita K, Sugano R, Wirth B D. MD and KMC modeling of the growth and shrinkage mechanisms of helium-vacancy clusters in Fe. Journal of Nuclear Materials,2003,323:243-250.
    [50]Okuniewski M A, Ashkenazy Y, Heuser B J, et al. Molecular dynamics simulations of void and helium bubble stability in amorphous silicon during heavy-ion bombardment. Journal of Applied Physics,2004,96 (8):4181-4188
    [51]Wirth B D, Bringa E M. A kinetic monte carlo model for helium diffusion and clustering in fusion environments. Physica Scripta,2004, T108:80-84
    [52]Gao F, Heinisch H, Kurtz R J. Diffusion of He interstitials in grain boundaries in Fe. Journal of Nuclear Materials,2006,351:133-140
    [53]Heinisch H. L, Gao F, Kurtz R J, et al. Interaction of helium atoms with edge dislocations in Fe. Journal of Nuclear Materials,2006,351:141-148
    [54]李玉璞,王佩璇,刘家瑞等.不锈钢中离子注入He的质子弹性背散射分析.核技术,1989,12(11):653-656
    [55]王引书,陈克勤,张崇宏等.高温下He+辐照316L不锈钢时氦泡的形态及氦的俘获.核技术,1996,19(1):5-8
    [56]张崇宏,孙继光.2.5MeV的He+离子辐照316L不锈钢中氦泡的形核与生长研究.物理学报,1997,46(9):1774-1781
    [57]龙兴贵,翟国良,蒋昌勇等.高温下He+辐照316L不锈钢时氦泡的形态及氦的俘获.核技术,1996,19(9):542-547
    [58]朱新亮.不锈钢中氢脆和氦脆的研究,[中国工程物理研究院硕士论文].绵阳:中国工程物理研究院,1999,30-46
    [59]Yue Yan, Pan Zhengying. Simulation of He behavior in metals with embedded atom method. Chinese Journal of Nuclear Physics,1997,19(1):39-43
    [60]Lasser R. Tritium and Helium-3 in Metals. In:Springer-Verlag. Berlin: Heidelberg,1989,108-135
    [61]Wirth B D, Odette G R, Marian J, et al. Multiscale modeling of radiation damage in Fe-based alloys in the fusion environment. Journal of Nuclear Materials,2004,329-333:103-111
    [62]Kohn W. Nobel Lecture:Electronic structure of matter-wave functions and density functionals. Reviews of Modern Physics,1999,71:1253-1266
    [63]Hohenberg P, Kohn W. Inhomogeneous Electron Gas. Physical Review B,1964, 136(3B):B864-B871
    [64]Kohn W, Sham L J, Self-Consistent Equations Including Exchange and Correlation Effects. Physical Review,1965,140(4A):A1133-A1138.
    [65]Wang Y, Perdew J P. Correlation hole of the spin-polarized electron gas, with exact small-wave-vector and high-density scaling. Physical Review B,1991 44(24):13298-13307.
    [66]Perdew J P, Chevary J A, Vosko S H, et al. Atoms, molecules, solids, and surfaces:applications of the generalized gradient approximation for exchange and correlation. Physical Review B,1992,46(11):6671-6687
    [67]Perdew J P, Burke K, Ernzerhof M. Generalized gradient approximation made simple. Physical Review Letters,1996,77(18):3865-3868
    [68]Hammer B, Hansen L B, Norskov J K. Improved adsorption energetics within density-functional theory using revised Perdew-Burke-Ernzerhof functionals. Physical Review B,1999,59(11):7413-7421
    [69]Vanderbilt D. Soft self-consistent pseudopotentials in generalized eigenvalue formalism. Physical Review B,1990,41(11):7892-7895
    [70]Bloch P E. Projector augmented-wave method. Physical Review B,1994,50(24): 7892-7895
    [71]Kresse G, Joubert D. Form ultrasoft pseudopotentials to the projector augmented-wave method. Physical Review B,1999,59(3):1758-1775
    [72]Kresse G, Furthmuller J. Efficient iterafive schemes for ab initio total-energy calculations using a plane-wave basis set. Physical Review B,1996,54(16): 11169-11186
    [73]Slater J C. An augmented plane wave method for the periodic potential problem. Physical Review B,1953,92(3):603-607
    [74]Krogh Andersen O. Linear methods in band theory. Physical Review B,1975, 12(8):3060-3083
    [75]谢希德.固体能带理论.上海:复旦大学出版,1998,52-57
    [76]Payne M C, Teter M. P, Allan D C, et al. Iterative minimization techniques for ab initio total-energy calculations:molecular dynamics and conjugate gradients. Reviews of Modern Physics,1992,64(4):1045-1097
    [77]Francis G P, Payne M C. Finite basis set corrections to total energy pseudopotential calculations. Journal of Physics:Condensed Matter,1990,2(19): 4395-4404
    [78]Kresse G, Furthmuller J. VASP the GUIDE. http://cms.mpi.univie.ac.at/vasp /vasp/vasp.html
    [79]Monkhorst H J, Pack J D. Special points for Brillouin-zone integrations. Physical Review B,1976,13(12):5188-5192
    [80]Jepsen O, Andersen O K. The electronic structure of h.c.p Yterbium. Solid State Commun,1971,9(20):1763-1767
    [81]Bloch P E, Jepsen O, Andersen O K. Improved tetrahedron method for B rillouin-zone integrations. Physical Review B,1994,49(23):16223-16233
    [82]Fu C L, Ho K M. First-principles calculation of the equilibrium ground state properties of transition metals:A pplications to Nb and Mo. Physical Review B, 1983,28(10):5480-5486
    [83]Methfessel M, Paxton A T. High-precision sampling for Brilouin-zone integration in metals. Physical Review B,1989,40(6):3616-3621
    [84]Veen A van, Konings R J M, Fedorov A V. Helium in inert matrix dispersion fuels. Journal of Nuclear Materials,2003,320(1-2):77-84
    [85]Trinkaus H, Singh B N, Helium accumulation in metals during irradiation where do we stand?. Journal of Nuclear Materials,2003,323(2-3):229-242
    [86]Caturla M J, Diaz de la Rubia T, Fluss M. Modeling microstructure evolution of f.c.c. metals under irradiation in the presence of He. Journal of Nuclear Materials,2003,323(2-3):163-168
    [87]Emig J A, Garza R G, Christensen LD, et al. Helium release from 19-year-old palladium tritide. Journal of Nuclear Materials,1992,187(3):209-214
    [88]Abell G C, Matson L K, Steinmeyer R H, et al. Helium release from aged palladium tritide. Physical Review B,1990,41(2):1220-1223
    [89]Gupta R P, Gupta M. Consequences of helium production from the radioactive decay of tritium on the properties of palladium tritide. Physical Review B,2002, 66(1):014105
    [90]Rajaraman R, Viswanathan B, Gopinathan K P. Critical helium concentration and its effect on bubble growth in palladiums. Solid State Communications, 1994,91(8):621-625
    [91]Rajaraman R, Viswanathan B, Valsakumar M C, et al. Anomalous helium bubble growth in palladium. Physical Review B,1994,50(1):597-600
    [92]Thomas G J, Mintz J M. Helium bubbles in palladium tritide. Journal of Nuclear Materials,1983,116:336-338
    [93]Thiebaut S, Demoment J, Limacher B, et al. Aging effects on palladium pressure-composition isotherms during tritium storage. Journal of Alloys and Compounds,2003,356-357:36-40
    [94]Becquart C S, Domain C. Ab initio calculations about intrinsic point defects and He in W. Nuclear Instruments and Methods in Physics Research B,2007,255: 23-26
    [95]Fu C C, Willaime F. Ab initio study of helium in a-Fe:Dissolution, migration, and clustering with vacancies. Physical Review B,2005,72(6):064117
    [96]Yu Y, Pan X X, Rong Y H. Formation energies of point defects and helium-vacancy clusters in y-Fe. Acta Metallurgica Sinica,2007,43(1):1-5.
    [97]Yang L, Xu Z T, Gao F. Ab initio study of formation, migration and binding properties of helium-vacancy clusters in aluminum. Physica B:Condensed Matter,2008,403(17):2719-2724
    [98]Yang J Y, Ao B Y, Hu W Y, et al. The formation energies and binding energies of helium vacancy cluster:comparative study in Ni and Pd. Journal of Physics: Conference Series,2006,29(1):190.
    [99]Blochl P E. Projector augmented wave method. Physal Review B,1994,50(24): 17953-17979
    [100]Kresse G, Hafner J. Ab initio molecular dynamics for open-shell transition metals. Physcal Review B,1993,48(17):13115-13118
    [101]Heyd J, Stampfl G E. Efficient hybrid density functional calculations in solids: Assessment of the Heyd-Scuseria-Ernzerhof screened Coulomb hybrid functional. Journal of Chemical Physics,2004,121(3):1187-1193
    [102]Paier J, Marsman M, Hummer K, et al. Screened hybrid density functionals applied to solids. Journal of Chemical Physics,2006,124(15):154709-154722
    [103]Da Silva J L F, Stampfl C, Scheffler M. Converged properties of clean metal surfaces by all-electron first-principles calculations. Surface Science,2006, 600(3):703-715
    [104]基泰尔.固体物理导论.项金钟,吴兴慧.第八版.北京:化学工业出版社,2005,15
    [105]杨莉.金属中氦行为的计算机理论模拟:[电子科技大学博士学位论文].成都:电子科技大学,2007,82-94
    [106]夏吉星.He原子在Ni、Pd金属中行为的原子模拟研究:[湖南大学硕士学位论文].长沙:湖南大学,2007,26-30
    [107]Glyde H R, Mayne K I. Helium diffusion in aluminum. Philosophical Magazine, 1965,12(8):997-1003
    [108]Morishita K, Sugano R, Wirth B D, et al. Thermal stability of helium-vacancy clusters in iron. Nuclear Instruments and Methods in Physics Research Section B.2003,202():76-81
    [109]彭述明,周晓松.金属氚化物中氦行为的研究现状与发展趋势.原子能科学技术,2009,43(增刊):43-53
    [110]Huber K P, Herzberg G. Molecular Structure and Molecular Spectra IV: Constants of Diatomic Molecules. New York:Van Rostrand-Reinhold,1979, 123-125
    [111]Kresse G, Hafner J. First-principles study of the adsorption of atomic H on Ni (111), (100) and (110). Surface Science,2000,459(3):287-302
    [112]Wang Yan, Sun S N, Chou M Y. Total-energy study of hydrogen ordering in PdHx(0

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700