脂肪与骨髓来源的间充质干细胞诱导分化为神经细胞的比较
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:脂肪间充质干细胞(Adipose-derived stem cells, ADSCs)和骨髓间充质干细胞(Bone marrowmesenchymal stem cells, BMSCs)均具有分化为神经细胞的潜能。探讨ADSCs与BMSCs的取材、原代及传代培养、干细胞表型的鉴定,比较其分离,培养及扩增的不同点,比较ADSCs与BMSCs在分化中的最佳诱导时间,最佳诱导剂剂量,以及诱导阳性率的不同。探讨脂肪干细胞和骨髓间充质干细胞在体外培养和诱导分化为神经细胞方面的差异,选择最优的种子细胞,为中枢神经统统疾病的治疗提供前提和保障。
     方法:ADSCs提取自山西医科大学生理教研室提供的vista大鼠皮下脂肪组织,BMSCs提取自同一只大鼠四肢长骨骨髓,体外分离、培养、扩增。流式细胞仪法检测干细胞表面CD34, CD45, CD90,CD105的表达。MTT法检测两种来源的干细胞生长情况,绘制生长曲线图。使用5 mmol/LBME+2% DMSO,5ng/mL、20ng/mL、40ng/mLbFGF的无血清培养基对传至3-5代的干细胞进行诱导分化,无血清的DMEM培养基做空白对照,使用倒置显微镜动态观察诱导前后及诱导过程中细胞的形态学变化。通过免疫细胞化学法检测分化后细胞的NSE、MAP2表达情况,证明ADSCs分化的结果并计算阳性率。
     结果:原代脂肪干细胞呈单细胞悬浮状态,3h后即开始贴壁,12-24h大量贴壁,24h第一次换液后贴壁细胞形态上和BMSCs类似,8-10d后可1:3传代,此后每2-3天可长满一代,传代细胞逐渐表现为折光性较强的均一梭状细胞并呈漩涡状生长,ADSCs可传20代次以上,增长非常迅速。原代骨髓干细胞接种后可见大量红细胞,48h半量换液后可见少量细胞开始贴壁,72h贴壁细胞开始增多呈纺锤状、圆形或椭圆形,折光性较强,5-6天左右全量换液可见散在的贴壁细胞呈集落状生长,2周左右形成较大的集落,并开始相互融合,达到传代要求,传代细胞生长速度较传代前加快,但仍远低于ADSCs,7-8代以后生长速度逐渐减慢,表现出衰老现象。细胞传代接种后第3天左右进入指数生长期,ADSCs第6天达到生长峰值,约7天后进入平台期。BMSCs第8天达到生长峰值,9天后进入平台期。流式细胞术检测细胞表面标志CD90(+), CD105(+),CD34(-), CD45(-),低浓度bFGF诱导阳性率极低,中,高浓度组成熟神经细胞表达的NSE, MAP2阳性。BMSCs最佳诱导浓度20ng/mL, ADSCs最佳诱导浓度40ng/mL, bFGF优于化学诱导剂,ADSCs诱导阳性率高于BMSCs。
     结论:
     1、ADSCs与BMSCs都具有多向分化潜能且表达相似的表面标志,他们都可以定向诱导分化为神经细胞。
     2、ADSCs比BMSCs来源广泛,原代及传代培养的时间短,增殖能力更强,并且更易培养,不易衰老。
     3、一定诱导条件下,ADSCs诱导阳性率高于BMSCs,脂肪组织是一种新的间充质干细胞来源。
Objective:Both the ADSCs and BMSCs have the potential of differentiating into neural cells. Investigate the draw materials、primary culture and serial subcultivation、the identification of stem cells phenotypes between ADSCs and BMSCs, and compare their difference of isolation cultruration、proliferation and the best induction time、the best induction dose、the induction positive rate in differentiation. To investigate the difference between the ADSCs and BMSCs in vitro cultivation and differentiation into Neural cells. Both ADSCs and BMSCs have the potential of differentiating into neural cells. We will choose the best seed cell, meantime,to apply the guarantee to curing the central nervous system diseases.
     Methods:This study was carried out in the key lab of biochemistry and molecular biology, Shan xi medical university. ADSCs was extracted from subcutaneous adipose tissue of vista rat provided by physiology department. BMSCs was extracted from the bone marrow of the same rat's limbs, which was isolated, cultured and proliferation in vitro.the expression of CD34,CD44, CD45, CD90 and CD 105 on the surface of stem cells was detected by flow cytometry. The growth of the two cells was evaluated by MTT assay graphed in growth curve. The stem cells was induced into three or five passage by 5 mmol/LBME and 2%DMSO or different concentrations of bFGF(5ng/mL、20ng/mL、40ng/mL). The changes of the cells before and after induced were observed by inverted microscope and immunocytochemistry. The expression of NSE、MAP2 on the surface of cells after differation were observed by immunocytochemical method. Demonstrate the differentiative result of ADSCs and to calculate their differentiative rate.
     Results:The growth of ADSCs was faster than BMSCs. their cell surface marker was CD44(+),CD90(+), CD105(+),CD34(-),CD45(-),the induced rate of low concentration bFGF was significant lower. The mature neurocyte with high concentration was NSE、MAP2 positive. The optimum induced concentration of BMSCs was 20ng/ml, while the ADSCs was 40ng/ml. bFGF was superior to the general chemical inducers. The positive induced rate of ADSCs excelled BMSCs.
     Conclusion:
     1. Both ADSCs and BMSCs have multipotentiality. and their surface marker were similar. They can be induced differentiation into neurocyte.
     2. The source of ADSCs was more extensive than BMSCs, the ADSCs have shorter incubation time、more optimum multiplication capacity. They can be cultured easily and they are not to be aged.
     3. In the special induced conditions, the positive induced ratio of ADSCs was higher than BMSCs. The adipose tissue was a new source of Mesenchymal Stem Cells
引文
1. Reynolds BA Tetzlaff W,Weiss S.A multipotent EGF-responsive striatal embryonic progenitor cell produces neurons and astrocytes[J].J Neurosci,1992,12(11):4546-4574.
    2. Friedenstein AJ,Piatetzky-Shapiro Ⅱ,Petrakova KV. Osteogenesis in transplants of bone marrow cells[J].JEm-bryol Exp Morphol,1966,16(3):381-390
    3. Pittenger MF, Maekya AM, Beek SC, et al.Multilineage Potential of adult human mesenehymal stem cell[J].Science,1999,284:143-147.
    4. Bianco P, Robey PGMarrow stromal stem cells[J].J Clin Invest,2000,15(12):1663-1668.
    5. Petersen B E, Bowen WC.Bone marrow as a source of hepatic ovalcells[J].Science, 1999,284:1168-1170.
    6. Makino S, Fukuda K, Migoshi S, et al.Cardiomyocyles can be generated from marrow stromal cells in vito [J].JClin Invest,1999,103(5):697-705.
    7. Pereira R, O'Hara MD, Halford KW, et al.Cultured adhenreng cells from marrow can sevve as long-lasting Precursor cells for bone and lung in irradiated mice[J].Proc Natl Acad SciUSA,1995,92:4857-4861.
    8. Erices A, Conget P, MinguellJJ.Mesenchymal Progenitor Cells in human umbilical cord blood[J].Br J Haematol,2000,109:235-242.
    9. Azizi SA, Stokes D, Augelli BJ, et al.Engraftment and migration of human bone marrow stromal cells implanted in the brains of albino rats-similarities to astrocyte grafts.J Proc Natl Acad Sci USA,1998,95(7):3908-3913.
    10. Tamir A,Petrocelli T,Stetler K, et al. Stem cell factor inhibits erythroid differentiation by modulating the activity of G1-cyclin-dependent kinase complexes:a role for p27 in erythroid differentiation coupled G1 arrest [J].Cell Growth Differ,2000,11(5):269-277.
    11.江逊,崔鹏程,陈文弦,等.人骨髓间充质干细胞体外培养及生物特性的观察[J].第四军医大学学报,2003,24(4):351-353.
    12.袁维,路磊,刘宏志.成鼠骨髓间充质干细胞分化为神经元样细胞的研究[J].中国医科大学学报,2004,33(2):121-122.
    13. Kim S, Honmou O, Kato K, et al.NeuRal differentiation potential of peripheRal blood-and bone-marrow-derived precursor cells[J]. BRain Res.2006,1123:27-33.
    14. Crigler L, Robey RC, Asawachaicharn A, et al.Human mesenchymal stem cell subpopulations express a variety of neuro-regulatory molecules and promote neuronal cell survival and neuritogenesis[J]. Exp Neurol.2006,198:54-64.
    15. Lu P, Jones LL, Tuszynski MH. et al.BDNF-expressing marrow stromal cells support extensive axonal growth at sites of spinal cord injury[J]. Exp Neurol. 2005,191:344-60
    16. Li Y, Chen J, Chen XG,et al. Human marrow stromal cell therapy for stroke in rat [J].Neurology,2002,59:514
    17.钟池,钟春政,罗玉敏,等.骨髓基质细胞静脉移植治疗大鼠短暂性局灶性脑缺血[J].中华神经医学杂志,2004,3(2):89
    18. Chen J, Li Y, Wang L et al.Therapeutic benefit of intravenous administration of bone marrow stromal cells after cerebral ischemic in rats.Stroke,2001, 32(4):1005-1011.
    19. Zhao LR, Duan WM, Reyes M, et al. Human bone marrow stem cells exhibit neural phenoltypes and ameliorate neurological deficits after grafting into the ischemic brain of rats[J].Exp Neurol,2002,174:11
    20. Deryugina El, Muller-Sieberg CE. Stromal cells in long-term cultures:keys to the elucidateion of hematopoietic development [J]. Crit Rev Immunol,1993,13:115
    21. Lee J, Duan W, Watt son MP. Evidence that brain-derived neurot rophic factor is required for basal neurogenesis and mediates, in part, the enhancement of neurogenesis by dietary restriction in the hippocampuss of adult mice[J] J Neurochem,2002,82:1367
    22. Kawabe T, Wen TC, Matsuda S, et al. Platelet-derived growth factor prevents ischemia-induced neuronal injuries in vivo [J]. Neurosci Res,1997,23:335
    23. Zhang YM, Hartzell C,Narlow M,et al.Stem cell-derived cardiomyocytes demonstrate arrhythmic potential [J]. Circulation,2002,106(10):1294-1299.
    24. Jin K,Minami M,Lan JQ,et al.Neurogenesis in dentate subgranular zone and rostral subventricular zone after focal cerebral ischemia in the rat[J].Proc Natl Acad Sci USA,2001,98(8):4710-4715.
    25. Arvidsson A, Collin T, Kirik D, et al. Neuronal replacement from endogenous precursors in the adult brain after stroke[J]. Nat Med,2002,8:963
    26.刘鹏翀,陆世铎,黄娅林,等.成年鼠缺血性脑损伤诱导nestin的表达[J].生理学报,2002,54:294
    27. Maric D, Maric I, Chang YH, et al. Prospective cell sorting of embryonic rat neural stem cells and neuronal and glial progenitors reveals selective effects of basic fibroblast growth factor and epidermal growth factor onself-renewal and differentiation [J]. J Neurosci,2003,23:240
    28. Schumm MA, Castellanos DA, Frydel BR, et al. Enhanced viability and neuronal differentiation of neural progenitors by chromaffin cell co-culture [J]. Dev Brain Res,2002,137:115
    29. Chen J,Li Y,Katakowski M,et al.Intravenous bone marrow stromal cell therapy reduces apoptosis and promotes endogenous cell proliferation after stroke in female rat[J].J Neurosci Res,2003,73(6):778-786.
    30. Back SA, Han BH, Luo NL, et al, Selective vulnerability of late oligodendrocyte progenitors to hypoxia-ischemia[J]. J Neurosci,2002,22:455
    31.Kruger GM, Morrison SJ. Brain repair by endogenous progenitors[J]. Cell, 2002,110:399
    32. Ransohoff RM, Howe CL, Rodriguez M. Growth factor treatment of demyelinating disease:at last, a leap into the light [J]. Trends Immunol,2002,23:512
    33.丁鹏,冯忠堂,王廷华,等.骨髓基质细胞移植对大鼠全横断性脊髓损伤修复的影响[J].解剖学报,2004,3:237
    34. Palmer TD,Willhoite AR,Gage FH.Vascular niche for adult hippocampal neurogenesis[J].J Comp Neurol,2000,425(4):479-494.
    35. Chen J,Zhang ZQLi Y,et al.Intravenous administration of human bone marrow stromal cells induces angiogenesis in the ischemic boundary zone after stroke in rats[J].Circ Res,2003,92(6):692-699.
    36. Hess DC,Hill WD,Martin-Studdard A,et al.Bone marrow as a source of endothelial cells and NeuN-expressing cells after stroke[J]. Stroke,2002,33(5):1362-1368.
    37. Zhang ZG,Zhang L,Jiang Q,et al.Bone marrow-derived endothelial progenitor cells participate in cerebral neovascularization after focal cerebral ischemia in the adult mouse[J].Circ Res,2002,90(3):284-288.
    1. Butler DL, Goldstein SA, Guilak F. Functional tissue engineering:therole of biomechanics. J Biomech Eng.2000; 122:570-575.
    2. Gimble JM. Adipose tissue-derived therapeutics. Expert Opin Biol Ther.2003;3:705-713.
    3. Bray GA. Medical consequences of obesity. J Clin Endocrinol Metab.2004;89:2583-2589.
    4. Katz AJ, Llull R, Hedrick MH, Futrell JW. Emerging approaches to thetissue engineering of fat. Clin Plast Surg.1999;26:587-603.
    5. Kaplan FS, Hahn GV, Zasloff MA. Heterotopic ossification:two rareforms and what they can teach us. J Am Acad Orthop Surg.1994;2:288-296.
    6. Eddy MC, Jan De Beur SM, Yandow SM, McAlister WH, Shore EM,Kaplan FS, Whyte MP, Levine MA. Deficiency of the alpha-subunit ofthe stimulatory g protein and severe extraskeletal ossification. J BoneMiner Res.2000; 15:2074-2083.
    7. Yeh GL, Mathur S, Wivel A, Li M, Gannon FH, Ulied A, Audi L,Olmstead EA, Kaplan FS, Shore EM. Gnasl mutation and cbfal misexpressionin a child with severe congenital platelike osteoma cutis. J BoneMiner Res.2000; 15:2063-2073.
    8. Juppner H. The genetic basis of progressive osseous heteroplasia.N Engl J Med. 2002;346:128-130.
    9. Shore EM, Glaser DL, Gannon FH. Osteogenic induction in hereditarydisorders of heterotopic ossification. Clin Orthop Relat Res.2000;374:303-316.
    10. Shore EM, Ahn J, Jan de Beur S, Li M, Xu M, Gardner RJ, Zasloff MA,Whyte MP, Levine MA, Kaplan FS. Paternally inherited inactivatingmutations of the gnasl gene in progressive osseous heteroplasia. N Engl J Med.2002;346:99-106.
    11. Chan I, Hamada T, Hardman C, McGrath JA, Child FJ. Progressiveosseous heteroplasia resulting from a new mutation in the gnasl gene.Clin Exp Dermatol. 2004;29:77-80.
    12. Millington GW. Genomic imprinting and dermatological disease. ClinExp Dermatol. 2006;31:681-688.
    13. Millis K, Weybright P, Campbell N, Fletcher JA, Fletcher CD, CoryDG, Singer S. Classification of human liposarcoma and lipoma using exvivo proton nmr spectroscopy. Magn Reson Med.1999;41:257-267.
    14. Rosen ED, Spiegelman BM. Molecular regulation of adipogenesis. AnnuRev Cell Dev Biol.2000; 16:145-171.
    15. Tontonoz P, Singer S, Forman BM, Sarraf P, Fletcher JA, Fletcher CD,Brun RP, Mueller E, Altiok S, Oppenheim H, Evans RM, SpiegelmanBM. Terminal differentiation of human liposarcoma cells induced byligands for peroxisome proliferator-activated receptor gamma and theretinoid x receptor. Proc Natl Acad Sci USA.1997;94:237-241.
    16. Demetri GD, Fletcher CD, Mueller E, Sarraf P, Naujoks R, Campbell N,Spiegelman BM, Singer S. Induction of solid tumor differentiation bythe peroxisome proliferator-activated receptor-gamma ligand troglitazone in patients with liposarcoma. Proc Natl Acad Sci USA.1999;96:3951-3956.
    17. Debrock G, Vanhentenrijk V, Sciot R, Debiec-Rychter M, Oyen R, VanOosterom A. A phase Ⅱ trial with rosiglitazone in liposarcoma patients.Br J Cancer.2003;89:1409-1412.
    18. Cornelius P, MacDougald OA, Lane MD. Regulation of adipocytedevelopment. Annu Rev Nutr.1994;14:99-129.
    19. Neese RA, Misell LM, Turner S, Chu A, Kim J, Cesar D, Hoh R, AnteloF, Strawford A, McCune JM, Christiansen M, Hellerstein MK. Measurementin vivo of proliferation rates of slow turnover cells by 2h2olabeling of the deoxyribose moiety of DNA. Proc Natl Acad Sci U S A.2002;99:15345-15350.
    20. Strawford A, Antelo F, Christiansen M, Hellerstein MK. Adipose tissuetriglyceride turnover, de novo lipogeriesis, and cell proliferation inhumans measured with 2h2o. Am J Physiol Endocrinol Metab.2004;286:E577-E588.
    21. Cone RD. The central melanocortin system and energy homeostasis.Trends Endocrinol Metab.1999;10:211-216.
    22. Faust IM, Johnson PR, Hirsch J. Adipose tissue regeneration following lipectomy. Science.1977;197:391-393.
    23. Martin RJ, Hausman GJ, Hausman DB. Regulation of adipose cell development in utero. Proc Soc Exp Biol Med.1998;219:200-210.
    24. Nnodim JO. Development of adipose tissues. Anat Rec.1987;219:331-337.
    25. Wright JT, Hausman GJ. Adipose tissue development in the fetal pig examined using monoclonal antibodies. J Anim Sci.1990;68:1170-1175.
    26. Wright JT, Hausman GJ. Monoclonal antibodies against cell surfaceantigens expressed during porcine adipocyte differentiation. Int J Obes.1990;14:395-409.
    27. Castro-Malaspina H, Gay RE, Resnick G, Kapoor N, Meyers P,Chiarieri D, McKenzie S, Broxmeyer HE, Moore MA. Characterization of human bone marrow fibroblast colony-forming cells (cfu-f) and theirprogeny. Blood.1980;56:289-301.
    28. Crossno JT, Majka SM, Graxia T, Gill RG, Klemm DJ. Rosiglitazonepromotes development of a novel adipocyte population from bonemarrow-derived criculating progenitor cells. J Clin Invest.2006; 116:3220-3229.
    29. Hausman GJ, Hausman DB. Search for the preadipocyte progenitor cell.J Clin Invest.2006; 116:3103-3107.
    30. Prunet-Marcassus B, Cousin B, Caton D, Andre M, Penicaud L,Casteilla L. From heterogeneity to plasticity in adipose tissues:sitespecific differences. Exp Cell Res. 2006;312:727-736.
    30a. Schipper B, Marra KG, Rubin JP. Regional anatomic and age effects on cell function of human adipose-derived stem cells. Fourth Annual International Fat Applied Technology Society, October 21-24,2006, Baton Rouge, La. Abstract.
    31. Van Harmelen V, Rohrig K, Hauner H. Comparison of proliferation and differentiation capacity of human adipocyte precursor cells from the omental and subcutaneous adipose tissue depot of obese subjects. Metabolism.2004;53:632-637.
    32. Rodbell M. Metabolism of isolated fat cells. Ⅱ. The similar effects of phospholipase c (clostridium perfringens alpha toxin) and of insulin on glucose and amino acid metabolism. J Biol Chem.1966;241:130-139.
    33. Rodbell M. The metabolism of isolated fat cells. Ⅳ. Regulation of release of protein by lipolytic hormones and insulin. J Biol Chem.1966;241:3909-3917.
    34. Rodbell M, Jones AB. Metabolism of isolated fat cells.3. The similar inhibitory action of phospholipase c (clostridium perfringens alphatoxin) and of insulin on lipolysis stimulated by lipolytic hormones and theophylline. J Biol Chem. 1966;241:140-142.
    35. Van RL, Bayliss CE, Roncari DA. Cytological and enzymological characterization of adult human adipocyte precursors in culture. J ClinInvest.1976;58:699-704.
    36. Bjorntorp P, Karlsson M, Pertoft H, Pettersson P, Sjostrom L, Smith U. Isolation and characterization of cells from rat adipose tissue developing into adipocytes. J Lipid Res.1978;19:316-324.
    37. Deslex S, Negrel R, Vannier C, Etienne J, Ailhaud G Differentiation of human adipocyte precursors in a chemically defined serum-free medium. Int J Obes. 1987;11:19-27.
    38. Hauner H, Entenmann G, Wabitsch M, Gaillard D, Ailhaud G, Negrel R, Pfeiffer EF. Promoting effect of glucocorticoids on the differentiation of human adipocyte precursor cells cultured in a chemically defined medium. J Clin Invest. 1989;84:1663-1670.
    39. Hauner H, Wabitsch M, Pfeiffer EF. Differentiation of adipocyte precursor cells from obese and nonobese adult women and from different adipose tissue sites. Horm Metab Res Suppl.1988; 19:35-39.
    40. Illouz YG Body contouring by lipolysis:a 5-year experience with over 3000 cases. Plast Reconstr Surg.1983;72:591-597.
    41. Moore JH Jr, Kolaczynski JW, Morales LM, Considine RV, Pietrzkowski Z, Noto PF, Caro JF. Viability of fat obtained by syringe suction lipectomy:effects of local anesthesia with lidocaine. Aesthetic Plast Surg.1995;19:335-339.
    42. Lalikos JF, Li YQ, Roth TP, Doyle JW, Matory WE, Lawrence WT. Biochemical assessment of cellular damage after adipocyte harvest.J Surg Res.1997;70:95-100.
    43. Oedayrajsingh-Varma MJ, van Ham SM, Knippenberg M, Helder MN,Klein-Nulend J, Schouten TE, Ritt MJ, van Milligen FJ. Adipose tissuederived mesenchymal stem cell yield and growth characteristics are affected by the tissue-harvesting procedure. Cytotherapy.2006;8:166-177.
    44. Yoshimura K, Shigeura T, Matsumoto D, Sato T, Takaki Y, Aiba-Kojima E, Sato K, Inoue K, Nagase T, Koshima I, Gonda K. Characterizationof freshly isolated and cultured cells derived from the fatty and fluid portions of liposuction aspirates. J Cell Physiol.2006;208:64-76.
    45. Kurita MMD, Shigeura T, Sato K, Gonda K, Harii K, Yoshimura K.Influences of centrifugation on cells and tissues in liposuction aspirates:optimized centrifugation for lipotransfer and cell isolation. PlastReconstr Surg. In press.
    46. Katz AJ, Hedrick MH, Llull R, Futrell JW. A novel device for the simple and efficient refinement of liposuctioned tissue. Plast Reconstr Surg.2001;107:595-597.
    47. Young C, Jarrell BE, Hoying JB, Williams SK. A porcine model for adipose tissue-derived endothelial cell transplantation. Cell Transplant.1992; 1:293-298.
    48. Williams SK, Wang TF, Castrillo R, Jarrell BE. Liposuction-derived human fat used for vascular graft sodding contains endothelial cells and not mesothelial cells as the major cell type. J Vasc Surg.1994;19:916-923.
    49. Stashower M, Smith K, Williams J, Skelton H. Stromal progenitor cells present within liposuction and reduction abdominoplasty fat for autologous transfer to aged skin. Dermatol Surg.1999;25:945-949.
    50. Gronthos S, Franklin DM, Leddy HA, Robey PG, Storms RW, GimbleJM. Surface protein characterization of human adipose tissue-derived stromal cells. J Cell Physiol.2001;189:54-63.
    51. Aust L, Devlin B, Foster SJ, Halvorsen YD, Hicok K, du Laney T, Sen A, Willingmyre GD, Gimble JM. Yield of human adipose-derived adult stem cells from liposuction aspirates. Cytotherapy.2004;6:7-14.
    52. Zuk PA, Zhu M, Ashjian P, De Ugarte DA, Huang JI, Mizuno H,Alfonso ZC, Fraser JK, Benhaim P, Hedrick MH. Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell.2002; 13:4279-4295.
    53. Safford KM, Rice HE. Stem cell therapy for neurologic disorders:therapeutic potential of adipose-derived stem cells. Curr Drug Targets.2005;6:57-62.
    54. Case J, Horvath TL, Howell JC, Yoder MC, March KL, Srour EF.Clonal multilineage differentiation of murine common pluripotent stem cells isolated from skeletal muscle and adipose stromal cells. Ann N YAcad Sci.2005; 1044:183-200.
    55. Katz AJ, Tholpady A, Tholpady SS, Shang H, Ogle RC. Cell surface and transcriptional characterization of human adipose-derived adherent stromal (hadas) cells. Stem Cells.2005;23:412-423.
    56. Mitchell JB, McIntosh K, Zvonic S, Garrett S, Floyd ZE, Kloster A, Di Halvorsen Y, Storms RW, Goh B, Kilroy G, Wu X, Gimble JM. The immunophenotype of human adipose derived cells:temporal changes in stromal-and stem cell-associated markers. Stem Cells.2006;24:376-385.
    57. McIntosh K, Zvonic S, Garrett S, Mitchell JB, Floyd ZE, Hammill L,Kloster A, Halvorsen YD, Ting JP, Storms RW, Goh B, Kilroy G, WuX, Gimble JM. The immunogenicity of human adipose derived cells:temporal changes in vitro. Stem Cells.2006;24:1245-1253.
    58. Nakagami H, Maeda K, Morishita R, Iguchi S, Nishikawa T, Takami Y,Kikuchi Y, Saito Y, Tamai K, Ogihara T, Kaneda Y. Novel autologous cell therapy in ischemic limb disease through growth factor secretion by cultured adipose tissue-derived stromal cells. Arterioscler Thromb Vasc Biol.2005;25:2542-2547.
    59. Pittenger MF, Mackay AM, Beck SC, Jaiswal RK, Douglas R, Mosca JD, Moorman MA, Simonetti DW, Craig S, Marshak DR. Multilineage potential of adult human mesenchymal stem cells. Science.1999;284:143-147.
    60. Young HE, Steele TA, Bray RA, Detmer K, Blake LW, Lucas PW,Black AC Jr. Human pluripotent and progenitor cells display cell surface cluster differentiation markers cd10, cd13, cd56, and mhc class-i. ProcSoc Exp Biol Med. 1999;221:63-71.
    61. Ryden M, Dicker A, Gotherstrom C, Astrom G, Tammik C, Arner P, LeBlanc K. Functional characterization of human mesenchymal stem cellderived adipocytes. Biochem Biophys Res Commun.2003;311:391-397.
    62. Dicker A, Le Blanc K, Astrom G, van Harmelen V, Gotherstrom C,Blomqvist L, Arner P, Ryden M. Functional studies of mesenchymal stem cells derived from adult human adipose tissue. Exp Cell Res.2005;308:283-290.
    63. Simmons PJ, Torok-Storb B. Identification of stromal cell precursors in human bone marrow by a novel monoclonal antibody, stro-1. Blood.1991;78:55-62.
    64. Hutley LJ, Herington AC, Shurety W, Cheung C, Vesey DA, Cameron DP, Prins JB. Human adipose tissue endothelial cells promote preadipocyte proliferation. Am J Physiol Endocrinol Metab.2001;281:E1037-E1044.
    65. Miranville A, Heeschen C, Sengenes C, Curat CA, Busse R, Bouloumie A. Improvement of postnatal neovascularization by human adiposetissue-derived stem cells. Circulation.2004;110:349-355.
    66. Sengenes C, Lolmede K, Zakaroff-Girard A, Busse R, Bouloumie A. Preadipocytes in the human subcutaneous adipose tissue display distinct features from the adult mesenchymal and hematopoietic stem cells.J Cell Physiol.2005;205:114-122.
    67. Nakagami H, Morishita R, Maeda K, Kikuchi Y, Ogihara T, Kaneda Y.Adipose tissue-derived stromal cells as a novel option for regenerative cell therapy. J Atheroscler Thromb.2006; 13:77-81.
    68. Cao Y, Sun Z, Liao L, Meng Y, Han Q, Zhao RC. Human adipose tissue-derived stem cells differentiate into endothelial cells in vitro and improve postnatal neovascularization in vivo. Biochem Biophys Res Commun.2005;332:370-379.
    69. Winter A, Breit S, Parsch D, Benz K, Steck E, Hauner H, Weber RM, Ewerbeck V, Richter W. Cartilage-like gene expression in differentiated human stem cell spheroids:a comparison of bone marrow-derived and adipose tissue-derived stromal cells. Arthritis Rheum.2003;48:418-429.
    70. Liu TM, Martina M, Hutmacher DW, Hui JH, Lee EH, Lim B. Identification of common pathways mediating differentiation of bone marrow and adipose tissue-derived human mesenchymal stem cells into three mesenchymal lineages. Stem Cells.2007;25:750-760.
    71. Fraser JK, Wulur I, Alfonso Z, Hedrick MH. Fat tissue:an underappreciated source of stem cells for biotechnology. Trends Biotechnol.2006;24:150-154.
    72. Izadpanah R, Trygg C, Patel B, Kriedt C, Dufour J, Gimble JM, Bunnell BA. Biologic properties of mesenchymal stem cells derived from bone marrow and adipose tissue. J Cell Biochem.2006;99:1286-1297.
    73. Kratchmarova I, Kalume DE, Blagoev B, Scherer PE, Podtelejnikov AV, Molina H, Bickel PE, Andersen JS, Fernandez MM, Bunkenborg J,Roepstorff P, Kristiansen K, Lodish HF, Mann M, Pandey A. A proteomic approach for identification of secreted proteins during the differentiationof 3t3-11 preadipocytes to adipocytes. Mol Cell Proteomics.2002; 1:213-222.
    74. Delany J, Floyd ZE, Zvonic S, Smith A, Gravois A, Reiners E, Wu X,Kilroy G, Lefevre M, Gimble JM. Proteomic analysis of primary cultures of human adipose derived stem cells:modulation by adipogenesis. Mol Cell Proteomics. 2005;4:731-740.
    75. Celis JE, Moreira JM, Cabezon T, Gromov P, Friis E, Rank F, Gromova I. Identification of extracellular and intracellular signaling components of the mammary adipose tissue and its interstitial fluid in high risk breast cancer patients: toward dissecting the molecular circuitry of epithelialadipocyte stromal cell interactions. Mol Cell Proteomics.2005;4:492-522.
    76. Welsh GI, Griffiths MR, Webster KJ, Page MJ, Tavare JM. Proteome analysis of adipogenesis. Proteomics.2004;4:1042-1051.
    77. Chen X, Cushman SW, Pannell LK, Hess S. Quantitative proteomic analysis of the secretory proteins from rat adipose cells using a 2D liquid chromatography-ms/ms approach. J Proteome Res.2005;4:570-577.
    78. Zvonic S, Lefevre M, Kilroy G, Floyd ZE, Delany JP, Kheterpal I, Gravois A, Dow R, White A, Wu X, Gimble JM. Secretome of primary cultures of human adipose-derived stem cells:modulation of serpins by adipogenesis. Mol Cell Proteomics.2007;6:18-28.
    79. Hausman GJ, Poulos SP, Richardson RL, Barb CR, Andacht T, Kirk HC, Mynatt RL. Secreted proteins and genes in fetal and neonatal pig adipose tissue and stromal-vascular cells. J Anim Sci.2006;84:1666-1681.
    80. Wang D, Park JS, Chu JS, Krakowski A, Luo K, Chen DJ, Li S. Proteomic profiling of bone marrow mesenchymal stem cells upon transforming growth factor betal stimulation. J Biol Chem.2004;279:43725-43734.
    81. Sun HJ BY, Choi YR, Shim JH, Han SH, Lee YW. A proteomic analysis during serial subculture and osteogenic differentiation of human mesenchymal stem cell. J Orthop Res.2006;24:2059-2071.
    82. Estes BT, Wu AW, Storms RW, Guilak F. Extended passaging, but not aldehyde dehydrogenase activity, increases the chondrogenic potential of human adipose-derived adult stem cells. J Cell.Physiol.2006;209:987-995.
    83. Rubio D, Garcia-Castro J, Martin MC, de la Fuente R, Cigudosa JC, Lloyd AC, Bernad A. Spontaneous human adult stem cell transformation.Cancer Res. 2005;65:3035-3039.
    84. Spees JL, Olson SD, Whitney MJ, Prockop DJ. Mitochondrial transfer between cells can rescue aerobic respiration. Proc Natl Acad Sci U S A.2006;103:1283-1288.
    85. Puissant B, Barreau C, Bourin P, Clavel C, Corre J, Bousquet C,Taureau C, Cousin B, Abbal M, Laharrague P, Penicaud L, Casteilla L,Blancher A. Immunomodulatory effect of human adipose tissue-derivedadult stem cells:comparison with bone marrow mesenchymal stem cells.Br J Haematol.2005;129:118-129.
    86. Cui L, Yin S, Yang P, Liu B, Zhang Y, Liu W, Cao YL. [Human adipose derived stem cells suppress lymphocyte proliferation induced by cellular or nonspecific mitogenic stimuli]. Zhonghua Yi Xue Za Zhi.2005;85:1890-1894.
    87. Bartholomew A, Sturgeon C, Siatskas M, Ferrer K, McIntosh K, Patil S,Hardy W, Devine S, Ucker D, Deans R, Moseley A, Hoffman R.Mesenchymal stem cells suppress lymphocyte proliferation in vitro and prolong skin graft survival in vivo. Exp Hematol.2002;30:42-48.
    87a. National Institutes of Health, National Heart, Lung, and Blood Institute. Fact Book Fiscal Year 2005. Bethesda, Md:National Institutes of Health; 2006. Available at: http://www.nhlbi.nih.gov/about/03factbk.pdf.
    88. Parker AM, Katz AJ. Adipose-derived stem cells for the regeneration of damaged tissues. Expert Opin Biol Ther.2006;6:567-578.
    89. Rangappa S, Entwistle JW, Wechsler AS, Kresh JY. Cardiomyocytemediated contact programs human mesenchymal stem cells to express cardiogenic phenotype. J Thorac Cardiovasc Surg.2003; 126:124-132.
    90. Gaustad KG, Boquest AC, Anderson BE, Gerdes AM, Collas P. Differentiation of human adipose tissue stem cells using extracts of rat cardiomyocytes. Biochem Biophys Res Commun.2004;314:420-427.
    91. Planat-Benard V, Menard C, Andre M, Puceat M, Perez A, Garcia-Verdugo JM, Penicaud L, Casteilla L. Spontaneous cardiomyocyte differentiation from adipose tissue stroma cells. Circ Res.2004;94:223-229.
    92. Strem BM, Zhu M, Alfonso Z, Daniels EJ, Schreiber R, Beygui R,MacLellan WR, Hedrick MH, Fraser JK. Expression of cardiomyocytic markers on adipose tissue-derived cells in a murine model of acute myocardial injury. Cytotherapy. 2005;7:282-291.
    93. Katz AJ, Zang Z, Shang H, Chamberlain AT, Berr SS, Roy RJ, Khurgel M, Epstein FH, French BA. Serial MRI assessment of human adiposederived stem cells (HASCS) in a murine model of reperfused myocardial infarction. Adipocytes. In press.
    94. Yamada Y, Wang XD, Yokoyama S, Fukuda N, Takakura N. Cardiac progenitor cells in brown adipose tissue repaired damaged myocardium. Biochem Biophys Res Commun.2006;342:662-670.
    95. Miyahara Y, Nagaya N, Kataoka M, Yanagawa B, Tanaka K, Hao H,Ishino K, Ishida H, Shimizu T, Kangawa K, Sano S, Okano T, Kitamura S, Mori H. Monolayered mesenchymal stem cells repair scarred myocardium after myocardial infarction. Nat Med.2006; 12:459-465.
    96. Song YH, Gehmert S, Sadat S, Pinkernell K, Bai X, Matthias N, Alt E.VEGF is critical for spontaneous differentiation of stem cells into cardiomyocytes. Biochem Biophys Res Commun.2007;354:999-1003.
    97. Hausman GJ, Richardson RL. Adipose tissue angiogenesis. J Anim Sci.2004;82:925-934.
    98. Planat-Benard V, Silvestre JS, Cousin B, Andre M, Nibbelink M,Tamarat R, Clergue M, Manneville C, Saillan-Barreau C, Duriez M, Tedgui A, Levy B, Penicaud L, Casteilla L. Plasticity of human adipose lineage cells toward endothelial cells: physiological and therapeutic perspectives. Circulation.2004; 109:656-663.
    99. Rehman J, Traktuev D, Li J, Merfeld-Clauss S, Temm-Grove CJ,Bovenkerk JE, Pell CL, Johnstone BH, Considine RV, March KL.Secretion of angiogenic and antiapoptotic factors by human adiposestromal cells. Circulation. 2004; 109:1292-1298.
    100. Fraser JK, Schreiber R, Strem B, Zhu M, Alfonso Z, Wulur I, Hedrick MH. Plasticity of human adipose stem cells toward endothelial cells and cardiomyocytes. Nat Clin Pract Cardiovasc Med.2006;3 Suppl 1:S33-S37.
    101. Williams SK, Jarrell BE, Rose DG, Pontell J, Kapelan BA, Park PK, Carter TL. Human microvessel endothelial cell isolation and vascular graft sodding in the operating room. Ann Vasc Surg.1989;3:146-152.
    102. Williams SK, McKenney S, Jarrell BE. Collagenase lot selection and purification for adipose tissue digestion. Cell Transplant.1995;4:281-289.
    103. Wessells H, Williams SK. Endothelial cell transplantation into the corpus cavernosum:moving towards cell-based gene therapy. J Urol.1999; 162:2162-2164.
    104. Martinez-Estrada OM, Munoz-Santos Y, Julve J, Reina M, Vilaro S.Human adipose tissue as a source of flk-1_cells:new method of differentiation and expansion. Cardiovasc Res.2005;65:328-333.
    105. Moon MH, Kim SY, Kim YJ, Kim SJ, Lee JB, Bae YC, Sung SM, JungJS. Human adipose tissue-derived mesenchymal stem cells improve postnatal neovascularization in a mouse model of hindlimb ischemia. Cell Physiol Biochem. 2006; 17:279-290.
    106. Zeng Q, Li X, Beck G, Balian G, Shen FH. Growth and differentiation factor-5 (GDF-5) stimulates osteogenic differentiation and increases vascular endothelial growth factor (VEGF) levels in fat-derived stromal cells in vitro. Bone.2007;40:374-381.
    107. Wang M, Crisostomo P, Herring C, Meldrum KK, Meldrum DR. Human progenitor cells from bone marrow or adipose tissue produce VEGF, HGF and IGF-1 in response to TNF by a p38 mitogen acivated protein kinase dependent mechanism. Am J Physiol Regul Integr Comp Physiol.2006;291:R880-R884.
    108. Kilroy GE, Foster S, Wu X, Ruiz J, Sherwood S, Heifetz A, Ludlow JW, Stricker DM, Potiny S, Green P, Halvorsen YDC, Cheatham B, Storms RW, Gimble JM. Cytokine profile of human adipose-derived stem cells:expression of angiogenic, hematopoietic, and pro-inflammatory factors.J Cell Physiol. In press.
    109. Fukumura D, Ushiyama A, Duda DG, Xu L, Tam J, Krishna V, Chatterjee K, Garkavtsev I, Jain RK. Paracrine regulation of angiogenesisand adipocyte differentiation during in vivo adipogenesis. Circ Res.2003;93:e88-e97.
    110. Aoki S, Toda S, Sakemi T, Sugihara H. Coculture of endothelial cells and mature adipocytes actively promotes immature preadipocyte development in vitro. Cell Struct Funct.2003;28:55-60.
    111. Jeon ES, Moon HJ, Lee MJ, Song HY, Kim YM, Bae YC, Jung JS, KimJH. Sphingosylphosphorylcholine induces differentiation of human mesenchymal stem cells into smooth-muscle-like cells through a tgf-{beta}-dependent mechanism. J Cell Sci.2006; 119:4994-5005.
    112. Lee WC, Rubin JP, Marra KG. Regulation of alpha-smooth muscle actin protein expression in adipose-derived stem cells. Cells Tissues Organs.2006; 183:80-86.
    113. Gagnon A, Abaiian KJ, Crapper T, Layne MD, Sorisky A. Downregulation of aortic carboxypeptidase-like protein during the early phase of 3t3-11 adipogenesis. Endocrinology.2002; 143:2478-2485.
    114. Abderrahim-Ferkoune A, Bezy O, Astri-Roques S, Elabd C, Ailhaud QAmri EZ. Transdifferentiation of preadipose cells into smooth muscle-like cells:role of aortic carboxypeptidase-like protein. Exp Cell Res.2004;293:219-228.
    115. Lee WC, Maul TM, Vorp DA, Rubin JP, Marra KG Effects of uniaxial cyclic strain on adipose-derived stem cell morphology, proliferation, and differentiation. Biomech Model Mechanobiol. In press.
    116. Jack GS, Almeida FG, Zhang R, Alfonso ZC, Zuk PA, Rodriguez LV. Processed lipoaspirate cells for tissue engineering of the lower urinary tract:implications for the treatment of stress urinary incontinence and bladder reconstruction. J Urol. 2005;174:2041-2045.
    117. Burks CA, Bundy K, Fotuhi P, Alt E. Characterization of 75:25 poly(llactide-co-epsilon-caprolactone) thin films for the endoluminal delivery of adipose-derived stem cells to abdominal aortic aneurysms. Tissue Eng. 2006; 12:2591-2600.
    118. Halvorsen YD, Bond A, Sen A, Franklin DM, Lea-Currie YR, Sujkowski D, Ellis PN, Wilkison WO, Gimble JM. Thiazolidinediones and glucocorticoids synergistically induce differentiation of human adipose tissue stromal cells: biochemical, cellular, and molecular analysis.Metabolism.2001;50:407-413.
    119. Sen A, Lea-Currie YR, Sujkowska D, Franklin DM, Wilkison WO,Halvorsen YD, Gimble JM. Adipogenic potential of human adipose derived stromal cells from multiple donors is heterogeneous. J Cell Biochem.2001;81:312-319.
    120. Zuk PA, Zhu M, Mizuno H, Huang J, Futrell JW, Katz AJ, Benhaim P,Lorenz HP, Hedrick MH. Multilineage cells from human adipose tissue:Implications for cell-based therapies. Tissue Eng.2001;7:211-228.
    121. Erickson GR, Gimble JM, Franklin DM, Rice HE, Awad H, Guilak F.Chondrogenic potential of adipose tissue-derived stromal cells in vitro and in vivo. Biochem Biophys Res Commun.2002;290:763-769.
    122. Wickham MQ, Erickson GR, Gimble JM, Vail TP, Guilak F. Multipotent stromal cells derived from the infrapatellar fat pad of the knee.Clin Orthop.2003; 196-212.
    123. Corre J, Barreau C, Cousin B, Chavoin JP, Caton D, Fournial QPenicaud L, Casteilla L, Laharrague P. Human subcutaneous adipose cells support complete differentiation but not self-renewal of hematopoietic progenitors. J Cell Physiol. 2006;208:282-288.
    124. Seo MJ, Suh SY, Bae YC, Jung JS. Differentiation of human adipose stromal cells into hepatic lineage in vitro and in vivo. Biochem Biophys Res Commun. 2005;328:258-264.
    125. Talens-Visconti R, Bonora A, Jover R, Mirabet V, Carbonell F, Castell JV, Gomez-Lechon MJ. Human mesenchymal stem cells from adipose tissue: differentiation into hepatic lineage. Toxicol In Vitro.2007;21:324-329.
    126. Talens-Visconti R, Bonora A, Jover R, Mirabet V, Carbonell F, Castell JV, Gomez-Lechon MJ. Hepatogenic differentiation of human mesenchymal stem cells from adipose tissue in comparison with bone marrow mesenchymal stem cells. World J Gastroenterol.2006;12:5834-5845.
    127. Safford KM, Hicok KC, Safford SD, Halvorsen YD, Wilkison WO, Gimble JM, Rice HE. Neurogenic differentiation of murine and human adipose-derived stromal cells. Biochem Biophys Res Commun.2002;294:371-379.
    128. Safford KM, Safford SD, Gimble JM, Shetty AK, Rice HE. Characterization of neuronal/glial differentiation of murine adipose-derived adult stromal cells. Exp Neurol.2004; 187:319-328.
    129. Kang SK, Putnam LA, Ylostalo J, Popescu IR, Dufour J, Belousov A, Bunnell BA. Neurogenesis of rhesus adipose stromal cells. J Cell Sci.2004;117:4289-4299.
    130. Krampera M, Marconi S, Pasini A, Galie M, Rigotti G, Mosna F, Tinelli M, Lovato L, Anghileri E, Andreini A, Pizzolo G, Sbarbati A, Bonetti B. Induction of neural-like differentiation in human mesenchymal stem cells derived from bone marrow, fat, spleen and thymus. Bone.2007;40:382-390.
    131. Halvorsen YC, Wilkison WO, Gimble JM. Adipose-derived stromal cells-their utility and potential in bone formation. Int J Obes Relat Metab Disord. 2000;24(suppl 4):S41-S44.
    132. Halvorsen YD, Franklin D, Bond AL, Hitt DC, Auchter C, Boskey AL,Paschalis EP, Wilkison WO, Gimble JM. Extracellular matrix mineralization and osteoblast gene expression by human adipose tissue-derived stromal cells. Tissue Eng.2001;7:729-741.
    133. Huang JI, Beanes SR, Zhu M, Lorenz HP, Hedrick MH, Benhaim P. Rat extramedullary adipose tissue as a source of osteochondrogenic progenitor cells. Plast Reconstr Surg.2002;109:1033-1041.
    134. Timper K, Seboek D, Eberhardt M, Linscheid P, Christ-Crain M, Keller U, Muller B, Zulewski H. Human adipose tissue-derived mesenchymal stem cells differentiate into insulin, somatostatin, and glucagon expressing cells. Biochem Biophys Res Commun.2006;341:1135-1140.
    135. Lee JH, Kemp DM. Human adipose-derived stem cells display myogenic potential and perturbed function in hypoxic conditions. Biochem Biophys Res Commun. 2006;341:882-888.
    136. Mizuno H, Zuk PA, Zhu M, Lorenz HP, Benhaim P, Hedrick MH.
    Myogenic differentiation by human processed lipoaspirate cells. Plast
    Reconstr Surg.2002; 109:199-209.
    137. Gimble JM, Guilak F. Differentiation potential of adipose derived adult stem (ADAS) cells. Curr Top Dev Biol.2003;58:137-160.
    138. Moseley TA, Zhu M, Hedrick MH. Adipose-derived stem and progenitor cells as fillers in plastic and reconstructive surgery. Plast Reconstr Surg. 2006;118:121S-128S
    139. Casteilla L, Dani C. Adipose tissue-derived cells:from physiology to regenerative medicine. Diabetes Metab.2006;32:393-401.
    140. Estes BT, Wu AW, Guilak F. Potent induction of chondrocytic differentiation of human adipose-derived adult stem cells by bone morphogenetic protein 6. Arthritis Rheum.2006;54:1222-1232.
    141. Ashjian PH, Elbarbary AS, Edmonds B, DeUgarte D, Zhu M, Zuk PA, Lorenz HP, Benhaim P, Hedrick MH. In vitro differentiation of human processed lipoaspirate cells into early neural progenitors. Plast ReconstrSurg.2003; 111:1922-1931.
    142. Hicok KC, Du Laney TV, Zhou YS, Halvorsen YD, Hitt DC, Cooper LF, Gimble JM. Human adipose-derived adult stem cells produce osteoid in vivo. Tissue Eng. 2004;10:371-380.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700