仿生粘着的机理及应用研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
仿生技术极大改变了人类的社会和经济生活,启发了很多影响人类社会发展的仿生发明。作为自然界中对粘着和摩擦具有出色控制能力的代表,壁虎具有在墙壁和天花板行走自如的卓越的攀爬能力。基于这种粘着、爬行能力的仿生功能表面、爬壁机器人在反恐、搜救、侦查、太空定位、抓持、清洁等国家安全、工业技术、日常生活等领域具有深远的应用前景。研究其粘/脱附机理和仿生表面设计理论,对开发新一代干粘着功能表面及器件具有重要理论指导意义和实用价值。本文从剥离区域影响剥离性能及各向异性性能关系的角度对仿壁虎刚毛功能表面的设计理论及制备应用进行了研究,主要取得如下成果:
     发展了剥离区域的基本理论模型。建立了考虑速度效应的拓展剥离区域模型。使用此模型,可将剥离问题中的三个重要参数——剥离强度、剥离速度、剥离角度之间的关系在同一公式中进行描述。
     发展了强粘附、易剥离性能和集束行为的设计理论。建立了基于柱状纤维的仿壁虎刚毛表面剥离区域对剥离行为影响的数值计算模型,讨论了仿生表面的强粘附和易脱附特性的设计准则,发展了粘着、剥离设计图。通过优化结构参数,剥离力相比粘附力可以减小至少三个数量级。还对微纳米纤维阵列表面的集束行为进行了研究,使用两个无量纲参数对临界集束行为判据进行描述,建立了集束稳定性评价准则。
     讨论了倾斜碳纳米管阵列剥离区域变形对其各向异性性能的影响。制备了倾斜多壁碳纳米管阵列表面,实验表明其具有40%的稳定的摩擦各向异性性能。观测并描述了卸载过程中与壁虎刚毛类似的各向异性粘附摩擦现象,并考虑碳纳米管末梢的接触变形,建立了基于范德华相互作用力的摩擦各向异性理论模型。
     设计出一种基于仿壁虎刚毛表面的夹持器原型机。对具有末端薄板结构的蘑菇状纤维阵列仿壁虎刚毛表面进行了性能表征和设计评价,为仿生表面在夹持器上的应用提供了理论和实验依据。进而设计了一种用于硅片等轻质、易碎物体转移搬运的小型夹持器,实现了粘着力的有效控制,对推进仿壁虎刚毛表面在智能仿生粘附器件上的应用具有重要意义。
The bio-inspired technology has inspired lots of important inventions and greatlychanged the society of the human being. With outstanding capability of adhesion andfriction control, gecko can move on the surfaces of the walls and ceilings rapidly. Thegecko-inspired functional surface and then the wall-climbing robot have great potentialand wide application prospect in the area of national security, industry and daily lifesuch as counter-terrorism, rescue, detection, space positioning, cleaning in tall buildings,etc. Therefore, the research on the mechanism of attachment and detachment and thedesign principles are very important to developing the new generation of dry adhesivefunctional surface and device in both theoretical and practical applications. Based on theeffect of peel zone on the peeling behavior and the anisotropic property, the principle ofdesign and application of bio-inspired surface has been researched in this study.
     First, the basic theoretical peel zone model is developed, with the consideration ofthe peel velocity effect. Peel strength, peel velocity and peel angle, the three importantpeeling parameters, are described in the same analytical formula by the extended peelzone model.
     Second, the design principle of bio-inspired surface with the strong attachment buteasy removal properties and the anti-bunching behavior are developed. A numericalmethod was developed to evaluate the effect of peel-zone deformation on the peelingbehavior of fibrillar gecko-inspired surface. Based on the analysis of the peelingmechanical behavior, the design criterion of strong attachment and easy removalproperties is discussed. The optimum point is proposed by a new established adhesionand peeling design map, which is determined by the competition of the strong adhesiveproperty and the easy-removal property, being consistent with the allowed parameterrange of the biological contact elements qualitatively. By taking the typical values ofparameters, the adhesion force and the peeling strength can be changed in three ordersof magnitude. Further, the bunching behavior of micro-and nano pillar array surface isstudied. The two dimensionless parameters are proposed to evaluate the criterion ofbunching. Also the evaluation criterion of the stability of bunching is established.
     Then in order to discuss the relationship between the anisotropy and thedeformation of the peel zone, the gecko-inspired surface is prepared with inclined multiwall carbon nanotube array, which has typical40%steady anisotropic interfacialfriction property. The tribological characterization of the inclined CNT array surface istested experimentally. Also the anisotropic adhesional friction is observed in theunloading process. Furthermore, the anisotropic behavior is quantitatively modeled andexplained based on the van der Waals interaction.
     Finally, a prototype of clamp holder based on gecko-inspired surfaces has beendesigned and tested. On the basis of the experimental mechanical characterization andthe theoretical design evaluation of the mushroom like fibrillar gecko-inspired surface,the clamp holder designed specifically to the lightweight and fragile objects is realizedand fabricated, which provides new insights into the application of gecko-inspiredsurface on the intelligent adhesion devices.
引文
[1]路甬祥.仿生学的科学意义与前沿.科学中国人,2004,4:22-34.
    [2] Dai Z D, Tong J, Ren L Q. Researches and Developments of Biomimetics in Tribology. ChinSci Bull,2006,51:2681-2689.
    [3]房岩,孙刚,丛茜,等.仿生材料学研究进展.农业机械学报,2006,37:163-167.
    [4]江雷.从自然到仿生的超疏水纳米界面材料.科技导报,2005,23:4-8.
    [5]田丽梅,任露泉,韩志武,施卫平,丛茜.仿生非光滑表面脱附与减阻技术在工程上的应用.农业机械学报,2005,36:138-142.
    [6] Autumn K, Hsieh S T, Dudeket D M, et al. Dynamics of Geckos Running Vertically.J Exp Biol,2006,209:260-272.
    [7] Hansen W, Autumn K. Evidence for Self-Cleaning in Gecko Setae. P Natl Acad SciUSA,2005,102.
    [8] Johnson K L, Kendall K, Roberts A D. Surface Energy and Contact of Elastic Solids.Proc R Soc London Ser-A,1971,324:301.
    [9]戴振东,孙久荣.壁虎的运动及仿生研究进展.自然科学进展,2006,16:519-523.
    [10] Cutkosky M R. Gecko-Like Robot Scampers Up the Wall. New Sci,2006,2252:29-33.
    [11] Menon C, Murphy M, Sitti M. Gecko Inspired Surface Climbing Robots.//
    [s.n.].Proceedings of the IEEE International Conference on Robotics andBiomimetics. Shenyang: IEEE International Conference on Robotics andBiomimetics (ROBIO2004),2004:431-436.
    [12] Dai Z D, Wang W B, Zhang H, et al. Biomimetics on gecko locomotion.//Brebbia, CA, Design and Nature, IV. Southampton: WIT Press,2008:23-32.
    [13] Wang W B, Dai Z D, Tan H, et al. A Stereotaxic Method and Apparatus for theGekko Gecko. Chin Sci Bull,2008,53:1107-1112.
    [14]李宏凯,戴振东,石爱菊,等.大壁虎在垂直面和水平面上小跑和行走的关节角度观测.科学通报,2008,53:2697-2703.
    [15] Aksak B, Murphy M P, Sitti M. Gecko Inspired Micro-Fibrillar Adhesives for WallClimbing Robots On Micro/Nanoscale Rough Surfaces.//[s.n.].2008IEEEInternational Conference on Robotics and Automation. Pasadena: IEEE InternationalConference on Robotics and Automation,2008:3058-3063.
    [16] Yu J, Chary S, Das S, et al. Gecko-Inspired Dry Adhesive for Robotic Applications.Adv Funct Mater,2011,21:3010-3018.
    [17] Seo T, Sitti M. Tank-Like Module-Based Climbing Robot Using Passive CompliantJoints. IEEE-Asme T Mech,2013,18:397-408.
    [18] Chou Y C, Yu W S, Huang K Jet al. Bio-Inspired Step-Climbing in a Hexapod Robot.BIOINSPIRATION&BIOMIMETICS,2012,7.
    [19] Lynch G A, Clark J E, Lin P C, et al. A Bioinspired Dynamical Vertical ClimbingRobot. Int J Robot Res,2012,31:974-996.
    [20]张昊.大壁虎运动行为研究及仿壁虎机器人研制[博士学位论文].南京:南京航空航天大学机械工程,2010.
    [21] Xiao J, Xiao J, Xi N, et al. Fuzzy Controller for Wall-Climbing Microrobots. IEEETrans Fuzzy Syst,2004,12:466-480.
    [22] Gradetsky V, Rachkov M, Kalinichenko S, Technologies, State-of-the-art andChallenges in Service robot for cleaning of vertical surfaces.//[s.n.]. IARPInternational Advanced Robotic Programme Service and Personal Robots:Technologies and App lications, Genova: IARP International Advanced RoboticProgramme Service and Personal Robots,1996:23-24.
    [23]高学山,徐殿国,王炎.新型壁面清洗机器人的研究与设计.高技术通讯,2004,14:39-44.
    [24]王巍,宗光华.气动擦窗机器人的控制和环境检测.液压与气动,2001,1:4-7.
    [25]谈士力,王建成,苏建良,等.球面移动机器人机构研制.机床与液压,2003,2:19-22.
    [26]张俊强,张华,万伟民.履带式爬壁机器人磁吸附单元的磁场及运动分析.机器人,2006,28:219-223.
    [27]刘淑霞,王炎,徐殿国,等.爬壁机器人技术的应用.机器人,1999,21:148-155.
    [28]张厚祥,刘荣,王巍,等.爬壁机器人气动位置伺服控制研究.北京航空航天大学学报,2004,30:705-708.
    [29]李满天,黄博,刘国才,等.模块化可重构履带式微小型机器人的研究.机器人,2006,28:548-552.
    [30]张培锋,王洪光,房立金,等.一种新型爬壁机器人机构及运动学研究.机器人,2007,29:12-17.
    [31]刘荣,田林.影响负压爬壁机器人性能的关键因素分析.北京航空航天大学学报,2009,35:608-611.
    [32] Ruibal R, Ernst V. The Structure of the Digital Setae of Lizards. J Morphol,1965:271-294.
    [33] Russell A P, Bauer A M, Laroiya R. Morphological Correlates of the SecondarilySymmetrical Pes of Gekkotan Lizards. J Zool,1997,241:767-790.
    [34] Autumn K. How Gecko Toes Stick-The Powerful, Fantastic Adhesive Used byGeckos is Made of Nanoscale Hairs that Engage Tiny Forces, Inspiring Envy AmongHuman Imitators. Am Sci,2006,94:124-132.
    [35] Autumn K, Peattie A M. Mechanisms of Adhesion in Geckos. Integr Comp Biol,2002,42:1081-1090.
    [36] Autumn K, Sitti M, Peattie A, et al. Evidence for Van Der Waals Adhesion in GeckoSetae. P Natl Acad Sci USA,2002,99:12252-12256.
    [37] Sun W X, Neuzil P, Kustandi T S, et al. The Nature of the Gecko Lizard AdhesiveForce. Biophys J,2005,89: L14-L17.
    [38] Huber G, Mantz H, Spolenak R, et al. Evidence for Capillarity Contributions toGecko Adhesion From Single Spatula Nanomechanical Measurements. P Natl AcadSci USA,2005,102.
    [39] Prowse M S, Wilkinson M, Puthoff J B, et al. Effects of Humidity On theMechanical Properties of Gecko Setae. Acta Biomater,2011,7:733-738.
    [40] Kim T W, Bhushan B. The Adhesion Model Considering Capillarity for GeckoAttachment System. J R Soc Interface,2008,5:319-327.
    [41] Niederegger S, Gorb S N. Friction and Adhesion in the Tars al and MetatarsalScopulae of Spiders. J Comp Physiol A,2006,192:1223-1232.
    [42] Autumn K, Liang Y A, Hsieh S T, et al. Adhesive Force of a Single Gecko Foot-Hair.Nature,2000,405:681-685.
    [43] Huber G, Gorb S, Spolenak R, et al. Resolving the Nanoscale Adhesion of IndividualGecko Spatulae by Atomic Force Microscopy. Biol Lett,2005,1:2-4.
    [44] Autumn K, Dittmore A, Santos D, et al. Frictional Adhesion: A New Angle OnGecko Attachment. J Exp Biol,2006,209:3569-3579.
    [45] Zhao B X, Pesika N, Rosenberg K, et al. Adhesion and Friction Force Coupling ofGecko Setal Arrays: Implications for Structured Adhesive Surfaces. Langmuir,2008,24:1517-1524.
    [46]万进.壁虎刚毛粘着与摩擦机理的实验研究[硕士学位论文].北京:清华大学精仪系,2012.
    [47] Arzt E, Gorb S, Spolenak R. From Micro to Nano Contacts in Biological Attachm entDevices. P Natl Acad Sci USA,2003,100:10603-10606.
    [48] Peressadko A, Gorb S N. When Less is More: Experimental Evidence for TenacityEnhancement by Division of Contact Area. J Adhes,2004,80:247-261.
    [49] Autumn K, Hansen W. Ultrahydrophobicity Indicates a Non-Adhesive Default Statein Gecko Setae. J Comp Physiol A,2006,193.
    [50] Tang T, Hui C Y, Glassmaker N J. Can a Fibrillar Interface be Stronger and Tougherthan a Non-Fibrillar One? J R Soc Interface,2005,2:505-516.
    [51] Bonser R. The Young's Modulus of Ostrich Claw Keratin. J Mater Sci Lett,2000,19:1039-1040.
    [52] Peattie A M, Majidi C, Corder A B, et al. Similar Elastic Modulus of Setal Keratinfor Two Species of Gecko. Integr Comp Biol,2006,461: E109.
    [53] Peattie A M, Majidi C, Corder A, et al. Ancestrally High Elastic Modulus of GeckoSetal Beta-Keratin. J R Soc Interface,2007,4:1071-1076.
    [54] Persson B. On the Mechanism of Adhesion in Biological Systems. J Chem Phys,2003,118:7614-7621.
    [55] Autumn K, Majidi C, Groff R E, et al. Effective Elastice Modulus of Isolated GeckoSetal Arrays. J Exp Biol,2006,209:3558-3568.
    [56] Schubert B, Majidi C, Groff R E, et al. Towards Friction and Adhesion From HighModulus Microfiber Arrays. J Adhes Sci Technol,2007,21:1297-1315.
    [57] Campolo D, Jones S, Fearing R S. Fabrication of Gecko Foot-Hair Like NanoStructures and Adhesion to Random Rough Surfaces.//[s.n.].2003IEEEInternational Conference on Nanotechnology, Vols One and Two, Proceedings. SsanFrancisco:3rd IEEE Conference on Nanotechnology (IEEE-NANO2003),2003:856-859.
    [58] Aksak B, Murphy M P, Sitti M. Adhesion of Biologically Inspired Vertical andAngled Polymer Microfiber Arrays. Langmuir,2007,23:3322-3332.
    [59]王辉静,梅涛.仿壁虎粘附阵列与粗糙表面间粘附仿真分析.中国科学技术大学学报,2006,36:845-850.
    [60] Reyes M P, Fearing R S. Macromodel for the Mechanics of Gecko Hair Adhesion.//
    [s.n.].2008IEEE International Conference on Robotics and Automation. Pasadena:IEEE International Conference on Robotics and Automation,2008:1602-1607.
    [61] Jagota A, Bennison S J. Mechanics of Adhesion through a Fibrillar Microst ructure.Integr Comp Biol,2002,42:1140-1145.
    [62] Gao H J, Wang X, Yao H M, et al. Mechanics of Hierarchical Adhesion Structures ofGeckos. Mech Mater,2005,37:275-285.
    [63] Yao H, Gao H. Mechanics of Robust and Releasable Adhesion in Biology:Bottom-Up Designed Hierarchical Structures of Gecko. J Mech Phys Solids,2006,54:1120-1146.
    [64] Yao H, Gao H. Bio-Inspired Mechanics of Bottom-Up Designed HierarchicalMaterials: Robust and Releasable Adhesion Systems of Gecko. Bull Pol AcadSci-Tech,2007,55:141-150.
    [65] Bhushan B, Peressadko A G, Kim T W. Adhesion Analysis of Two-LevelHierarchical Morphology in Natural Attachment Systems for 'Smart Adhesion'. JAdhes Sci Technol,2006,20:1475-1491.
    [66] Kim T W, Bhushan B. Adhesion Analysis of Multi-Level Hierarchical AttachmentSystem Contacting with a Rough Surface. J Adhes Sci Technol,2007,21:1-20.
    [67] Kim T W, Bhushan B. Effect of Stiffness of Multi-Level Hierarchical AttachmentSystem On Adhesion Enhancement. Ultramicroscopy,2007,107:902-912.
    [68] Zeng H B, Pesika N, Tian Y, et al. Frictional Adhesion of Patterned Surfaces andImplications for Gecko and Biomimetic Systems. Langmuir,2009,25:7486-7495.
    [69] Shah G J, Sitti M. Modeling and Design of Biomimetic Adhesives Inspired by GeckoFoot-Hairs.//[s.n.].Proceedings of the IEEE International Conference on Roboticsand Biomimetics. Shenyang: IEEE International Conference on Robotics andBiomimetics (ROBIO2004),2004:873-878.
    [70] Peressadko A G, Gorb S N. Surface Profile and Friction Force Generated byInsects.//[s.n.]. Proceedings of the1st International Industrial Conference Bionik2004. Hannover:1st International Industrial Conference Bionik2004,2004:257-261.
    [71] Huber G, Gorb S N, Hosoda N et al. Influence of Surface Roughness On GeckoAdhesion. Acta Biomater,2007,3:607-610.
    [72] Kendall K. Thin-Film Peeling-The Elastic Term. J Phys D Appl Phys,1975,8:1449-1452.
    [73] Peng Z L, Chen S H, Soh A K. Peeling Behavior of a Bio-Inspired Nano-Film On aSubstrate. Int J Solids Struct,2010,47:1952-1960.
    [74] Pesika N S, Tian Y, Zhao B X, et al. Peel-Zone Model of Tape Peeling Based On theGecko Adhesive System. J Adhes,2007,83:383-401.
    [75] Zhang L, Wang J. A Generalized Cohesive Zone Model of the Peel Test forPressure-Sensitive Adhesives. Int J Adhes Adhes,2009,29:217-224.
    [76] Lin Y Y, Hui C Y, Wang Y C. Modeling the Failure of an Adhesive Layer in a PeelTest. J Polym Sci Pol Phys,2002,40:2277-2291.
    [77] Tian Y, Pesika N, Zeng H B, et al. Adhesion and Friction in Gecko Toe Attachmentand Detachment. P Natl Acad Sci USA,2006,103:19320-19325.
    [78] Fuller K, Tabor D. Effect of Surface-Roughness On Adhesion of Elastic Solids. PRoy Soc Lond A Mat,1975,345:327-342.
    [79] Briggs G, Briscoe B J. Effect of Surface-Topography On Adhesion of Elastic Solids.J Phys D Appl Phys,1977,10:2453.
    [80] Persson B, Gorb S. The Effect of Surface Roughness On the Adhesion of ElasticPlates with Application to Biological Systems. J Chem Phys,2003,119:11437-11444.
    [81] Peng Z L, Chen S H. Effects of Surface Roughness and Film Thickness On theAdhesion of a Bioinspired Nanofilm. Phys Rev E,2011,83.
    [82] Sponberg S, Hansen W, Peattie A, et al. Dynamics of Isolated Gecko Setal Arrays.Am Zool,2001,41:1594.
    [83] Schargott M, Popov V L, Gorb S. Spring Model of Biological Attachment Pads. JTheor Biol,2006,243:48-53.
    [84] Zhao B X, Pesika N, Zeng H B, et al. Role of Tilted Adhesion Fibrils (Setae) in theAdhesion and Locomotion of Gecko-Like Systems. J Phys Chem B,2009,113:3615-3621.
    [85] Wan J, Tian Y, Zhou M, et al. Experimental Research of Load Effect On theAnisotropic Friction Behaviors of Gecko Seta Array. Acta Phys Sin-Ch Ed,2012,61.
    [86] Hill G, Soto D, Peattie A, et al. Orientation Angle and the Adhesion of Single GeckoSetae. J Roy Soc Interface,2011,8.
    [87] Pesika N, Gravish N, Wikinson M, et al. The Crowding Model as a Tool toUnderstand and Fabricate Gecko-Inspired Dry Adhesives. J Adhes,2009,85:512-525.
    [88] Cheng Q H, Chen B, Gao H J, et al. Sliding-Induced Non-Uniform PretensionGoverns Robust and Reversible Adhesion: A Revisit of Adhesion Mechanisms ofGeckos. J Roy Soc Interface,2012,9:283-291.
    [89] Chen B, Wu P D, Gao H J. Pre-Tension Generates Strongly Reversible Adhesion of aSpatula Pad On Substrate. J Roy Soc Interface,2009,6:529-537.
    [90] Filippov A, Popov V L, Gorb S N. Shear Induced Adhesion: Contact Mechanics ofBiological Spatula-Like Attachment Devices. J Theor Biol,2011,276:126-131.
    [91] Kumar A, Hui C Y. Numerical Study of Shearing of a Microfibre During FrictionTesting of a Microfibre Array. P Roy Soc Lond A Mat,2011,467:1372-1389.
    [92] Gorb S, Varenberg M, Peressadko A, et al. Biomimetic Mushroom-Shaped FibrillarAdhesive Microstructure. J Roy Soc Interface,2007,4:271-275.
    [93] Stork N E. Experimental-Analysis of Adhesion of Chrysolina-Polita (Chrysomelidae,Coleoptera) On a Variety of Surfaces. J Exp Biol,1980,88:91.
    [94] Chan E P, Greiner C, Arzt E, et al. Designing Model Systems for EnhancedAdhesion. Mrs Bull,2007,32:496-503.
    [95] Kroner E, Arzt E. What we Can Learn From Geckos. Nachr Chem,2009,57:137-139.
    [96] Varenberg M, Peressadko A, Gorb S, et al. Effect of Real Contact Geometry OnAdhesion. Appl Phys Lett,2006,89.
    [97] Varenberg M, Murarash B, Kligerman Y, et al. Geometry-Controlled Adhesion:Revisiting the Contact Splitting Hypothesis. Appl Phys A-Mater,2011,103:933-938.
    [98] Gao H J, Ji B H, Jager I L, et al. Materials Become Insensitive to Flaws at Nanoscale:Lessons From Nature. P Natl Acad Sci USA,2003,100:5597-5600.
    [99] Spolenak R, Gorb S, Gao H J, et al. Effects of Contact Shape On the Scaling ofBiological Attachments. P Roy Soc Lond A Mat,2005,461:305-319.
    [100] Gorb S N, Varenberg M. Mushroom-Shaped Geometry of Contact Elements inBiological Adhesive Systems. J Adhes Sci Technol,2007,21:1175-1183.
    [101] Varenberg M, Gorb S. Close-Up of Mushroom-Shaped Fibrillar AdhesiveMicrostructure: Contact Element Behaviour. J Roy Soc Interface,2008,5:785-789.
    [102] Creton C, Gorb S. Sticky Feet: From Animals to Materials. Mrs Bull,2007,32:466-472.
    [103] Gorb S N. Biological Attachment Devices: Exploring Nature's Diversity forBiomimetics. Philos T R Soc A,2008,366:1557-1574.
    [104] Geim A K, Dubonos S V, Grigorieva I V, et al. Microfabricated AdhesiveMimicking Gecko Foot-Hair. Nat Mater,2003,2:461-463.
    [105] Sitti M, Fearing R S. Synthetic Gecko Foot-Hair Micro/Nano-Structures as DryAdhesives. J Adhes Sci Technol,2003,17:1055-1073.
    [106] Glassmaker N J, Jagota A, Hui C Y, et al. Design of Biomimetic Fibrillar Interfaces:1. Making Contact. J Roy Soc Interface,2004,1:23-33.
    [107] Hui C Y, Jagota A, Lin Y Y, et al. Constraints On Microcontact Printing Imposed byStamp Deformation. Langmuir,2002,18:1394-1407.
    [108] Spolenak R, Gorb S, Arzt E. Adhesion Design Maps for Bio-Inspired AttachmentSystems. Acta Biomater,2005,1:5-13.
    [109] Greiner C, Spolenak R, Arzt E. Adhesion Design Maps for Fibrillar Adhesives: TheEffect of Shape. Acta Biomater,2009,5:597-606.
    [110] Zhou M, Pesika N, Zeng H, et al. Design of Gecko-Inspired Fibrillar Surfaces withStrong Attachment and Easy-Removal Properties: A Numerical Analysis ofPeel-Zone. J Roy Soc Interface,2012,9:2424-2436.
    [111] Crosby A J, Hageman M, Duncan A. Controlling Polymer Adhesion with "Pan cakes".Langmuir,2005,21:11738-11743.
    [112] Campo D A, Greiner C. Su-8: A Photoresist for High-Aspect-Ratio and3DSubmicron Lithography. J Micromech Microeng,2007,17: R81-R95.
    [113] Lamblet M, Verneuil E, Vilmin T, et al. Adhesion Enhancement throughMicropatterning at Polydimethylsiloxane-Acrylic Adhesive Interfaces. Langmuir,2007,23:6966-6974.
    [114] Greiner C, Campo D A, Arzt E. Adhesion of Bioinspired Micropatterned Surfaces:Effects of Pillar Radius, Aspect Ratio, and Preload. Langmuir,2007,23:3495-3502.
    [115] Lu G W, Hong W J, Tong L, et al. Drying Enhanced Adhesion of PolythiopheneNanotubule Arrays On Smooth Surfaces. ACS Nano,2008,2:2342-2348.
    [116] Lee J, Fearing R S. Contact Self-Cleaning of Synthetic Gecko Adhesive FromPolymer Microfibers. Langmuir,2008,24:10587-10591.
    [117] Campo D A, Greiner C, Arzt E. Contact Shape Controls Adhesion of BioinspiredFibrillar Surfaces. Langmuir,2007,23:10235-10243.
    [118] Campo D A, Greiner C, Alvarez I, et al. Patterned Surfaces with Pillars withControlled3D Tip Geometry Mimicking Bioattachment Devices. Adv Mater,2007,19:1973.
    [119] Lee D Y, Lee D H, Lee S G, et al. Hierarchical Gecko-Inspired Nanohairs with aHigh Aspect Ratio Induced by Nanoyielding. Soft Matter,2012,8:4905-4910.
    [120] Davies J, Haq S, Hawke T, et al. A Practical Approach to the Development of aSynthetic Gecko Tape. Int J Adhes Adhes,2009,29:380-390.
    [121] Haefliger D, Boisen A. Three-Dimensional Microfabrication in Negative ResistUsing Printed Masks. J Micromech Microeng,2006,16:951-957.
    [122] Sameoto D, Menon C. Direct Molding of Dry Adhesives with Anisotropic PeelStrength Using an Offset Lift-Off Photoresist Mold. J Micromech Microeng,2009,19:1-5.
    [123] Kim S, Sitti M. Biologically Inspired Polymer Microfibers with Spatulate Tips asRepeatable Fibrillar Adhesives. Appl Phys Lett,2006,89.
    [124] Jin K, Tian Y, Erickson J S, et al. Design and Fabrication of Gecko-InspiredAdhesives. Langmuir,2012,28:5737-5742.
    [125] Sameoto D, Menon C. Deep UV Patterning of Acrylic Masters for MoldingBiomimetic Dry Adhesives. J Micromech Microeng,2010,20.
    [126] Krahn J, Sameoto D, Menon C. Controllable Biomimetic Adhesion Using EmbeddedPhase Change Material. Smart Mater Struct,2011,20.
    [127] Kim S, Sitti M, Hui C Y, et al. Effect of Backing Layer Thickness On Adhesion ofSingle-Level Elastomer Fiber Arrays. Appl Phys Lett,2007,91.
    [128] Kustandi T S, Samper V D, Yi D K, et al. Self-Assembled Nanoparticles BasedFabrication of Gecko Foot-Hair-Inspired Polymer Nanofibers. Adv Funct Mater,2007,17:2211-2218.
    [129] Kustandi T S, Samper V D, Ng W S, et al. Fabrication of a Gecko-Like HierarchicalFibril Array Using a Bonded Porous Alumina Template. J Micromech Microeng,2007,17: N75-N81.
    [130] Reddy S, Arzt E, Campo D A. Bioinspired Surfaces with Switchable Adhesion. AdvMater,2007,19:3833.
    [131] Sato H, Houshi Y, Shoji S. Three-Dimensional Micro-Structures Consisting of HighAspect Ratio Inclined Micro-Pillars Fabricated by Simple Photolithography.Microsyst Technol,2004,10:440-443.
    [132] Greiner C, Arzt E, Campo D A. Hierarchical Gecko-Like Adhesives. Adv Mater,2009,21:479.
    [133] Murphy M P, Kim S, Sitti M. Enhanced Adhesion by Gecko-Inspired HierarchicalFibrillar Adhesives. ACS Appl Mater Inter,2009,1:849-855.
    [134] Bhushan B, Lee H. Fabrication and Characterization of Multi-Level HierarchicalSurfaces. Faraday Discuss,2012,156:235-241.
    [135] Jeong H E, Lee J K, Kim H N, et al. A Nontransferring Dry Adhesive withHierarchical Polymer Nanohairs. P Natl Acad Sci USA,2009,106:5639-5644.
    [136] Murphy M P, Aksak B, Sitti M. Adhesion and Anisotropic Friction Enhancements ofAngled Heterogeneous Micro-Fiber Arrays with Spherical and Spatula Tips. J AdhesSci Technol,2007,21:1281-1296.
    [137] Lee J, Bush B, Maboudian R, et al. Gecko-Inspired Combined Lamellar andNanofibrillar Array for Adhesion On Nonplanar Surface. Langmuir,2009,25:12449-12453.
    [138] Sameoto D, Li Y S, Menon C. Multi-Scale Compliant Foot Designs and Fabricationfor Use with a Spider-Inspired Climbing Robot. J Bionic Eng,2008,5:189-196.
    [139] Northen M T, Greiner C, Arzt E, et al. A Gecko-Inspired Reversible Adhesive. AdvMater,2008,20:3905.
    [140] Sitti M, Fearing R S. Nanomolding Based Fabrication of Synthetic GeckoFoot-Hairs.//[s.n.]. Proceedings of the20022nd IEE Conference on Nanotechnology.Washington:2nd IEEE Conference on Nanotechnology,2002:137-140.
    [141] Dai Z D, Yu M, Gorb S. Adhesion Characteristics of Polyurethane for Bionic HairyFoot. J Intel Mat Syst Str,2006,17:737-741.
    [142]戴振东, Gorb S.聚氨酯粘着性能的实验研究.南京理工大学学报(自然科学版),2004,28:48-51,56.
    [143]赵林林,于敏,戴振东.粗糙聚氨酯表面微接触状态下粘着力的模拟.南京航空航天大学学报,2007,39:471-474.
    [144] Lee H, Lee B P, Messersmith P B. A Reversible Wet/Dry Adhesive Inspired byMussels and Geckos. Nature,2007,448:334-338.
    [145] Ajayan P M, Zhou O Z. Applications of Carbon Nanotubes.//Dresselhaus M S,Dresslhaus G, Carbon Nanotubes. Berlin: Springer,2001,80:391-425.
    [146] Yurdumakan B, Raravikar N R, Ajayan P M, et al. Synthetic Gecko Foot-Hairs FromMultiwalled Carbon Nanotubes. Chem Commun,2005:3799-3801.
    [147] Dhinojwala A, Ge L H, Sethi S, et al. Synthetic Gecko Foot-Hairs From MultiwalledCarbon Nanotubes. Abstr Pap Am Chem S,2007,233.
    [148] Zhao Y, Tong T, Delzeit L, et al. Interfacial Energy and Strength ofMultiwalled-Carbon-Nanotube-Based Dry Adhesive. J Vac Sci Technol B,2006,24:331-335.
    [149]高永刚,施兴华,赵亚溥.碳纳米管的力学行为.机械强度,2001,23:402-412.
    [150] Wirth C T, Hofmann S, Robertson J. Surface Properties of Vertically AlignedCarbon Nanotube Arrays. Diam Relat Mater,2008,17:1518-1524.
    [151] Ge L H, Sethi S, Ci L, et al. Carbon Nanotube-Based Synthetic Gecko Tapes. P NatlAcad Sci USA,2007,104:10792-10795.
    [152] Qu L, Dai L. Gecko-Foot-Mimetic Aligned Single-Walled Carbon Nanotube DryAdhesives with Unique Electrical and Thermal Properties. Adv Mater,2007,19:3844.
    [153] Qu L, Dai L, Stone M, et al. Carbon Nanotube Arrays with Strong Shear Binding-Onand Easy Normal Lifting-Off. Science,2008,322:238-242.
    [154] Majidi C S, Groff R E, Fearing R S. Attachment of Fiber Array Adhesive throughSide Contact. J Appl Phys,2005,98.
    [155] Zhou M, Liu K, Wan J, et al. Anisotropic Interfacial Friction of Inclined MultiwallCarbon Nanotube Array Surface. Carbon,2012:5372-5379.
    [156] Hu S H, Xia Z H, Gao X S. Strong Adhesion and Friction Coupling in HierarchicalCarbon Nanotube Arrays for Dry Adhesive Applications. ACS A ppl Mater Inter,2012,4:1972-1980.
    [157] Zheng Y M, Gao X F, Jiang L. Directional Adhesion of Superhydrophobic ButterflyWings. Soft Matter,2007,3:178-182.
    [158] Liley M, Gourdon D, Stamou D, et al. Friction Anisotropy and Asymmetry of aCompliant Monolayer Induced by a Small Molecular Tilt. Science,1998,280:273-275.
    [159] Chen J, Ratera I, Murphy A, et al. Friction-Anisotropy Dependence in OrganicSelf-Assembled Monolayers. Surf Sci,2006,600:4008-4012.
    [160] Park J Y, Ogletree D F, Salmeron M, et al. Friction Anisotropy: A Unique andIntrinsic Property of Decagonal Quasicrystals. J Mater Res,2008,23:1488-1493.
    [161]张昊,戴振东,杨松祥.蛇腹鳞的结构特点及其摩擦行为.南京航空航天大学学报,2008,40:360-363.
    [162] Lee J H, Fearing R S, Komvopoulos K. Directional Adhesion of Gecko-InspiredAngled Microfiber Arrays. Appl Phys Lett,2008,93.
    [163] Murphy M P, Aksak B, Sitti M. Gecko-Inspired Directional and ControllableAdhesion. Small,2009,5:170-175.
    [164] Tamelier J, Chary S, Turner K L. Vertical Anisotropic Microfibers for aGecko-Inspired Adhesive. Langmuir,2012,28:8746-8752.
    [165] Parness A, Soto D, Esparza N, et al. A Microfabricated Wedge-Shaped AdhesiveArray Displaying Gecko-Like Dynamic Adhesion, Directionality and Long Lifetime.J Roy Soc Interface,2009,6:1223-1232.
    [166] Sameoto D, Menon C. A Low-Cost, High-Yield Fabrication Method for ProducingOptimized Biomimetic Dry Adhesives. J Micromech Microeng,2009,19.
    [167] Shon J K, Kong S S, Kim J M, et al. Facile Synthesis of Highly Ordered MesoporousSilver Using Cubic Mesoporous Silica Template with Controlled SurfaceHydrophobicity. Chem Commun,2009:650-652.
    [168]耿路峰,于敏,浦东林,等.激光直写法制备仿刚毛微纳阵列的研究.中国机械工程,2011,22:2469-2475.
    [169]张昊,吴连伟,郭东杰,等.多组份硅橡胶基末端膨大二级结构粘附性能研究.摩擦学学报,2011,31:295-303.
    [170] Baughman R H, Cui C X, Zakhidov A A, et al. Carbon Nanotube Actuators. Science,1999,284:1340-1344.
    [171] Fennimore A M, Yuzvinsky T D, Han W Q, et al. Rotational Actuators Based OnCarbon Nanotubes. Nature,2003,424:408-410.
    [172] Chu K, Xiao R, Wang E N. Uni-Directional Liquid Spreading On AsymmetricNanostructured Surfaces. Nat Mater,2010,9:413-417.
    [173] Dickrell P L, Sinnottb S B, Hahna D W, et al. Frictional Anisotropy of OrientedCarbon Nanotube Surfaces. Tribol Lett,2005,18:59-62.
    [174] Mylvaganama K, Zhang L C, Xiao K Q. Origin of Friction in Films of HorizontallyOriented Carbon Nanotubes Sliding Against Diamond. Carbon,2009,47:1693-1700.
    [175] So E, Demirel M C, Wahl K J. Mechanical Anisotropy of Nanostructured ParyleneFilms During Sliding Contact. J Phys D Appl Phys,2010,43.
    [176] Barquins M, Khandani B, Maugis D. Stick-Slip Motion During Peeling of aViscoelastic Solid. CR ACAD SCI II,1986,303:1517-1519.
    [177] Kinloch A J, Lau C C, Williams J G. Modelling the Fracture Behaviour of AdhesiveJoints. J Adhes,1996,59:217-224.
    [178] Benyahia L, Verdier C, Piau J M. The Mechanisms of Peeling of Uncross-LinkedPressure Sensitive Adhesives. J Adhes,1997,62:45-73.
    [179] Piau J M, Ravilly G, Verdier C. Peeling of Polydimethylsiloxane Adhesives at L owVelocities: Cohesive Failure. J Polym Sci Pol Phys,2005,43:145-157.
    [180] Blum F D, Metin B, Vohra R, et al. Surface Segmental Mobility and Adhesion-Effects of Filler and Molecular Mass. J Adhes,2006,82:903-917.
    [181] Marin G, Derail C. Rheology and Adherence of Pressure-Sensitive Adhesives. JAdhes,2006,82:469-485.
    [182] Hadavinia H, Kawashita L, Kinloch A J, et al. A Numerical Analysis of theElastic-Plastic Peel Test. Eng Fract Mech,2006,73:2324-2335.
    [183] Verdier C, Ravilly G. Peeling of Polydimethylsiloxane Adhesives: The Case ofAdhesive Failure. J Polym Sci Pol Phys,2007,45:2113-2122.
    [184] Molinari A, Ravichandran G. Peeling of Elastic Tapes: Effects of LargeDeformations, Pre-Straining, and of a Peel-Zone Model. J Adhes,2008,84:961-995.
    [185] Verdier C, Piau J M, Benyahia L. Peeling of Acrylic Pressure Sensitive Adhesives:Cross-Linked Versus Uncross-Linked Adhesives. J Adhes,1998,68:93-116.
    [186] Amouroux N, Petit J, Leger L. Role of Interfacial Resistance to Shear Stress OnAdhesive Peel Strength. Langmuir,2001,17:6510-6517.
    [187] Du J, Lindeman D D, Yarusso D J. Modeling the Peel Performance ofPressure-Sensitive Adhesives. J Adhes,2004,80:601-612.
    [188] Kinloch A J, Lau C C, Williams J G. The Peeling of Flexible Laminates. Int JFracture,1994,66:45-70.
    [189] Georgiou I, Hadavinia H, Ivankovic A, et al. Cohesive Zone Models and thePlastically Deforming Peel Test. J Adhes,2003,79:239-265.
    [190] Shahsavan H, Zhao B X. Conformal Adhesion Enhancement On BiomimeticMicrostructured Surfaces. Langmuir,2011,27:7732-7742.
    [191] Maugis D. Contact, Adhesion and Rupture of Elastic Solids. Berlin: Springer,1999.
    [192] Dupaix R B, Boyce M C. Finite Strain Behavior of Poly(Ethylene Terephthalate)(Pet) and Poly(Ethylene Terephthalate)-Glycol (Petg). Polymer,2005,46:4827-4838.
    [193] Yi J, Boyce M C, Lee G F, et al. Large Deformation Rate-Dependent Stress-StrainBehavior of Polyurea and Polyurethanes. Polymer,2006,47:319-329.
    [194] Plaut R H, Ritchie J L. Analytical Solutions for Peeling Using Beam-On-FoundationModel and Cohesive Zone. J Adhes,2004,80:313-331.
    [195] Pugno N M. The Theory of Multiple Peeling. Int J Fracture,2011,171:185-193.
    [196] Williams J A, Kauzlarich J J. Energy and Force Distributions During MandrelPeeling of a Flexible Tape with a Pressure-Sensitive Adhesive. J Adhes Sci Technol,2006,20:661-676.
    [197] Mahdavi A, Ferreira L, Sundback C, et al. A Biodegradable and BiocompatibleGecko-Inspired Tissue Adhesive. P Natl Acad Sci USA,2008,105:2307-2312.
    [198] Vajpayee S, Khare K, Yang S, et al. Adhesion Selectivity Using Rippled Surfaces.Adv Funct Mater,2011,21:547-555.
    [199] Canas N, Kamperman M, Volker B, et al. Effect of Nano-And Micro-Roughness OnAdhesion of Bioinspired Micropatterned Surfaces. A cta Biomater,2012,8:282-288.
    [200] Johnson K L, Greenwood J A. An Approximate Jkr Theory for Elliptical Conta cts. JPhys D Appl Phys,2005,38:1042-1046.
    [201]赵亚溥,王立森,孙克豪. Tabor数、粘着数与微尺度粘着弹性接触理论.力学进展,2000,30:529-537.
    [202] Greenwood J A. Adhesion of Elastic Spheres. P Roy Soc A Math,1997,453:1277-1297.
    [203] Johnson K L. Mechanics of Adhesion. Tribol Int,1998,31:413-418.
    [204] Jiang K L, Li Q Q, Fan S S. Nanotechnology: Spinning Continuous Carbon NanotubeYarns-Carbon Nanotubes Weave their Way Into a Range of ImaginativeMacroscopic Applications. Nature,2002,419:801.
    [205] Zhang X B, Jiang K L, Teng C, et al. Spinning and Processing Continuous YarnsFrom4-Inch Wafer Scale Super-Aligned Carbon Nanotube Arrays. Adv Mater,2006,18:1505.
    [206] Liu K, Sun Y, Chen L, et al. Controlled Growth of Super-Aligned Carbon NanotubeArrays for Spinning Continuous Unidirectional Sheets with Tun able PhysicalProperties. Nano Lett,2008,8:700-705.
    [207]董云开.微尺度形貌修饰硅表面的摩擦特性研究[博士学位论文].北京:清华大学精仪系,2007.
    [208] Shen L L, Jagota A, Hui C Y. Mechanism of Sliding Friction On a Film-TerminatedFibrillar Interface. Langmuir,2009,25:2772-2780.
    [209] Bhushan B, Ling X. Adhesion and Friction Between Individual Carbon NanotubesMeasured Using Force-Versus-Distance Curves in Atomic Force Microscopy. PhysRev B,2008,78.
    [210] Ge L H, Ci L J, Goyal A, et al. Cooperative Adhesion and Friction of CompliantNanohairs. Nano Lett,2010,10:4509-4513.
    [211] Hu S H, Jiang H D, Xia Z H, et al. Friction and Adhesion of Hierarchical CarbonNanotube Structures for Biomimetic Dry Adhesives: Multiscale Modeling. ACSAppl Mater Inter,2010,2:2570-2578.
    [212] Yoshizawa H, Chen Y L, Israelachvili J. Fundamental Mechanisms of InterfacialFriction.1. Relation Between Adhesion and Friction. J P hys Chem,1993,97:4128-4140.
    [213] Sills S, Gray T, Overney R M. Molecular Dissipation Phenomena of NanoscopicFriction in the Heterogeneous Relaxation Regime of a Glass Form er. J Chem Phys,2005,123:134902.
    [214]余家钰,张聪.粘弹性模型材料的频率响应.土木工程学报,1987,20:28-36.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700