高压电子铝箔组织结构和性能的对比研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
电子铝箔是高端铝箔,主要用于电子工业的重要元器件电解电容器。近年来,随着电子工业的迅猛发展,机电产品的性能和集成度越来越高,这对电子元器件提出了更高的要求——在保证和提高性能的同时有尽量小的体积。因此电解电容器小型化(即实现高比电容)往往是高性能电器产品发展的关键之一。目前,国内高压电子铝箔(即高压箔)的需求量在1.5万吨/年左右,并呈20%的速度逐年递增,而国内能够生产高压箔的厂家却很少,需要大量进口。因此,研究国内外高压箔的组织结构以提高其性能,对我国铝加工产业向更高层次发展,解决高压箔国产化具有重要意义。
     本文采用SIMS、化学成分分析、SEM、EDS、EBSD、直流电化学腐蚀及力学性能测试等手段,对日本昭和、三菱与国产众和三种成品高压箔中主要杂质元素含量及Fe元素的分布、表面质量、位错坑、晶粒大小、力学性能、立方织构含量及耐电解质腐蚀性进行了对比研究。结果表明:影响高压箔腐蚀化成后比电容的主要因素为杂质元素Fe的含量及其分布、立方织构含量及表面质量。找出了国产与日本成品高压箔存在的差距,并提出了改进措施和建议。
     对高压箔主要杂质元素含量的对比研究表明:昭和的平均Fe含量最低,为0.0018%;众和的最高,为0.0027%。一般地,Fe含量增加,立方织构会变弱。高压箔中的Fe含量要严格控制在0.0020%以内。而众和的明显偏高,因此需要降低国产众和中的平均Fe含量。日本高压箔中Fe元素沿厚度方向近似呈直线分布,而国产众和却呈曲线分布,且心部有杂质Fe元素的富集。众和中Fe原子在基体中的不均匀分布,导致其高压箔的晶粒粗大、腐蚀不均匀,进而会降低了腐蚀箔的比电容。昭和的平均Si含量最高,为0.0022%;众和的最低,为0.0019%,两者差距较小,Si对立方织构形成过程的负面影响远没有Fe显著。但Si对高压箔性能的影响不是孤立的,还要受到Fe/Si的影响,Fe/Si分别为:昭和最小0.8182;三菱居中0.9047;众和最大为1.4211。两者共存于高纯铝中时,会影响彼此存在的形式,Fe/Si越小则越有利于提高化成箔的比电容。因此Si含量也要严格控制。
     国产众和高压箔表面起伏及缺陷较多,还存在轧制滚压痕。昭和的平均晶粒为209.1μm,大小适中且晶粒尺寸变化幅度较小;三菱的最小为207.6μm;众和的平均晶粒为223.2μm,尺寸最大且分布紊乱,大小差异较大。昭和在腐蚀后,立方蚀坑最多为17.51%,这与高压箔基体中(001)<100>立方取向有直接的关系。因此,国产高压箔的组织结构控制方面与日本还存在一定的差距,需要改进。
     三种高压箔的横向抗拉强度和延伸率均高于轧向;其中三菱高压箔的抗拉强度最高,横向28.85MPa,轧向28.30MPa,众和与昭和的抗拉强度相当。高压箔的拉伸试样断口比较平齐,有河流状花样和撕裂岭。不同的位置,硬度存在较小差异,平均硬度日本三菱的最高为17.93HV,众和的最低为16.77HV。原因三菱的晶粒最为细小,根据细晶强化理论,晶粒越小,其抗拉强度和硬度值就越高。因此国产高压箔的在强度方面有待加强。
     织构对比研究表明:国产众和高压箔在立方织构占有率方面和日本高压箔水平基本相当,两者均可达到国际先进水平(≥95%)。但国产众和的织构含量为96.23%较之日本昭和的97.89%与三菱的97.75%还是稍微低些,且国产众和高压箔中还具有其他的织构取向,如少量的{124}<211>R织构。因此国产箔中应控制非立方织构的含量。
     通过实验优化出高压箔直流电化学腐蚀工艺参数如下:腐蚀液:HCl+H2SO4混合溶液,HCl取2.0mol/L、H2SO4取0.5mol/L;腐蚀电流密度:0.2A/cm2;腐蚀时间:120S;腐蚀温度:60℃。三种腐蚀箔对比研究表明:日本昭和高压箔520V下化成的比电容最大为0.78μF/cm2,腐蚀孔分布均匀、密度较大且蚀孔较深,总体性能优良;三菱化成箔比电容为0.76μF/cm2;国产众和化成箔比电容最小为0.69μF/cm2,且腐蚀发孔均匀性不好,扩面腐蚀时会出现局部过腐蚀,使得铝箔减薄或穿孔。
Electronic aluminum foil is a high-end aluminum foil; it mainly used in the electrolytic capacitor materials which is an important component electronic industry. The performance and integration of mechanical-electrical products are increasing with the rapid development of electronic industry in recent years, which is made of electronic components higher demand-ensuring and improving the performance and simultaneously posses the volume as small as possible. Therefore, Small electrolytic capacitor (That is to achieve high capacitance) is often the key to develop high performance electrical products. At present, the demands of high-voltage aluminum foils are an amount of 1.5 million ton/year at domestic, and were about 20% of the rate of annual increase. But there is few of high-voltage electronic aluminum foil manufacturers in domestic.So it need to import large quantities. Therefore, the study of the gap between domestic and foreign high-voltage electronic aluminum foil and to identify ways to improve its quality are of great significance to develop China's aluminum industry to a higher level.
     In this paper, various properties of three kinds of final annealed high-voltage aluminum foils, such as the main impurity elements Fe content and its distribution, surface quality, dislocation pits, grain size, mechanical properties, cube texture and corrosion resistance were comparative studied by means of chemical analysis, SIMS, SEM, EDS, EBSD, DC electrochemical corrosion and mechanical properties testing means. The results showed:the main factors that effect capacitance of etched foil are impurity elements Fe content and its distribution, cube texture and surface quality.We identified the gap between domestic and Japan high-voltage electronic aluminum foils, and proposed improvement measures and recommendations.
     The comparative studies of content of three main impurity elements in high voltage aluminum foils have shown that:the average Fe content (0.0018%) of Showa is the lowest of the three, and Join world (0.0027%) is the highest. Cube texture becomes weaker with increasing of the Fe content. Therefore, the Fe contents of high voltage aluminum foils need to control in less than 0.0020%. Fe in Japan's high voltage aluminum foils are approximately linear distribution along the thickness direction, while Join world are curve distribution, and there are enrichment impurities Fe in heart ministry. Fe atoms in Join world and its uneven distribution of the matrix, resulting in high voltage aluminum foil thick grains, uniform corrosion, and thus reduce the capacitance of etched foil. The average Si content of Showa (0.0022%) is highest of the three; Join world (0.0019%) is the lowest, with the small differences. Influence of Si to the formation of cube texture is far from the negative effects of Fe. Influence of Si on aluminum foil is not isolated, but also by Fe/Si. Fe/Si of Showa (0.8182) is smallest; Join world (1.4211) is largest. It will affect their existing format when the two impurities simultaneously in high-pure aluminum, the smaller Fe/Si, the more help to improve the specific capacitance of aluminum foil. Therefore, Si content should be controlled with in 0.0030%.
     Domestic Join world high voltage aluminum foils possess more surface fluctuations and the defects, There are still rolling roll indentations. The average grain size of Showa is 209.1μm, it is moderate and changed little; Mitsubishi has the minimum grain size (207.6μm); the average grain size of Join world is 223.2μm, it is maximum and distribution is disorder, there are great differences between them. Showa posses the most cubic pits after the electrochemical etched. Which has a direct relationship between (001)<100>cube orientation of the matrix with aluminum foil. Therefore, there is a certain gap between the domestic and Japan product in quality control of the surface with aluminum foil, and it need to improve.
     Horizontal tensile strength and elongation are higher than the rolling direction in the three kinds of high voltage aluminum foils; in which the tensile strength of Mitsubishi (horizontal tensile strength is 28.85MPa, elongation tensile strength is 28.30MPa) are the highest of the three. Join world and Showa with fairly. Fracture surface of tensile specimen with aluminum foil are fairly flush, there are river-like patterns and tear ridge. There are little differences in hardness at different locations with high voltage aluminum foils. The average hardness of Mitsubishi (17.93HV) is the highest; Join world (16.77HV) is the lowest of the three. The reason is that the grain of Mitsubishi is finest. The smaller the grain, the higher the hardness value according to the fine grain strengthening theory. Therefore, the domestic high voltage aluminum foils need to be strengthened in intensity.
     Comparative studies of texture showed that:Domestic Join World has almost reached equal level with Japan in volume fraction of cube texture. Both can reach the international advanced level (≥95%), However, texture content in domestic Join World of 96.23% compared to Showa of 97.89% and Mitsubishi of 97.75% is slightly lower, and the domestic Join World has also other texture orientations, such as a small amount of (124)<211>R texture. Therefore, the content of non-cube texture should be controlled in domestic high voltage aluminum foil.
     The process parameters of DC Electrochemical corrosion with high-voltage electronic aluminum foil through experiment was optimized as follows:etching solution composition:HCl+H2SO4 mixed solution, the concentration of HCl is 2.0mol/L, the concentration of H2SO4 is 0.5mol/L; etching current density: 0.2A/cm; etching time:120S; etching temperature:60 C. Comparative studies of three high voltage aluminum foils showed that:the specific capacitance of Showa is up to 0.78μF/cm2 under 520V. Etched holes of Showa distributed even, larger and deeper, Overall It has excellent performance; the specific capacitance of Mitsubishi formed foil was 0.76μF/cm2; domestic Join World has the smallest specific capacitance 0.69μF/cm2 and fat-hole uniformity of is not good, there will appear local over corrosion making aluminum foil thinning or perforation, because of inequality triggered hole.
引文
[1]毛卫民,何业东.国产电解电容器用铝箔的发展与展望[J].世界有色金属,2004(8):23-26.
    [2]冯哲圣,陈金菊,徐蓓娜等.铝电解电容器技术现状及未来发展趋势[J].电子元件与材料,2001,20(5):30-31.
    [3]杨邦朝,冯哲圣.国内外电容器市场概况分析[J].电子元器件应用,2001,(12合刊):56.
    [4]Q Zhou, G Itoh, T Yamashita1. Creep mechanism of aluminum alloy thin foils [J]. Thin Solid Films,2000, (375):104-108.
    [5]高亢之.电解电容器用铝箔概述[J].轻合金加工技术,2000,28(11):9-18.
    [6]阎康平,罗泸蓉.中高压阳极箔直流电扩面侵蚀研究[J].四川大学学报(工程科学版),2000,32(2):33.
    [7]R S Alwitt, H Uchi. Electrochemical tunnel etching of aluminum[J]. Electrochemical Science and Technology,1984:13-17.
    [8]杨宏,毛卫民,钮震霖.国内外高压电解电容器用铝箔的性能比较[J].电子元件与材料,2005,24(11):62-65.
    [9]陈学奇,欧炳隆.铝电解电容器用铝箔之研究[D].[博士论文].台湾:中央国立大学,2005.
    [10]Ono S, Makino T, Alwittr S. Crystallographic pit growth on aluminum (100) [J]. Journal of the Electrochemical Society,2005,152 (2):B39-B44.
    [11]A Brahme, M H Alvi.3D reconstruction of microstructure in commercial purity aluminum[J]. Scripta Materialia,2006:75-80.
    [12]Du Yu-xuan, Zhang Xin-ming, Ye Ling-ying. Recrystallization behavior of high purity aluminum at 300℃. Trans Nonferrous Met. Soc. china 2006, (16):1307-1312.
    [13]Mohammed H Alvi, S W Cheong, et al. Cube texture in hot rolled aluminum alloy 1050 (AA1050) nucleation and growth behavior [J]. Acta Materialia,2008:3098-3108.
    [14]刘晓英,张利君.铝箔生产技术(2)[J].轻金属,1996,46(9):56-60.
    [15]Ozgul Keles, Murat Dundar. Aluminum foil:Its typical quality problems and their causes [J]. Journal of Materials Processing Technology.2007, (186):125-137.
    [16]O Engler, M Crumbach, S. Li. Alloy-dependent rolling texture simulation of aluminum alloys with a grain-interaction model [J]. Acta Materialia 2005 (53):2241-2257
    [17]Kajihara K, Tokuda K, Sugizaki Y. Development of cube texture during industrial processing of high purity aluminum foil obtained with 99% volume fraction of cube component [J]. Materials Science Forum,2002,408 (1):791-796.
    [18]陈平文.电解电容器用国产电极箔发展概况[J].电子元件与材料,1999,18(12):37-39.
    [19]马胜利,井晓天.铝及铝合金阳极氧化膜结构及其应用[J].兵器材料科学与工程,1998,21(4):54-57.
    [20]Han Jun Oh, Jong Ho Lee. Etching characteristics of high-purity aluminum in hydrochloric acid solutions[J]. Materials Science and Engineering,2007:133-341.
    [21]R S Alwitt, H Uchi. Electrochemical tunnel etching of aluminum[J]. Electrochemical Science and Technology,1984:13-17.
    [22]Keuong Y W, Nordien J H, Ono S. Electrochemical activation of aluminum of trace element leads [J]. Journal of the Electrochemical Society,2003,150 (1):B547-B551.
    [23]Suzuk T, Arai K, Shiga M, et al. Impurity effect on cube texture in pure aluminum foils [J]. Metallurgical Transaction A,1985,16A (1):27.
    [24]张新明,孟亚,周鸿章等.Fe杂质对高纯铝再结晶织构及比电容的影响[N].中国有色金属学报,1999,9(3):19-25.
    [25]Ito K, Musick R and Liicke K. The influence of iron content and annealing temperature on the recrystallization textures of high2purity aluminium2iron alloys [J]. Acta Metall,1983,31 (12):213.
    [26]傅高升等.工业纯铝中铁和硅的作用分析与初探.特种铸造及有色冶金[J],2004,(2):26-34.
    [27]Mao W, Jiang H, Yang P. Distribution of microelements and their influence on the corrosion behavior of aluminum foil [J]. Journal of Material Science and Technology,2005,21 (1): 43-46.
    [28]Endou Seiichi, Inagaki Hirosuke. Control of microstructures and textures in high purity Al for advanced high efficiency electrolytic capacitor[J]. Materials Science Forum,2002: 311-324.
    [29]H P Godard. The Corrosion of Light Metals[M]. John Wiley & Sons Inc., New York,1967: 56.
    [30]Gesa Beck, Kerstin Petrikowski. Influence of the microstructure of the aluminum substrate on the regularity of the Nan pore arrangement in an alumina layer formed by anodic oxidation [J]. Surface & Coatings Technology,2008 (202):508-509.
    [31]Chen Z Y, Zhang X M. Yield surfaces of FCC crystals with crystallographic slip and mechanical twinning [J]. Trans Nonferrous Met Soc China,2000,10 (1):34.
    [32]Kim S H, Erb U, Aust K. Grain boundary character distribution and intergranular corrosion behavior in high purity aluminum [J]. Scripta Mater,2001,44 (5):835-839.
    [33]Wall F D, Johnson C M, Barbour J C, et al. Comparison of the effects of implanted and aqueous Cl on aluminum pitting behavior [J]. Electrochem Solid-State Lett,2004,7 (11): B35-B38.
    [34]孙中禹.高纯铝箔再结晶晶粒度对比容的影响[J].电子元件与材料,1995,(8):45-46.
    [35]H Tsubakinoa, A Nogamia, T Yamanoib. Segregation of lead in oxide film of high purity aluminum containing 100 ppm lead applied [J]. Surface Science,2002 (185):298-302.
    [36]BAN Chao-lei, He Ye-dong. Controlling limiting length of tunnels on Al foil electro etched in HCl-H2SO4 solution [J]. Trans Nonferrous Met. Soc. China,2009 (19):601-605.
    [37]凌亚标,尚振山,张声鹏.提高电解电容器用铝箔质量初探[J].轻合金加工技术,1999,27(7):27-30.
    [38]Ozgul Keles, Murat Dundar. Aluminum foil:Its typical quality problems and their causes [J]. Journal of Materials Processing Technology,2007 (186):125-137.
    [39]Yamagata H, Ohuchida Y, Saito N, et al. Effect of temperature on the continuous dynamic recrystallization of 99.99 mass % aluminum [J]. Mater Trans,2001,42 (11):244-257.
    [40]李鹏,刘楚明.双零铝箔力学性能的实验研究[D].[硕士学位论文].长沙:中南大学,2004:24-31.
    [41]J E Hatch. Aluminum:Properties and Physical Metallurgy [M]. ASM International Metal Park, OH, US,1984:137-145.
    [42]冯云祥,张静等.中间退火工艺对铝箔力学性能和成品率的影响[J].重庆大学学报,2000,23(5):32-33.
    [43]M Lederer, V Grower, G Khatibi. Size dependency of mechanical properties of high purity aluminum foils [J]. Materials Science and Engineering,2009:76-89.
    [44]Bunge HJ. Texture analysis in materials science[M]. London:Butterworths,1982:27-33.
    [45]Lee D Y. Texture and related phenomena [M]. Seoul:The Korean Institute of Metals and Materials,2007:554-559.
    [46]Randle V, Engler O. Introduction to texture analysis, macro texture, micro texture and orientation mapping [J]. Amsterdam:Gordon& Breach,2000:3-6.
    [47]Katsuya Suzuki, Yuhei Matsuki, Koichi Masaki. Tensile and micro bend tests of pure aluminum foils with different thicknesses [J]. Materials Science and Engineering,2009, A513-514:77-82.
    [48]潘复生,张静.铝箔材料[M].北京:化学工业出版社,2005:27-29.
    [49]新井浩三.轻金属[M],日本1981:675.
    [50]Dons AL, Nes E. Nucleation of cube texture in aluminum [J]. Materials Science and Technology,1986:8-15.
    [51]Kocks UF, Tome CN, Wenk HR. Texture and anisotropy:preferred orientations and their effect on materials properties [J]. Cambridge:Cambridge University Press,1998:23-25
    [52]Lin W, Tug C, Lin C F. The effect of lead impurity on the DC-etching behavior of aluminum foil for electrolytic capacitor usage[J]. Corrosion Science,1996,38(6):88-90.
    [53]Yoneyama Yoshio. Etching method of aluminum foil for electrolytic capacitor[J].1995:8
    [54]宋洪洲.中高压铝电解电容器用阳极箔腐蚀工艺的研究[J].电子产品可靠性与环境试验,2006,24(5):1-3.
    [55]Newman R C. Local chemistry considerations in the tunneling corrosion of aluminum [J]. Corrosion Science,1995,37 (3):527-533.
    [56]Atsushi H. The effect of sulfuric acid on tunnel etching of aluminum in hydrochloric acid[J]. Light Metals,1992,42 (8):440-445.
    [57]邹道兵.高压电子铝箔腐蚀电解液控制分析[J].新疆有色金属.2007,(1):120-121.
    [58]Nakajima Y, Nakamatsu S, Shimamune T, et al. Development of liquid contacting system for forming of aluminum foil for electrolytic capacitors and its commercialization[J]. Electrochemistry,2001,69 (6):481-484.
    [59]Tad A K, Awaya K. Influence of oxide films formed by final annealing on the D.C. etching property of aluminum foil for electrolytic capacitors [J]. Japan Institute of Light Metals, 2000,50(11):590-593.
    [60]J H Jeong, S Kim, H G Kim. Electrochemical AC etching of aluminum foils in hydrochloric acid electrolytes [J]. Materials Science Form,1996:21-22.
    [61]Thierry Martin, Kurt R, Hebert. Atomic force microscopy study of anodic etching of aluminum[J]. Electrochem Soc,2001,148 (2):B97-B102.
    [62]肖占文.电容器铝箔腐蚀扩面机理研究[J].电子元件与材料,2001,21(2):13-15.
    [63]Osawa N, Fukuoka K. Pit nucleation behavior of aluminum foil for electrolytic capacitors during early stage of DC etching [J]. Corrosion Science,2000,42 (3):78-89.
    [64]E Suganuma, Y Tanno, T. Ito. Surface films formed on aluminum during AC etching in hydrochloric acid solution [J]. Surface Fin. Soc. Jan:Met. Surface Technique,1990.
    [65]Ren-gui Xiao, Kang-ping Yan. Electrochemical etching model in aluminum foil for capacitor [J]. Corrosion Science,50 (2008):1571-1582.
    [66]沈行素.铝电解电容器箔腐蚀工艺的进展及有关电化学问题[J].电子元件与材料,1993,12(2):56.
    [67]木冠南,陈军.阳离子表面活性剂对铝在盐酸中的缓蚀作用[J].腐蚀与防护,1986,(6):5.
    [68]Thomas Flavian Strange, Ralph Jason Hemphill. Process for using surface active agents to produce high etch gains for electrolytic capacitor. Manufacturing [P], US-6238810B1,2001
    [69]闫康平,王建中.中高压电容器铝箔扩孔液中缓蚀剂的作用[J].电子元件与材料,2001,20(6):6-12.
    [70]王祝堂,田荣璋.铝合金及其加工手册[M].长沙,中南大学出版社,2000:504-513.
    [71]E Aernoudt, P Van Houtte, T Lifers. Plastic deformation and fracture of materials [J]. Materials Science and Technology:A Comprehensive Treatment,1993:89.
    [72]Humphre F J, Ferry M. Applications of electron backscattered diffraction to studies of annealing of deformed metals [J]. Materials Science and Technology,1997,13 (1):85-90.
    [73]Ikedak, Tsumagarik, Yoshida F, et al. Analysis of cube texture in high purity aluminum foils for electrolytic capacitor by EBSP method [J]. Journal of Japan Institute of light metals,2001, 51(3):119-124.
    [74]毛卫民,张新明.晶体材料织构定量分析[M].北京:冶金工业出版社,1995:178-201.
    [75]陈亮维,史庆南,周世平等.X射线衍射取向分布函数分析[N].物理测试,2008:7-9.
    [76]V. Randle, O. Engler, Introduction to Texture Analysis:Macro texture, Micro texture and Orientation Mapping [J], Gordon & Breach, Amsterdam,2000:114-119.
    [77]W Q Cao, A Godfrey, Q Liu. EBSP investigation of microstructure and texture evolution during equal channel angular pressing of aluminum[J]. Materials Science and Engineering, A361 (2003):9-14.
    [78]Specimen preparation of electron backscatter diffraction (EBSD) analysis [J]. World Leaders in Micro structural Analysis,2001:32-41.
    [79]Kunze K, Wright S I, Adams B L, et al. Advances in automatic EBSP single orientation measurements [J]. Textures and Microstructures,1993,20:41-54.
    [80]杨邦朝,肖占文.预处理对铝箔电蚀特性的影响[J].电子元件与材料,1997,17(3):13-14.
    [81]Ono S, Makino T, Alwitt R S. Crystallographic pit growth on aluminum (100) [J]. Journal of the Electrochemical Society,2005,152 (2):B39-B44.
    [82]Ren B, Morris J G. Microstructure and texture evolution of Al during hot and cold rolling [J]. Metall Mater Trans,1995,26A:31-40.
    [83]郑子樵.组织结构对电容铝箔腐蚀形貌和比电容的影响[J].中南矿冶学院学报,1983,35(1):108-114.
    [84]Kajikharak, Tokudak, Sugizaki Y, et al. The formation process of cube texture during the final annealing in high-purity aluminum foil[J]. Journal of Japan Institute of light metals, 2001,51 (3):72-87.
    [85]李鹏,刘楚明.双零铝箔力学性能的实验研究[D].[硕士学位论文].长沙:中南大学,2004:54.
    [86]刘楚明,张新明,陈志永等.微量元素对高纯铝箔立方织构的影响[J].中南工业大学学报(自然科学版),2001,32(2):73-79.
    [87]杨重愚.轻金属冶金学[M].北京:冶金工业出版社,2002:200-201.
    [88]E Maar, T Tchurbakova, I Nagyvathy. Effect of Al-Fe and Al-Fe-Si phases on the porosity of Al foils[J], Key Eng. Mater.44-45 (1990):211-218.
    [89]Albou, S Raveendra, et al. Direct correlation of deformation microstructures and cube recrystallization nucleation in aluminum [J]. Scripta Materialia,2009:117-123.
    [90]李玉梅.高纯铝铸锭的铁、硅、铜含量控制[J].轻合金加工技术.2002,30(10):8-10.
    [91]Suzuki T, Arai K, Shiga M, et al. Impurity effect on cube texture in aluminum foils [J]. Metallurgical Trans-actions,1985, (16):27-36.
    [92]Lucke K, Engler O. Effect of particles on development of microstructure and texture during rolling and recrystallization in FCC alloys [J]. Materials Science and Technology,1990, 6(11):1114-1127
    [93]T Turlnezey, V Steafaniy. AIFeSi Phases in Aluminum [M], Key Engineering Materials, 1990,44(45):57-68.
    [94]Monsun D A. Clarification of the Phases Occurring in Aluminum-rich Al-Fe-Si Alloys, with Particular Reference to the Ternary Phase α-AlFeSi [J]. Journal of the Institute of Metals,1967,95 (3):207-219.
    [95]Ashitaka Z, Thompson G E. The behavior of copper and lead during heat-treatment and surface treatment of aluminum capacitor foils [J]. J Electrochem Soc,1999,146 (4):138-141
    [96]Seki Fumie. Cube-oriented regions in inhomogeneous rolling texture and recrystallization texture of high purity aluminum foil [J]. Journal of Japan Institute of metals,2000,66 (2): 117-136.
    [97]徐进,毛卫民,冯惠平等.Cu对高压电解电容器阳极铝箔再结晶织构的影响[N].北京科 技大学学报,2002,24(2):33-36.
    [98]孙中禹,徐友龙,曹婉真.高纯铝再结晶晶粒度对比电容的影响[J].电子元件与材料,1995,14(5):45-47.
    [99]沈行素,阎康平.腐蚀与防护[M].1985,30(4):2-5.
    [100]Dillamore I L, Katou H. The mechanisms of recrystallization in cube metals with particular reference to their orientation dependence [J]. Metal Science,1974:73.
    [101]Lin T H. Plastic deformation of BCC polycrystals [J]. Mech Physolids,1964,12:25-33.
    [102]N Stanford, D Dunne, M Ferry. Effect of orientation stability on recrystallization textures of deformed aluminum single crystals [J]. Materials Science and Engineering, A348 2003: 154-161.
    [103]TaYlor G I. Plastic strain in metals [J]. Inst Met,1938, (62):307-311.
    [104]Olaf Engler, Moo-Young Huh. Evolution of the cube texture in high purity aluminum capacitor foils by continuous recrystallization and subsequent grain growth [J]. Materials Science and Engineering,1999:371-381.
    [105]陈学奇.铝电解电容器用铝箔之研究[D].[博士学位论文].中坜:中央大学,2005.67-74.
    [106]Engler O. On the origin of the R orientation in the recrystallization textures of aluminum alloys [J]. Metallurgical and Materials Transactions A,1999,30A (6):1517-1520.
    [107]永田伊佐也著,陈永滨译,铝箔乾式电解电容器[M].日本蓄电器工业株式会社,1985:230-233.
    [108]L F Folle, S Eglan. Analysis of the manufacturing process of beverage cans using aluminum alloy [J]. Mater Process Technol.2008 (205):347-352.
    [109]Dingley D J. A comparison of diffraction techniques for the SEM[J]. Scanning electron microscopy,1981:273-286.
    [110]余永宁,毛卫民.材料的结构[M].冶金工业出版社,2001:389-197.
    [111]Kosuge H. High purity aluminum[J]. Light Metals,1998,38 (4):238-248.
    [112]Kenshiro Yamaguchi. High purity aluminum foil for electrolytic capacitor[J]. Jan. Inst. Light Met,1985:365-371.
    [113]Oh Han-Jun, Park Gyeong-Su kin Jun-Gu, et al. Surface roughness factor of anodic oxide layer for electrolytic capacitors [J]. Materials Chemistry and Physics,2003,82 (2): 231-234.
    [114]Liu Chu-ming, Jiang Shu-nong, Zhang Xin-ming. Continuous dynamic recrystallization and discontinuous dynamic recrystallization in 99.99% polycrystalline aluminum hot compression [J]. Trans Nonferrous Met.Soc.China,2005:7-9.
    [115]Ibe G. Capacitance and texture formation in Aluminum capacitor foils[A]. Bunge H J. Directional Properties of Materials,1988:145-156.
    [116]Wall F D, Martinez M A, Vandenavyle J J. Relationship between induction time for pitting and pitting potential for high-purity aluminum [J]. Journal of the Electrochemical Society, 2004,151(6):B354-B358.
    [115]Hebert K, Alkire R C. Growth and passivity of aluminum etch tunnels [J]. Journal of the Electrochemical Society,1988,135 (11):214-217.
    [116]Gourdet S, Montheillet F. Effect s of dynamic grain boundary migration during the hot compression of high stacking fault energy metals [J]. Acta Mater,2002,50 (11):281-289.
    [117]王祝堂,田荣璋.铝合金及其加工手册(第三版)[M].长沙:中南大学出版社,2005:428.
    [118]Hebert K, Alkire R C. Growth rates of aluminum etch tunnels [J]. Journal of the Electrochemical Society,1988,135 (12):2447-2451.
    [119]陈金菊,冯哲圣,郭红蕾等.化学法增大铝箔表面阳极氧化膜介电常数的研究与进展[J].功能材料,2005,36(12):1577-1580.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700