高频机械振动下的砂土液化特性及其应用
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
砂土液化在地震中较为常见,液化后地基失效,导致大量建筑物损毁。然而,砂土液化在工程上被正面利用。例如,振动注浆被用于处理软弱地基,该方法首先通过振动机具的冲击振动,在砂土地基内形成软化区,然后利用注浆管将浆液压入砂土中;通过振动使混凝土液化泛浆再碾压形成碾压混凝土(RCC)等等。
     本文的研究对象为含水饱和的粉细砂,针对其在振动载荷作用下可以液化这一工程特性,在不同工况条件下,利用静力触探仪测得粉细砂锥尖阻力,对比高频振动前后锥尖阻力变化情况,分析讨论了振动荷载作用时间、振动荷载作用频率、振动荷载作用距离等因素对于砂土液化效果的影响程度;利用粘度计测得不同工况下砂土液化后的粘度,通过对比液化前后粘度的变化,分析讨论了砂土的流变特性。
     研究发现:1)在不同振动荷载作用时间下,振动时间越长,液化效果越明显,但存在一个临界液化时间,超过临界液化时间,液化效果将不会随之增加;2)在不同振动荷载作用距离下,砂土液化效果随着振动荷载作用距离的增大而变得不明显,振动载荷的作用在砂土中的传播随着距离加大而衰减,导致液化效果减弱;3)砂土液化效果随着振动频率的增加而变得明显,特别在振动荷载作用频率与砂土固有频率接近时,因为存在共振效应,此时砂土液化效果最为明显;4)在高频振动前后的粉细砂表观粘度显著减小,存在剪切稀化现象。液化后粉细砂的特性仍属于非牛顿流体,符合幂律流体。
Liquefaction is very common in the earthquakes. The foundations of constructions lost efficacy,a large number of buildings were damaged due to liguefaction. However,liquefaction is friendly used in engineering practice. For examples,the basic principle of vibration grouting technique is adopted to treat soft land. Roller Compacted Concrete (RCC) is formed by“vibration and then rolled”.
     This study focused on fully saturated silt. Under different conditions, the cone resistances of fully saturated silt were measured by a static penetrometer.In order to comparing the resistances pre and post vibrations,the influences of vibration time,frequencies,and distance away from the vibration source on the liquefaction characteristics were discussed; furthermore,the viscosity of the liquefied silt was measured using a viscometer,and the viscosity results for different cases were compared to find the silt’s rheological features.
     It was found in this study that: 1) Under different vibration time,the longer the vibration time is,the more the liquefaction effect would generally have,neverthness,there is a critical liquefaction time,which means if the vibration time is longer than the critical liquefaction time, the liquefaction effect would no longer increase; 2) Under the different vibration distance,the farther vibration distance is,the less the silt liquefaction would become,but as the vibration distance becomes farther, the vibration effect would get weak. 3) The higher vibration frequency is, the better the liquefaction would be. When the vibration frequency is close to silt inherent frequency,the liquefaction behaves the most. 4) After high frequency vibrations was applied , the silt apparent viscosity was significantly decreased,a shear thinning phenomenon exists. The liquefied silty still belongs to a kind of non-newtonian fluid,i.e.,the power-law fluid.
引文
[1]孙悦,液化土层地震动和场地液化识别方法研究,博士学位论文,中国地震局工程力学研究所,2006
    [2]周海林,刘宝琛,王星华,振动注浆中的砂土液化研究[J],中国铁道科学,2003
    [3]杨士敏,集料型材料的力学性质与碾压混凝土的振动液化机理,混凝土[J],2000
    [4]赵伟.高频振动回转钻进机理分析与研究,硕士学位论文,吉林大学,2008.
    [5]陈岱杰,陈龙珠,郑建国.高频振动打桩机理的试验研究[J],铁道建筑技术,2006.
    [6]J.T.Gunn,V.N.Tramontini,Oscillation of tillage implements,Journal of Agricultural Engineering,1995.
    [7]M.J.Buston,D.MacIntyre,Vibrating soil cutting I:Soil tank studies of draught and power requirements.Journal of Agricultural Engineering Research,1981
    [8]喻国良,带高频微幅振荡功能的锚,中国,B63B21/24,CN201030939,2008.03.05
    [9]鲁晓兵,饱和砂土液化研究新进展[J],力学进展,2004
    [10]罗强,饱和砂土动力特性试验研究,硕士学位论文,中国地震局工程力学研究所,2005
    [11]SEED H B, ARAN GO I. CHAN C K. Evaluation of soil liquefaction potential during earthquake [R]. Report No. EERC, Earthquake Engineering Research Center, University of California, Berkeley,CA , 1975.
    [12]SEED H B. Soil liquefaction and cyclic mobility evaluation for level ground during earthquakes[J]. J of the Geotech Eng Div, ASCE, 1979, [13 ] SEED H B, IDRISSIM , ARANGO I. Evaluation of liquefaction potential using field performance data [J].J of the Geotech EngDiv, ASCE, 1983, [14 ] SEED H B, TOKIMA TSUK, HARDER L F. The influence of SPT procedure in soil liquefaction resistance evaluation [R]. Report No. EERC 75228, Earthquake Engineering Research Center, University of California, Berkeley, CA , 1984.
    [15]MICHEAL H B, PETER M B. A simulation of upper sanfernando dam using a synthesized approach [C].Proceeding of the Symposium on Slope Stability A nalysis, Vancouver, 1999.
    [16] SEED H B, L EE K L , IDRISS IM. Dynamic analysis of slide in the lower sanfernando dam during the earthquake of feb [J]. J GE Div ASCE, 1971
    [17]MEJIA L H, SEED H B, LYSMER J. Dynamic analysis of earth dam s in three dimensions [J]. J Geotech Eng Div A SCE, 1982
    [18]MEJIA L H, SEED H B. Three dimensional dynamic response analysis of earth dams [R], Report EERC, 1987.
    [19] BEA TYM , BYRN E P M. A simulation of the upper sanfernando dam using a synthesized app roach [C].Proceedings of the Second International Conference on Earthquake Geo technical Engineering, Balkema,1990.
    [20] FINN W D L.地震反应和砂土液化[A].地基与基础译文集(1)砂土液化[C].中国建筑工业出版社, 1979.
    [21]MARTIN G B, F INN W D L , SEED H B. Fundamentals of liquefaction under cyclic loading [J]. JGED,ASCE, 1975
    [22] LOKY. The pore pressure strain relationship of no r2mally consolidation undisturbed clays[J]. Part1, The oretical Consolidations, Canadian Geo technical Journal, 1969
    [23] DOBRY R. Predict ion of pore water pressure build up and liquefaction of sand during earthquakes by the cyclic Strain Method [C]. NBS building Science Series, U S Department of Commerce National Bureau of Standards, 1982.
    [24] FINN W D L , BHA T IA S K. Verification of non-liner effective stress model in simple shear [C]. P roceedings, A SCE Fall Meeting, Hollywood by the SeaFlorida, 1980.
    [25] ISHIHARA. Undrained deformation and liquefaction of sand under cyclic stress [J]. Soil and Foundation,1975
    [26] BEATY M , BYRNE P M. An effective stress model for predicting liquefaction behavior of sand [J].Geo technical Earthquake Engineering and Soil Dynamics ? ,ASCE, 1998
    [27] YOUD T L. Densification and shear of sand during vibration [J]. Proc ASCE, 1970
    [28] NEMAT-NASSER S, SHOKOOH A. A unified approach to densification and liquefaction of cohesionless sand in cyclic shearing [J]. Canadian Geo technical Journal, 1969
    [29] SADHU R J. TARA 22, two dimensional non-liner static and dynamic response analysis[C]. Soil Dynamics Group , University of British Columbia, Vancouver, Canada, 1969.
    [30] LYSMER J A. Computer program for comple response analysis of soil strucure systems [R]. Report to No. EERC7424, Earthquake Engineering Research Center, University of California, Berkeley, California, 1974
    [31] F INN W D L , BHATIA S K. Verification of non-liner effective stress model in simple shear [C]. Proceedings, A SCE Fall Meeting, Hollywood2by2the Sea Florida, 1980.
    [32] ISHIHARA. Undrained deformation and liquefaction of sand under cyclic stress [J]. Soil and Foundation,1975
    [33] FINN W D L. Liquefaction potential: developments since 1976 [C]. Proc International Conference on Recent Advance in Geotechnical Earthquake Eng and Soil Dynamics, St Louis, Missouri, 1981.
    [34]汪闻韶,土的动力强度和液化特性[M],北京,中国电力出版社,1997
    [35]谢定义,巫志辉,不规则动荷脉冲波对砂土液化特性的影响[J],岩土工程学报, 1987,
    [36]沈珠江,复杂载荷下砂土液化变形的结构性模型[C],大连:第五届全国土动力学学术会议论文集,1998
    [37]张克绪,饱和非粘性土坝坡地震稳定性的分析[J],岩土工程学报,1980
    [38]何广讷,李万民,振动能量下砂土的体变与孔隙水压力[J],地震工程与工程振动,1987,
    [39]徐志英,周健,土坝地震孔隙水压力产生、扩散和消散的三维动力模型[J],地震工程与工程振动,1985
    [40]Men Fu lu and Cui Jie,Dynamic analysis of sand liquefaction[J],Proc. 9 th ECEE,Vol,1990
    [41]杨建,陈庆寿,砂土液化影响因素及其判别方法[J],西部探矿工程,2004
    [42]罗强,饱和砂土地震液化研究现状[J],攀枝花学院学报,2008
    [43] SASAKI Y, TOWHATA I, TOKIDA K I,et al,Mechanism of permanent displacement of ground caused by seismic liquefaction[J],Soils and Foundations,1998
    [44]UZUOKA R,YASHIMA A,KAWAKAMI T, et al. Fluid dynamics based prediction of liquefaction induced lateral spreading [J] ,Computers and Geotechnics , 1998
    [45]HADUSH S,YASHIMA A,UZUOKA R,Importance of viscous fluid characteristics in liquefaction induced lateral spreading analysis[J],Computers and Geotechnics,2000
    [46] TOWHATA I, SASAKI Y, TOKIDA K I, et al. Prediction of permanent displacement of liquefied ground by means of minimum energy principle[J]. Soils and Foundations,,1992
    [47] ORENSE R P, TOWHATA I. Three dimensional analysis on lateral displacement of liquefied subsoil[J]. Soils and Foundations. 1998,
    [48] TOWHATA I, Vargas-Monge W, ORENSE R P, et al. Shaking table tests on subgrade reaction of pipe embedded in sandy liquefied subsoil[J]. Soil Dynamics and Earthquake Engineering. 1999,
    [49] NISHIMURA S, TOWHATA I, HONDA T. Laboratory shear tests on viscous nature of liquefied sand[J]. Soils and Foundations. 2002,
    [50]贺清录,潘绍财,粉细砂筑堤技术综述[J],广东水利水电,2006
    [51]张建军,静力触探技术应用研究,硕士学位论文,中国地质大学,2008
    [52]中国工程建设标准化委员会,静力触探技术标准,北京,1988
    [53]费翔俊,高浓度浑水的粘滞系数[J],水利学报,1982
    [54]钱宁,万兆惠,泥沙运动力学[M],北京:科学出版社,1983
    [55]Bai,Y,NG,C-O,Shen,H,&Wang,S,Rheologcial Properties and Incipient Motion of cohesive sediment in the Haihe estuary of China,China Ocean Eng,
    [56]沈崇棠,刘鹤年,非牛顿流体力学及其应用[M],北京,高等教育出版社, 1989
    [57]姚绍卫,旋转粘度计使用中必须注意的几个问题[J],上海计量测试,2003
    [58]铁道第四勘察设计院,铁路工程地质原位测试规程[M],北京,中国铁道出版社,2003
    [59]南京水利科学研究所,土工试验规范[M],北京,水利电力出版社,1992
    [60]叶观宝,苌红涛,无填料振冲法在液化粉细砂中的应用研究[J],岩土工程学报,2009
    [61]谢尊渊,方先和.建筑施工上册(上册)[M].北京:中国建筑工业出版社,1989.
    [62]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [63]张金来,鲁晓兵.水平动载下饱和砂土地基液化区扩展[J].岩土工程技术,2004,
    [64]张建民,王稳祥.振动频率对饱和砂土动力特性的影响[J].岩土工程学报,1990,
    [65]陈育民,刘汉龙,周云东,液化及液化后砂土的流动特性分析[J],岩土工程学报,2006
    [66]张英奎,张永兴,大口径管道在水网地区的施工方法[J],油气储运,2003
    [67]宁博,长输管道工程水网地段施工方法[J],科技资讯,2007
    [68]于洪山,陈晓霞,万玉辉,管道牵引法在水网淤泥地段长输管道施工中的应用[J],石油工程建设,2009
    [69]罗志强,汤美安,陈雪华,无土围堰技术在管道施工中的应用[J],石油工程建设,2001
    [70]李贵宾,西气东输管道漂浮法穿越江南水网[J],油气储运,2003
    [71]张伟,王鹏,现代非开挖地下管线施工方法及适用范围[J],地质与勘探,1998
    [72]梁进,水下特殊地形管槽爆破开挖施工工艺及对策探讨[J],珠江水运,2006
    [73]董家兴,智维民,水冲气举法穿越河流[J],石油工程建设,1986
    [74]赵玉生,郭胜利,董秀春,浅谈海底光缆敷设技术及专用施工设备,全国第十三次光纤通信暨第十四届集成光学学术会议,2007
    [75]潘志芳,淤泥液化与管道输送淤泥的阻力,硕士学位论文,上海交通大学,2008

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700