振动频率对土动力特性影响的试验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
由于现代化城市对环境保护的要求日趋严格,施工过程引起环境振动的桩基施工机械受到越来越多的限制。为解决城市地区桩基础施工的环境影响问题,国内外近十多年来发展和推广高频液压振动沉桩技术。虽然该技术在工程界已被逐渐应用,但是对沉桩过程中土的动力特性变化研究还是不足。本文在总结国内外既有研究成果基础上,利用组装高频振动测试系统分别对干砂、饱和砂土进行高频振动测试试验;同时,对饱和砂土与饱和软粘土在2~10Hz范围内进行动三轴试验。主要工作包括:
     (1)利用实验室现有静力固结仪和电磁式激振器等仪器设备,组装一套可用于高频振动测试的系统。该系统工作频率18~2000Hz,变形测量精度为1μm,可以持续输出恒定峰值动荷载。
     (2)采用高频振动测试系统对相对密实度为33%和66%的干砂,在侧限和振动频率为18~42Hz条件下进行振动试验,着重探讨了干砂土残余变形与振动频率的变化关系,并考察了相对密实度、动应力幅值的影响。
     (3)对不同相对密实度、不同动应力幅值下饱和砂土进行高频振动试验,研究饱和砂土残余变形与振动频率关系;并且与干砂土试验结果比较,分析饱和砂土与干砂土不同振动频率下残余变形的差异。
     (4)在固结比为1.0,围压为250kPa、500kPa条件下,对饱和砂土和饱和软粘土在振动频率处于2~10Hz范围内进行动三轴试验,探讨了振动频率对动模量、阻尼比的影响;分析不同振动频率下饱和砂土与饱和软粘土孔隙水压力变化规律。
     本文是国家自然科学基金资助项目(50779034)的一部分。
Owing to the requirements on environmental protection in modern cities, the application of pile construction machinery which arousing environmental vibration in process of construction has been constrained. In order to alleviate the environmental impacts of piling driving in urban areas, piling with high-frequency vibration was developed and gradually used abroad over recent 10 years. However, there is little work focus on the soil dynamic characteristics in process of piling.
     In this thesis, the dry and saturated sands are employed to perform high-frequency vibration experiment test. It is also employed to perform cyclic tri-axial tests for saturated sand and saturated clay. The main contents are as follows:
     (1) Making the use of present instrument and equipment including static consolidation apparatus and electromagnetic vibration exciter to assembling a test system with high-frequency vibration. Its working frequency is between 18~2000Hz, and accuracy of deformation measurement is 1μm, and also can supply with dynamic load of constant peak.
     (2) A series of vibration compaction tests were done by "the system of high-frequency vibration experiment test" for dry sand of the relative density 33%、66%, under lateral confinement with vibration frequencies 18~42Hz. The relationship of dry sand between residual deformation and vibration frequency was investigated. The influence of relative density and amplitude of dynamic stress were also analyzed for the relationship between vibration frequency and residual deformation.
     (3) Experimenting on the "the system of high-frequency vibration experiment test" with saturated sand of different relative density and different amplitude of dynamic stress, the relationship between residual deformation and vibration frequency was investigated for saturated sand. Comparing the results with those of the dry sand and discussing the differences of residual deformation between saturated sand and dry sand were followed then.
     (4) The soil dynamic tri-axial test was employed for saturated sand and saturated clay with vibration frequency 2~10Hz under consolidation ratio 1.0 and confining pressure250kPa and 500kPa.The effect of vibration frequency were carried out emphasis on dynamic modulus, damping ratio and the change patterns of the generation of pore water pressure under different vibration frequency were analyzed.
     The research work presented in this thesis was supported by the National Natural Science Foundation of China with the granted number 50779034.
引文
[1]华南理工大学,浙江大学,湖南大学.基础工程[M].北京:中国建筑工业出版社,2003.
    [2]刘金砺编著.桩基础设计与计算[M].北京:中国建筑工业出版社,1990.
    [3]郭继武,郭瑶.房屋抗震设计[M].北京:清华大学出版社,2003.
    [4]夏禾,吴萱,于大明.城市轨道交通系统引起的环境振动问题[J].北方交通大学学报,1999,23(4):44-53.
    [5]崔高航,陶夏新,陈宪麦.城轨交通引起的环境振动问题综述研究[J].地震工程与工程振动,2008,28(1):38-43.
    [6]夏禾,曹艳梅.轨道交通引起的环境振动问题[J].铁道科学与工程,2004,1(1):44-51.
    [7]夏传勇,姚仰平,罗汀.沉桩振动的环境影响评价[J].北京航空航天大学学报,2003,29(6):539-54.
    [8]柏炯,张庆贺.打(压)桩引起振动和级图效应的预测及防治[J].振动与冲击,1998,17(2):34-39.
    [9]张庆贺,柏炯.沉桩引起环境病害的预测和防治[J].岩石力学与工程学报,1997,16(6):595-603.
    [10]《桩基工程手册》编写委员会.桩基工程手册[M].北京:中国建筑工业出版社,1995.
    [11]刘伟.液压振动沉桩机沉桩机理及其振幅和频率调节系统研究[D].长沙:中南大学,2004.
    [12]沈保汉.振动法沉桩[J].施工技术,2001,30(11):44-45.
    [13]刘剑,陈龙珠,曹国俊等.液压高频振动桩锤开发及应用[J].防灾减灾工程学报(增刊),2008,28:202-205.
    [14]蔡绍琚.液压控制式变频变矩高频振动桩锤[J].建筑机械,1998,12:19-22.
    [15]蔡绍琚.液压式超高频振动打拔桩锤[J].建筑机械, 1995,1:6~9.
    [16] Wong D,O'Neill M W,Vipulanadan C. Modelling of vibratory pile driving in sand [J]. International Journal for Numerical and Analytical Methods in Geomechanics,1992,16(3):189-210.
    [17]王进怀.高频液压振动沉拔桩锤[C].刘金砺主编,高层建筑桩基工程技术[M].北京:中国建筑工业出版社,1998.
    [18]刘元洪,王欣丽,杨文军.EP800H型调频调幅超高频振动桩锤[J].建筑机械,2004,(8):44-45.
    [19]汤绍和.ICE液压振动沉拔桩机[J].建筑机械,1999,(3):21-21.
    [20]张忠海.液压式振动桩锤发展及选型应用[J].建筑机械,2001,(3):39-41.
    [21]国内首台无共振高频液压振动锤问世[J].岩土工程界,2003,6(7):14-15.
    [22]王进怀,王卫东,王新申.欲善其事必先利其器-高频液压振动锤概述[J].现代零部件,2006,(11):76-79.
    [23] Rausche F. Modeling of vibratory Pile driving[J].Journal of Geotechnical Engineering,Ⅲ(3):367-383.
    [24] Kondner R L, Edwards. The static and vibratory cutting and penetration of soils[C] / / Highway Research Board Proceedings,1960:583-604.
    [25] Holeyman AE. Soil modeling for Pile vibratory Pile driving [J]. Int. Cont. On Design and Construction of Deep Foundations,1994,(2),116-178.
    [26] Holeyman A. A method of Predict the drivability of vibratory Piles,Fifth Int. On the Use of Stress Ware Measurements on Piles,1996.
    [27] Feng Z.Y. Bearing capacity and load-deformation characteristic of vibratory driven piles [D]. America:Purdue University,1997.
    [28] Leonards GA. Drivability,load-settlement and bearing capacity of Piles installed with vibratory hammers[R].Final Report Submitted to the Deep Foundations Institute. School of Engineering,Purdue University,West Lafayette. Indiana,1995.
    [29] Masoumi H R,Degrande G,Lombaert G. Prediction of free field vibrations due to pile driving using a dynamic soil-structure interaction formutation[J].Soil Dynamics and Earthquake Engineering,2007,27(2):1-18.
    [30] Nogami T,REN F Z,CHEN J W,et al. Vertical vibration of pile in vibration-induced excess pore pressure field [J]. Journal of Geotechnical and Geoenvironmental Engineering,1997,123(5):422-429.
    [31] O'Neil M W,Vipulanandan C,Wong D O. Laboratory modeling of vibro-driven piles [J]. Journal of Geotechnical Engineering,ASCE,1990,116(8):1190-1209.
    [32] Holeyman A. Soil behavior under vibratory driving[C]//Proceedings of the International Conference on Vibratory Pile Driving and Deep Soil Compaction,Belgium,2002:3-19.
    [33]姜伟,裴翔,项祖丰等.新型液压振动打桩机的性能研究[J].建筑机械化,1997,(5):27-30.
    [34]罗春雷.液压振动桩锤沉桩动力学及调频调矩控制研究[D].长沙:中南大学,2005.
    [35]陈岱杰.高频振动沉桩特性的试验研究[D].上海:上海交通大学,2006.
    [36]魏楠.饱和地基高频振动特性的数值分析与试验研究[D].上海:上海交通大学,2008.
    [37]郑添寿,陈福全.高频液压振动锤打桩有限元方法分析[J].福建建设科技,2008,(6):6-10.
    [38]陈福全,汪金卫.高频液压振动锤沉桩引起的孔压增长性状分析[J].铁道科学与工程学报,2010,17(1):21-27.
    [39] Peacock W H,Seed H B. Sand liquefaction under cyclic loading simple shear conditions [J].Journal of the Soil Mechanics and Foundations Division,ASCE,1968,94(SM3):689-708.
    [40] Yoshimi Y,Oh-Oka H. Influence of degree of shear stress reversal on the liquefaction potential of saturated sand[J].Soils and Foundations,1975,15(3):27-40.
    [41] Lee K L and Foeht J A. Cyclic testing of soil for ocean wave loading problems. The 7th Annual offshore Technology Conference,1975,Houston. Texas.
    [42]张金来,鲁晓兵,王淑云.水平动载下饱和砂土地基液化区扩展[J].岩土工程技术,2004,18(1):8-10.
    [43]郭莹,贺林.振动频率对饱和砂土液化强度的影响[J].防灾减灾工程学报,2009,29(6):618-623.
    [44]王桂首,桑野二郎,竹村次朗.循环荷载下砂质混合土孔隙水压力特性研究[J].岩土工程学报, 2004,26(4):541-545.
    [45]周海林,王星华.动三轴实验中的饱和砂土孔隙水压力分析[J].铁道学报,2002,24(6):94-98.
    [46]王星华,周海林.砂土液化动稳态强度分析[J].岩石力学与工程学报,2003,22(1):96-102.
    [47]顾小芸.海洋工程地质的回顾与展望.工程地质学报,2000,8(1):40-45.
    [48]谢定义.土动力学[M].西安:西安交通大学出版社,1988.
    [49]张建民,王稳祥.振动频率对饱和砂土动力特性的影响[J].岩土工程学报,1990,12(1):89-97.
    [50] Matsui T,Ohara H,Ito T. Cyclic stress-strain history and shear characteristic of clays[J].Journal of Geotechnica1 Engineering,1980,106(10):1101-1120.
    [51]周建,龚晓南,李剑强.循环荷载作用下饱和软粘土特性试验研究[J].工业建筑,2000,30(11):43-47.
    [52]周建,龚晓南.循环荷载作用下饱和软粘土应变软化研究[J].土木工程学报,2000,32(5):62-68.
    [53]许才军,杜坚,周红波.饱和软粘土在不排水循环荷载作用下孔隙水压力模型的建立[J].上海地质,1997,(3):16-21.
    [54]张茹,涂扬举,费文平,赵忠虎.振动频率对饱和粘性土动力特性的影响[J].岩土力学,2006, 27(5):699-704.
    [55]潘林有,王军.振动频率对饱和软粘土相关性能的影响[J].自然灾害学报,2007,16(6):204-208.
    [56]丁金伟,刘海笑,胡黎明.天津软粘土的动三轴试验研究[A].第七届全国土动力论文集.北京:清华大学出版社,2006,77-81.
    [57] Hardin B O,Drnevich V P. Shear modulus and damping in soils:Measurement and Parameter effects[J].Journal of the soil mechanics and Foundation division,1972,98(6):603-624.
    [58]于洪治,何广讷,杨斌.软土震陷特性的试验研究[J].大连理工大学学报,1996,36(1):76-82.
    [59] Yasuhara K. Cyclic strength and deformation of normally consolidated clay [J].Soils and Foundations,1982,22(3):77-91.
    [60] Brown S F,Lashine A.K.F,Hyde A.F.L. Repeated load triaxial testing of a silty clay [J] Geotechnique,1975,25(1):95-114
    [1]奚德昌,赵钦淼.振动台及振动试验[M].北京:机械工业出版社,1985.
    [2]姚振纲,刘祖华.建筑结构试验[M].上海:同济大学出版社,1996.
    [3]王济,胡晓. Matlab在振动信号处理中的应用[M].北京:中国水利水电出版社,知识产权出版社,2006.
    [4]张如一,深观林,李朝弟.应变电测与传感器[M].北京:清华大学出版社,1999.
    [5]张洪润,张悦,张亚凡.传感技术与应用教程[M].北京:清华大学出版社,2009.
    [6]董永贵.传感器技术与系统[M].北京:清华大学出版社,2006.
    [1]龚晓南.土力学[M].北京:中国建筑工业出版社,2002.
    [2]赵成刚,白冰,王运霞.土力学原理[M].北京:清华大学出版社,北京交通大学出版社,2004.
    [3]华南理工大学等.地基及基础[M].北京:中国建筑工业出版社,1999.
    [4]中华人民共和国国家标准.土工试验方法标准[M].北京:中国计划出版社,1999.
    [5]中华人民共和国国家标准.建筑地基基础设计规范[M].北京:中国建筑工业出版社,2002.
    [6]南京水利科学研究院土工研究所.土工试验技术手册[M].北京:人民交通出版社,2003.
    [7]陈岱杰.高频振动沉桩特性的试验研究[D].上海:上海交通大学,2006.
    [1]刘颖,谢君斐.砂土震动液化[M].北京:地质出版社,1984.
    [2]龚晓南.土力学[M].北京:中国建筑工业出版社,2002.
    [3]中华人民共和国国家标准.土的分类标准[M].北京:中国建筑工业出版社,1991.
    [4]中华人民共和国国家标准.土工试验方法标准[M].北京:中国计划出版社,1999.
    [1]陈国兴.岩土地震工程学[M].北京:科学出版社,2007.
    [2]吴世明.土动力学[M].北京:中国建筑工业出版社,2000.
    [3] Flores O C,Romo M P O. Dynamic behavior of tailings[A].//Proc. of Fourth International Conference on Recent Advances in Geotechnical Earthquake Engineering and Soil Dynamic and Symposium in Honor of Professor Liam W.D. Finn[C].San Diego,California:[s.n.],2001:1-6.
    [4]陈国兴,刘夏珠.南京及邻近地区新近沉积土的动剪模量和阻尼比的试验研究[J].岩石力学与工程学报,2004,23(8):1403-1410.
    [5] Kokusho T. Cyclic triaxial test of dynamic soil properties for wide strain range[J].Soils and Foundations,1980,(2):45-60.
    [6] Seed H B,Wong R T,Idriss I M,et al. Module and damping factors for dynamic analyses of cohesionless soils[J].Journal of Geotechnical Engineering,ASCE,1986,(11):1016-1032.
    [7]周健.土动力学理论与计算[M].北京:中国建筑工业出版社,2001.
    [8] Matsui T , Ohara H , Ito T. Cyclic stress-strain history and shear characteristic of clays[J].Journal of Geotechnica1 Engineering,1980,106(10):1101-1120.
    [9]张茹,涂扬举,费文平等.振动频率对饱和粘性土动力特性的影响[J].岩土力学,2006,27(5):699-704.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700