不同处理方法对不同底面设计的陶瓷托槽再粘接影响的实验研究
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
目的:初步研究不同处理方法对不同底面设计的陶瓷托槽再粘接抗剪切强度的影响,为临床应用提供依据。
     方法:219颗因正畸原因拔除的健康双尖牙分成两部分,120颗用于粘接实验,99颗用于制备脱落陶瓷托槽。实验部分:将120颗牙根据不同的托槽随机分成三组:A微隐窝底面陶瓷托槽组,B微晶体底面陶瓷托槽组,C聚合体网底陶瓷托槽组,每组40颗牙。每个测试组再根据不同的处理方法分成4组:新陶瓷托槽组(n),烧灼处理组(b),喷砂处理组(sb),硅涂层处理组(sc),每组10颗牙。分别从三种不同底面设计的陶瓷托槽中随机各取出33个陶瓷托槽粘接于未经酸蚀处理的微湿的离体牙上,然后用去托槽钳小心取下,形成脱落托槽,然后将不同底面设计的脱落托槽各分成三组,分别对陶瓷托槽底面进行烧灼处理、喷砂处理、硅涂层处理;不同方法处理后,各组托槽底面常规涂硅烷偶联剂。每组离体牙经常规牙面处理后,分别粘接新陶瓷托槽及脱落后处理的陶瓷托槽,托槽粘接30分钟后经37°C恒温恒湿箱水浴孵化24小时,测定样本的抗剪切强度,并统计牙面粘接剂残留指数ARI。用扫描电镜观察不同底面设计的陶瓷托槽经不同方法处理后底面的显微结构改变。
     结果:
     1.不同底面设计对陶瓷托槽抗剪切强度的影响具有统计学意义(P<0.01),不同处理方法对陶瓷托槽抗剪切强度的影响具有统计学意义(P<0.01),不同底面设计和处理方法的交互作用对抗剪切强度的影响具有统计学意义(P<0.01)。
     2.不同底面设计陶瓷托槽不同底面处理方法间的抗剪切强度比较:烧灼处理组b和喷砂处理组sb处理后抗剪切强度均下降,差别具有统计学意义(P<0.01);硅涂层处理组sc抗剪切强度大于烧灼处理组b和喷砂处理组sb,差别具有统计学意义(P<0.01);硅涂层处理组sc处理后抗剪切强度和新陶瓷托槽组n相近,但两者差别无统计学意义(P>0.05)。其中聚合体网底陶瓷托槽经烧灼处理后的抗剪切强度低于正畸临床最低粘接强度。
     3.不同底面处理方法后陶瓷托槽间抗剪切强度的比较:初次粘接和烧灼处理后,微隐窝底面陶瓷托槽和微晶底面陶瓷托槽抗剪切强度大于聚合体网底陶瓷托槽,差别具有统计学意义(P<0.01);喷砂处理后,微隐窝底面陶瓷托槽的抗剪切强度大于微晶体底面陶瓷托槽和聚合体网底陶瓷托槽的抗剪切强度,差别有统计学意义(P <0.05);微晶体底面陶瓷托槽和聚合体网底陶瓷托槽两者的抗剪切强度有差别,但无统计学意义(P >0.05);硅涂层处理后,微隐窝底面陶瓷托槽的抗剪切强度大于微晶体底面陶瓷托槽和聚合体网底陶瓷托槽,但三者差别统计学意义(P >0.05)。
     4.ARI积分在2.2-3.0之间,各组的ARI值差别无统计学意义(α>0.05)。
     5.扫描电镜显示不同处理方法对不同底面陶瓷托槽的影响不同。
     结论:
     1.硅涂层处理适合不同底面陶瓷托槽的再粘接,三种底板设计的陶瓷托槽经硅涂层处理后再粘接,其抗剪切强度与新陶瓷托槽相近。
     2.三种底板设计的陶瓷托槽经喷砂处理后再粘接,其抗剪切强度下降,但高于正畸临床所需的最低抗剪切强度值。其中微隐窝底面与微晶底面和聚合体网底相比,抗剪切强度下降最少,更适合喷砂处理。
     3.三种底板设计的陶瓷托槽经烧灼处理后再粘接,其抗剪切强度下降,除聚合体网底陶瓷托槽外,其余两种均高于正畸临床所需的最低抗剪切强度值。烧灼处理不适用于聚合体网底陶瓷托槽的再粘接。
     4.初次粘接时微隐窝底面和微晶体底面陶瓷托槽抗剪切强度大于聚合网底体陶瓷托槽。
Objective The purposes of this study was to evalute the effects of various surface conditioning methods on shear bond strength (SBS)of rebonded ceramic brackets with different base designs.
     Methods 219 human premolars extracted for orthodontic purpose were collected and divided randomly into two parts:one part(120 teeth)for the bond strength test;the other part(99 teeth) for getting debonded ceramic bracksts. For experimental part:120 human premolars were divided randomly into three groups(40 teeth in each group) according to different base designs:(A) round pits base,(B) microcrystalline lock base,(C) polymer mesh base. Then each test group was divided into four groups(10 teeth in each group)according to different treatment conditions:new brackets as controls (N),burning treatment (B),sandblasting (SB),silica coating (SC).33 teeth were selected respectively from three different base designs of ceramic brackets and were bonded to unetched and slightly wet tooth surfaces,then separated from the tooth surface easily with a tweezer with light pressure.Then different base designs of debonded brackets were divided to three groups with different kinds of treatments: burning treatment (B), sandblasting (SB), silica coating (SC).After that,a silane coupling agent was applied to different groups of bases.The teeth in each group were treated by conventional treatment,then were bonded with new brackets,burned brackets,sandblasted brackets,or siliac coated brackets. After 30 minutes,the samples were stored in distilled deionized water for 24 hours at 37°C in an incubator. Shear force test was performed and then the shear bond strength and the adhesive remnant index(ARI) were measured. Observe the change of the bracket base and the slot base by using SEM.
     Results 1.There were statistically significant differences in the shear bond strength of ceramic brackets with different base designs(P<0.01). There were statistically significant differences in the shear bond strength of ceramic brackets with different treament(P<0.01). There was an interactive relation between different base designs and different treament(P<0.01).
     2. Comparison of different treatment of the shear bond strength,the shear bond strength of burning group and sandbliasting group were significantly lower(P<0.01), the shear bond strength of silica coating group was significantly higer than that of burning group and sandbliasting group(P<0.01), the shear bond strength of silica coating group was close to new brackets group ,but there were no statistically significant difference between them(P>0.05).In all groups,the shear bond strength of polymer mesh base ceramic brackets with burning treament was lower than the minimum bond strength required.
     3. Comparison of different base designs of the shear bond strength:in new bracket group and burning group, the shear bond strength of round pits base and microcrystalline lock base were significantly higher than polymer mesh base (P<0.01).In sandblasting group, the shear bond strength of round pits base and microcrystalline lock base were significantly higher than microcrystalline lock base and polymer mesh base (P<0.05). There were no statistically significant difference between microcrystalline lock base and polymer mesh base(P>0.05).In silica coating group, there were no statistically significant difference between round pits base ,microcrystalline lock base and polymer mesh base (P>0.05).
     4. The score of ARI in all groups was between 2.2-3, There were no statistically significant difference among all groups (α>0.05).
     5.The results of SEM showed that some micro-structural changes of debonded ceramic brackets bases could be observed after different treament on debonded ceramic brackets with different base designs.
     Conclution:1.Silica coating is suitable for rebonding ceramic brackets with different base designs.Silica coating applications on debonded ceramic brackets base can produce bond strengths comparable with new brackets.
     2.After sandblasting,the shear bond strength of rebonded ceramic brackets with different base designs decreased, but was higer than the minimum bond strength required.In three cersmic brackets with different base designs, round pits base and microcrystalline lock base were more suitable for sandblasting treament.
     3.After burning, the shear bond strength of rebonded ceramic brackets with different base designs also decreased,but was higer than the minimum bond strength required,except for ceramic brackets with polymer mesh base.Burning on debonded ceramic brackets base can’t be recommended for ceramic brackets with polymer mesh base.
     4.In the initial bonding, the shear bond strength of ceramic brackets wih round pits base and microcrystalline lock base was higer than that with polymer mesh base.
引文
1陈德敏.生物陶瓷材料[J].口腔材料器械杂志,2005,14(3):157-158.
    2 Johnson G,Walker MP,Kula K.Fracture strength of ceramic brackettie wings subjected to tension[J].Angle Orthod,2005,75(1):95-100.
    3 Jena AK,Duggal R,Mehrotra AK.Physical properties and clinical characteristics of ceramic brackets:A comprehensive review[J]. Trends BiomaterArtif Organs, 2007,20(2):101-115.
    4 Bowen RL,Rodriguez MS.Tensile strength and modulus of elas- ticity of tooth structure and several restorative materials[J].J Am Dent Assoc,1962,64:378-387.
    5 Eliades T,Viazis AD,Lekka M.Failure mode analysis of ceramic brackets bonded to enamel.Am J Orthod Dentofaeial Orthop,study[J].J Orofac Orthop,1993,104 (1):21-26.
    6 Russell JS.Aesthetic orthodontic brackets[J].J Orthod,2005,32(2)146-163.
    7 Swartz ML.A history lesson—Inspire! Sapphire brackets[J].Clinical Impressions, 2001,10(3):12-15.
    8 Lai PY,Woods MG,Tyas MJ.Bond strengths of orthodontic brackets to restorative resin composite surfaces[J].Aust Orthod J,1999, 15(4):235-245.
    9 Urab H,Rossouw PE,Titley KC,et a1.Combinations of etchants, composite resins, and bracket systems: an important choice inorthodontic bonding procedures[J]. Angle Orthod,1999,69(3):267-275.
    10 Willems G.,Carels CE,Verbeke G..In vitro peel/shear bond strength evaluation of orthodontic bracket base design[J].Angle Orthod 1997,25(3-4):271-278.
    11 Larmour CJ,McCabe JF,Gordon PH.An ex vivo assessment of resin—modified glass ionomer bonding systems in relation to ceramic bracket debond[J].J Orthod,2000,27(4):329-332.
    12 Olsen ME,Bishara SE,Jakobsen JR.Evaluation of the shear bond strength of different ceramic bracket base designs[J].Angle Orthod,1997,67(3):179-182.
    13 Bishara SE, Olsen ME, VonWold BA,et al.Comparison of the debonding characteristics of two innovative ceramic bracket designs. Am J Orthod Dentofac Orthop 1999,116: 86–92.
    14沈丽娟.陶瓷托槽与金属托槽脱落率对比研究[J]广东牙病防治,2003,11(3):228
    15 Basudan AM, Al-Emran SE. The Effects of In-office Reconditioning on the Morphology of Slots and Bases of Stainless Steel Brackets and on the Shear/Peel Bond Strength[J]. J Orthod,2001,28(3):231-236.
    16 Postlethwaite KM.Reycling Bands and Brackets.[J].Br J Orthod,1992,May,19(2): 157-163.
    17 LewKKK,ChewCL,LeeKW.Acomparisonofshearbond strengths between new and recycled ceramic brackets[J].Eur JOrthod1991,13:306-310.
    18 Black RB,Airbrasive:some fumdamentals[J]. Am Dent Assoc,1950,41(6):701.
    19 Omura I.Adhesive and mechanical properties of a new dental adhesive[J]. J Prosthet Dent,1984,63:233.
    20 Frankenberger R.Repair strength of etched VS silica-coated metal -ceramic and all-ceramic restoration[J].Oper Dent,2000,25:209-215.
    21 Ibrahim FI.Resin shear bo nd strength to porcelain and a base metal alloy usingtwo polymerisation schemes[J]. J Prosthet Dent,2000,83: 181-186.
    22 Tavares SW , Consani S, NouerDF, et al. Shear bond st rength of new and recycled b rackets to enamel[J]. Braz Dent J, 2006, 17 (1):44-48.
    23 Quick AN,Harris AM,Joseph VP.Office recond itioning of stain less steel orthodontic attachments[J]. Eur J Orthod, 2005,27 (3): 231-236.
    24钱伟,冯剑颖,吴可明.喷砂处理对脱落托槽再使用的实验研究,口腔正畸学[J]. 2008,15(1)25-26.
    25张秀乾,张小红,严明等.喷砂法和打磨法处理后脱落托槽粘接强度比较[J],山东医药,2008,48(20)17-18.
    26张秀乾,张小红,红严明,惠建华.脱落托槽3种不同方法处理后粘接强度的对比[J].实用口腔医学杂志2009 ,25(2)170-173.
    27 Matinlinna JP, Vallittu PK. Silane based concepts on bonding resin composite to metals[J]. J Contemp Dent Practice 2007,8:1-8.
    28 Ozcan M,Niedermerie W.Clinical study’on the reason for and location of failures of metal-ceramic restoration and survival of repairs[J]. J Prosthodont,2002,15(3): 299-302.
    29 Petra S,Ibrahim N, Wolfram H, et al. Influence of various surface conditioning methods on the bond strength of metal brackets to ceramic surfaces[J]. Am J Orthod Dentofac orthop ,2003,123(6):540-546.
    30 Ozcan M, Vallittu PK, Peltomaki T, et al. Bonding polycarbonate brackets to ceramic: effects of substrate treatment on bond strength[J]. Am J Orthod Dentofac orthop,2004,126(2):220-227.
    31 Saadet SA, brahim E G,Volkan S.Effects of Silica Coating and Silane Surface Conditioning on the Bond Strength of Metal and Ceramic Brackets to Enamel[J]. The Angle Orthodontist,2006, 76(5):857–862.
    32 M. Serdar Toroglu and Sirin Yaylali. Effects of sandblasting and silica coating on the bond strength of rebonded mechanically retentive ceramic brackets[J].Am J Orthod Dentofac Orthop 2008,134:181.e1-181.e7.
    33 Matinlinna JP,Lassila LVJ, Ozoan M.A introduction to silanes and their clinical applications in dentistry. Int J Prosthodont,2004,17(2):155-64.
    34 Harris AMP, Joseph VP, Rossouw PE. Shear peel bond strengths of esthetic orthodontic brackets[J].. Am J Orthod Dentofac Orthop 1992,102:215-9.
    35 Reynolds IR. A review of direct bonding[J].. Br J Orthod 1975,2:17-18.
    36 Gaffey PG, Major PW, Glover K, Grace M, Koehler JR.Shear/peel bond strength of repositioned ceramic brackets. Angle Orthod 1995, 65:351-8.
    37 Yen TW, Blackmann RB, Baez RJ. Effect of acid etching on the flexural strength of a feldspathic porcelain and a castable glass ceramic[J]. J ProsthetDent ,1993,72 (2): 224- 233.
    38 Gillis 1, Redlich M. The effect of different porcelain conditioning techniques on shear bond strength of stainless steel brackets[J].Am J Orthod Dentofac Orthop,1998,114(4):387-392.
    39 Harari D, Davis SS,Gillis I, et al.Tensile bond strength of ceramic bracketsbonded to porcelain facets. Am J Orthod Dentofac Orthop[J].2003,123(6):551-554.
    40 Huang TH, Kao CT. The shear bond strength of composite brackets on porcelainteeth[J]. Eur J of Orthod,2001,23(5):433-439.
    41 Cochran D, Okeefe KL, Turner DT, et al. Bond strength of orthodontic composite cement to treated porcelain[J]. Am J Orthod DentofacOrthop,1997,111(3):297- 300.
    42 Kocadereli I,Canay S,Akca K. Tensile bond strength of ceramic orthodontic brackets bonded to porcelain surfaces[J]. Am J Orthod Dentofac Orthop, 2001,119(6):617-620.
    43 Gaffey PG, Major PW, Glover K, Grace M, Koehler JR.Shear/peel bond strength of repositioned ceramic brackets[J]. Angle Orthod 1995,65:351-817.
    44 Chung CH,FriedmanDS,ManteFK.Shear bond strength of rebonded mechanically retentive ceramic brackets[J].Am J Orthod Dentofac Orthop 2002,122:282-287.
    45 David VA,Staly RN,Bigelow HF,etal .Remnant amount and clean up for 3 adhesives after debraketing [J].Am J Orthod Dentofac Orthop,2002,121(2):291
    46 Karamouzos A, Athanasiou AE,Papadepoulos MA, et a1.Clinical characteristics and properties of ceramic brackets[J]. Am J Orthod Dentofac Orthop,1997,112 (1):34-40.
    47 Eliades T,Vialis AD,Eliades G.Bonding of ceramic brackets to enamel:morphol- ogic and structural considerations[J].Am J Orthod Dentofac orthop,1991,99(3): 369-375.
    48 Olsen ME,ishara SE,Boyer DB .et al .Effect of varying etching times on the bond strength of ceramic brackets[J]. .Am J Orthod Dentofac Orthop,1996,109:403- 409.
    49 Karamouzos A,Athanasiou AE,Papadopoulos MA .Clinical characteristics and properties of ceramic brackets:A comprehensive review[J]. Am J Orthod Dentofac Orthop,1997,112:34-40.
    50 Winchester LJ.Bond strengths of five diffenent ceramic brackets:An in-vitro study[J].Eur J Orthod 1991,13:293-305.
    51 Willems G,Carels CE,Verbeket G.In vitro peel/shear bond strength evaluation of orthodontic bracket base design[J]. J. Dent. 1997, 25:271-278.
    52 Regan D,van Noort R, Keefe C.The effects of recycling on the tensile bond strength of new and clinically used stainless steel orthodontic brackets:an in vitro study[J].. Br J Orthod. 1990,17:137-145.
    53 Ozcan M, Alkumru HN,Gemalmaz D.The effect of surface treatment on the shear bong strength of luting cement to a glass-infiltrated alumina ceramic[J]. J Prosthodont, 2001 Jul-Aug,14(4):335-359.
    54 Ozcan M,Vallittu PK. Effect of surface conditioning methods on the bond strength of luting cement to ceramic[J].Dent Mater,2003 ,19(8):725-731.
    55 Cacciafesta V,Jost-Brinkmann PG,Sssenberger U,et al.Effects of saliva and watercontamination on the enamel shear bond strength of a light-cured glassionomer cement[J].AmJ Orthod Dento facial Orthop,1998,113 (4):402- 407.
    56 Lippitz SJ,Staley RN,Jakobsen JR. In vitro study of 24-hour and 30-day shear bond strengths of three resin–glass ionomer cements used to bond orthodontic brackets[J]. Am J Orthod Dentofac Orthop.1998,113:620-624.
    1 Eliads T, Lekka M, Eliades G,et al. surface characterization of ceramic bravkets:a multitechniqne approach[J].Am J Orthod Dentofac Orthop,1994.105:10-18.
    2 Flinn, Richard A., Trojan, Paul K.: Engineering Materials and Their Applications. Second edition, Houghton Mifflin Company, Boston, 1981.
    3陈德敏,生物陶瓷材料[J].口腔材料器械杂志,2005,14(3):57-158.
    4 Johnson G,Walker MP,Kula K.Fracture strength of ceramic brackettie wings subjected to tension[J],Angle Orthod,2005,75(1):95-100.
    5 Swartz ML.A history lesson-Inspire! Sapphire brackets[J]Clinical Impressions,2001,10(3):12-15
    6 Jena AK,Duggal R,Mehrotra AK.Physical properties and clinical characteristics of ceramic brackets:A comprehensive review [J].Trends Biomater Artif Organs,2007,20(2):101-115.
    7 Kusy RP.Orthodontic Biomaterials: From the Past to the Present[J].. Angle Orthod 2002,72:501-12
    8 Bowman HK. Advanced ceramics[J]. Scien Amer 1986,255:168–176.
    9 Swartz ML.Ceramic brackets[J].J Clin Orthod,1988,22(2):82-89.
    10 Russell JS.Aesthetic orthodontic brackets[J].J Orthod,2005,32(2),146-163.
    11 Scott GE. Fracture toughness and surface cracks–the key to understanding ceramic brackets[J]. AngleOrthod 1988,58:5-8
    12 Ghafari J, Chen S. Mechanical and SEM study of debonding two types of ceramic brackets (abstract) [J]. J Dent Res 1994,69:18-37.
    13 Jeiroudi MT. Enamel fracture caused by ceramic brackets. Am J Orthod Dentofac Orthop 1991,99:97-99.
    14 Hertzberg RW. Deformation and fracture mechanics of engineering materials. New York: John Wiley and Sons, 1983:353-422.
    15 Iwasa M, Brandt RC. Fracture toughness of single crystal alumina. In: Kingery WD, editor.Structure and properties of MgO and Al2O3. Advances in ceramics[J]. American Ceramic Society; 1986,10:767-778.
    16 Pratten D, Popli K, Gemmane N, Gunsolley J. Frictional resistance of ceramicand stainless steel orthodontic brackets[J]. Am J Orthod Dentofac Orthop 1990; 98: 398-403.
    17 ThorstensonG,KusyR.Influence of stainless steel inserts on the resistance to sliding of esthetic brackets with second-order angulation in the dry and wet states[J].. Angle Orthod 2003; 73:167-175.
    18 Ghafari J. Problems associated with ceramic brackets suggest limiting their use to selected teeth[J]. AngleOrthod 1992; 62: 145-152.
    19 Eliades T, Vialis AD, Eliades G. Bonding of ceramic brackets to enamel: morphologic and structural considerations[J].Am J Orthod Dentofac orthop, 1991,99(3):369-375.
    20 Karamouzos A, Athanasiou AE,Papadepoulos MA, et a1.Clinical characteristics and properties of ceramic brackets[J]..Am J 4rthod Dentofac orthop,1997,112(1): 34-40.
    21 Bishara SE, Olsen ME, VonWold BA, Jakobsen JR.Comparison of the debonding characteristics of two innovative ceramic bracket designs. Am J Orthod Dentofacial Orthop 1999,116:86-92.
    22 Cong W.et al Influence of surface treatments on the shear bond strength of orthodontic brackets to porcelain Applied Surface Science[J].2008,25(5):416-418.
    23陈湘涛等,不同粘接剂对陶瓷托槽与光固化复合树脂修复体粘接效果的实验研究,[J].黑龙江医药科学2008,1(31):8-9.
    24 Arici S,Minors C.The force levels required to mechanically debond ceramic brackets: an in vitro comparative study[J]. Eur J Orthod,2000,22(3):327-334.
    25 Matasa CG.Impact resistance of ceramic brackets according to ophthalmic lenses standards[J].Am J orthod Dentofac Orthop ,1999,115(2):158 -l65.
    26 Bishara SE,Olsen ME,Von Wald L,et a1.Comparison of the debonding characteristics of two innovative ceramic bracket designs[J].Am J Orthod Dentofac Orthop,1999,116(1):86-92.
    27 Ozcan M,Finnema K,Ybema. A Evaluation of failure characteristics and bond strength after ceramic and polycarbonate bracket debonding:effect of bracket basesilanization[J].Eur J Orthod,2008,30(2):176-182.
    28 Chen HY,Su MZ,Chang HF,et a1.Effects of different debonding techniques on the debonding forces and failure modes of ceramic brackets in simulated clinical set-ups .[J].Am J Orthod Dentofac Orthop,2007,132(5):680-686.
    29 Jost-BrinkmannPCet a1, Risk of pulp damage due totemperature increase during thermo debonding of ceramic brackets.[J]Eur J Orthod,1997,19(6):623-628.
    30 Cunmaings M,Biagioni P,Lamey PJ,et a1.Thermal image analysis of electrothermal debonding of ceramic brackets: an in vitro study[J].Eur J Orthod,1999,21:111-118.
    31 Larmollr Cj,McCabe Jr,Cordon PH. An ex vivo investigation into the effects of chemical solvents on the debond behaviour of ceramic orthodontic brackets[J].Br J Orthod.l998,25 (1):35-39.
    32 ObataA,Tsumura T,Niwa K,et a1. Super pulse CO2 laser for bracket bonding and debonding[J].Eur J Orthod,l999, 2l:193-198..
    33沈丽娟等,陶瓷托槽与金属托槽脱落率对比研究[J]广东牙病防治,2003,(11):3, 228.
    34 LewKKK,ChewCL,LeeKW.Acomparisonofshearbond strengths between new and recycled ceramic brackets[J]..Eur JOrthod1991,13:306-310.
    35 Chung CH, Friedman DS, Mante FK. Shear bond strength of rebonded mechanically retentive ceramic brackets[J].Am J Orthod Dentofac Orthop 2002;122:282-287.
    36 M. Serdar Toroglu and Sirin Yaylali. Effects of sandblasting and silica coating on the bond strength of rebonded mechanically retentive ceramic brackets[J]. Am J Orthod Dentofac Orthop 2008;134:181.e1-181.e7.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700