热变形对连续铸轧AZ31B镁合金微观组织及力学性能的影响
详细信息    本馆镜像全文|  推荐本文 |  |   获取CNKI官网全文
摘要
本论文对均匀化后的连续铸轧AZ31B镁合金板坯进行了热压缩试验及热轧试验,并分别建立了AZ31B合金高温和低温的流变应力本构方程;并利用维氏硬度检测、光学显微镜、透射电子显微镜、X射线衍射分析、EBSD等技术对其性能,显微组织结构及孪生,动态再结晶行为进行了研究,结果表明:
     1.AZ31B镁合金高温压缩变形真应力-真应变曲线具有动态再结晶特征,可用加工硬化、过渡、软化和稳态流变四个阶段加以描述。峰值应力随变形温度降低和应变速率增加而增大。变形温度为100℃且应变速率大于0.1s-1时试样发生宏观开裂;
     2.AZ31B合金高温和低温压缩变形流变行为可分别用双曲正弦函数修正的Arrhenius关系和Z参数描述,所求得本构方程分别为:低温ε=5.6288[sinh(0.029667σ)]4.5430 exp(-94352/RT)高温ε=5.7195×107[sinh(0.029667σ)]2.658 exp(-127524/RT)
     3.通过金相组织发现,AZ31B合金低温变形时以基面滑移和机械孪生为主,高温变形以位错滑移,交滑移及攀移为主;低温下动态再结晶机制为孪生诱导再结晶机制,而高温下则为连续动态再结晶机制;
     4.TEM观察发现低温变形时孪晶交截区内有大量的位错,且DRX核心在此形成,表明AZ31B镁合金低温孪生动态再结晶存在孪晶-孪晶交截形核的动态再结晶模式。
     5.热轧实验表明,AZ31B合金板坯具有良好的热轧性能:在375℃条件下热轧开坯,一道次压下量可高达60%。随着热轧变形量的增加,AZ31B合金板坯退火后的晶粒减小,当变形量为60%时,300℃退火1小时后晶粒尺寸仅为4.3μm。
     6.当晶粒尺寸较大时,小变形阶段,AZ31B合金的塑性变形机制主要为孪生机制。随着变形量的增加,孪晶数量逐渐减少,孪生机制逐渐让位与位错滑移机制;
     7.将变形60%的AZ31B合金于375℃退火30min,获得晶粒尺寸为8μm。再对其进行小变形,此时,主导变形机制为位错滑移。而将变形60%的AZ31B合金于460℃退火2小时使之与铸轧均匀化后晶粒尺寸相当,再将其热轧10%,组织再次出现大量孪晶,说明粗大晶粒容易发生孪生而小晶粒更易滑移变形。
     8.受{1012}孪生影响,小变形量时基面织构迅速减弱,而后,随着位错滑移逐渐增加,基面织构增强;变形量增加到50%时,基面织构出现向轧向延伸的趋势,说明此时已经发生了非基面位错的滑移。
AZ31B Mg alloy plate blanks which were fabricated by twin-roll casting technology has been homogenized, and then hot compression tests and hot-rolling tests were carried out to analyze the hot deformation behavior of AZ31B Mg alloys. The flow stress constitutive equations for high temperature and low temperature were established respectively, and the performance and microstructure of the alloy as well as its dynamic recrystallization mechanisms have been analyzed by Vickers hardness testing, optical microscope, transmission electron microscope, X-ray diffraction, and Electronic Back Scattering Diffraction. Finally, the conclusions were obtained are as follows:
     1. The true stress-strain curves of AZ31B magnesuim alloy which have a characteristc of dynamic recrystallization are composed of four different stages, i.e., work hardening, transition, softening and steady stages. The peak stress increases with the decrease of deformation temperature and the increase of strain rate. The specimens cracked when the temperatures lower than 100℃and strain rates higher than 0.1s-1.
     2. The flow stress constitutive equations for high temperature and low temperature can be described by the Arrhenius equation which is ameliorated by hyperbolic sine fuction and Z parameter, and the equations are obtained as follows: Low temperatureε=5.6288[sinh(0.029667σ)]4.5430 exp(-94352/RT) High temperatureε=5.7195×107[sinh(0.029667σ)]2.658 exp(-127524/RT)
     3. Through OM observing, it was found that the main mechanisms for low temperature of AZ31B alloy are basal plane slip and twinning, while dislocation slip, cross slip and climb for high temperature; the dynamic recrystallization mechanism is twining dynamic recrystallization at low temperature. However, continuous dynamic recrystallization mechanisum is operating when the temperature is higher.
     4. Twins intersected with each other and tangled dislocations located on twins-intersected zone, further more, a few DRX nuclei and tiny DRX grains were observed in the twinning band and twins-intersections, these imply that the main places where DRX nuclei formed are in twin boundaries and twins-intersection zones.
     5. The hot-rolled experiments represented that the AZ31B alloy sheet has good hot-rolled property that it can reduce by 60% one pass when be rolled at 375℃. With the increase of reduction, the scale of as-annealing grains decrease gradually, and the grains were only 4.3μm, when the reduction reached up to 60%.
     6. When the grain size is large, the main deformation mechanism of the AZ31B alloy is twinning during the low reduction stage. In pace with the increase of the reduction, the dislocation gliding become the dominant mechanism instead of twinning.
     7. The grain size is 8μm when the 60%-reduction AZ31B alloy sheet has annealed at 375℃for 30min. The small grain size hindered the twinning, so the dominant mechanism during 10% reduction stage becomes the dislocation gliding. However, changing the annealing conductions to enable the grain size to grow up to 20μm then the dominant deformation mechanisms go back to twinning again, these explain that twinning is easier than dislocation gliding in coarse grains while the opposite in tiny grains.
     8. Influenced by{1012} twins, the texture of (0001) plane get down suddenly during small deformation, and then get up slowly with the increase of deformation.
引文
[1]Kojima Y. Platform Science and Technology for Advanced Magnesium Alloy [J]. Material Science Forum,2000, (350-351):3-18.
    [2]Aghion E, Bronfin B. Magnesium alloys development towards the 21'st century [J]. Material Science Forum,2000, (350-351):19-28.
    [3]曹富荣,崔建忠,雷方.超轻镁合金的研究历史与发展现状[J].材料工程,1996,(09):3-5.
    [4]张津,章宗和.镁合金及应用[M].北京:化学工业出版社,2004.211
    [5]陈振华,严红革,陈吉华,镁合金[M].北京:化学工业出版社,2004.
    [6]晓青.镁合金在汽车上的应用及发展趋势[J].上海汽车,2005,(3):38-40.
    [7]张春香,陈培磊,陈海军,等.镁合金在汽车工业中的应用及其研究进展[J].铸造技术,2008,29(4):531-534.
    [8]刘静安,徐河.镁合金材料的应用及其加工技术的发展(1)[J].轻合金加工技术,2007,35(8):1-3.
    [9]Erik N, Saris L, Eero M, et al. Magnesium:An update on physiological, clinical and analytical aspects [J]. Clinica Chimica Acta,2000,294:1.
    [10]Staiger, Mark P, Alexi M, et al. Magnesium and its alloys as orthopedic biomaterials [J]. Biomaterials,2006,27:1728.
    [11]Barnett M R. Influence of deformation conditions and texture on the high temperature flow stress of magnesium AZ31[J]. Journal of Light Metals,2001, 1 (3):167-177.
    [12]Frost H J, Ashby M F. Deformation mechanisum maps[M]. Oxford:Pergamon Press,1982.
    [13]Galiyev A, Sitdikov O, Kaibyshev R. Deformation behavior and controlling mechanisms for plastic flow of magnesium and magnesium alloy[J]. Materials Transactions,2003,44 (4):426-435.
    [14]Galiyev A, Kaibyshev R, Gottstein G. Correlation of plastic deformation and dynamic recrystallization in magnesium alloy ZK60[J]. Acta Materialia,2001, 49(7):1199-1207.
    [15]Sellars C M, Mctegart W J. On the mechanism of hot deformation[J]. Acta Metallurgica,1966,14(9):1136-1138.
    [16]Kun Y, Wenxian L, Jun Z, et al. Plastic deformation behaviours of a Mg-Ce-Zn-Zr alloy[J]. Scripta Materialia,2003,48 (9):1319-1323.
    [17]Mcqueen H J, Myshlaev M, Sauerborn M, et al. Flow stress microstructures and modeling in hot extrusion of magnesium alloys. In:TMS Annual Meeting. Nashville, TN, United states:Minerals, Metals and Materials Society,2000. 355-362.
    [18]Ravi Kumar N V, Blandin J J, Desrayaud C, et al. Grain refinement in AZ91 magnesium alloy during thermomechanical processing[J]. Materials Science and Engineering A,2003,359 (1-2):150-157.
    [19]Yang W G, Koo C H. Capacity for deformation and the evaluation of flow stress of hot extruded Mg-8Al-xRE alloys at elevated temperatures[J]. Materials Transactions,2003,44 (6):1198-1203.
    [20]夏长青,武文花,吴安如,等.Mg-Nd-Zn-Zr稀土镁合金的热变形行为[J].中国有色金属学报,2004,14(11):1810-1816.
    [21]Serra A, Bacon D J, Pond RC. The crystallography and core structure of twinning dislocations in HCP metals [J]. Acta Metall,1988,36(12):3183-3203
    [22]陈振华,夏伟军,严红革,等.镁合金材料的塑性变形理论及其技术[J].化工进展,2004,23(2):127-135
    [23]Yoo M H, Agnew S R, Morris J R, et al. Non-basal slip systems in HCP metals and alloys:source mechanisms [J]. Materials Science and Engineering A,2001, (319-321):87-92
    [24]Obara T, Yoshinga H, S. Morozumi.{112-2}<-1-123>slip system in magnesium [J]. Acta Metall,1973,21(7):845-853
    [25]Koike J, Kobayashi T, Mukai T, et al. The activity of non-basal slip systems and dynamic recovery at room temperature in fine-grained AZ3 1B magnesium alloys [J]. Acta Mater,2003,51(7):2055-2065
    [26]Hiroyuki Watanabe, Toshiji Mukai, Koichi Ishikawa, et al. Low temperature super plasticity of a fine-grained ZK60 magnesium alloy processed by equal-channel-angular extrusion [J]. Scripta Materialia,2002,46(12):851-856
    [27]Barnett M R. Twinning and the ductility of magnesium alloys Part Ⅰ:"Tension" twins [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,464(1-2):1-7.
    [28]Barnett M R. Twinning and the ductility of magnesium alloys Part Ⅱ: "Contraction" twins [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing,2007,464(1-2):8-16.
    [29]Nave M D. Barnett M R. Microstructures and textures of pure magnesium deformed in plane-strain compression [J]. Scripta Materialia,2004,51(9): 881-885.
    [30]Jiang L, Jonas J J, Mishra R K, et al. Twinning and texture development in two Mg alIOyS subjected to loading along three different strain paths [J]. Acta Materialia,2007.55(11):3899-3910.
    [31]陈振华,杨春花,黄长清,夏伟军,严红革.镁合金塑性变形中孪生的研究[J].材料导报,2006,20(8):107-113.
    [32]Jager A, Lukac P, Gartnerove V, et al. Tensile properties of hot rolled AZ31 Mg alloy sheets at elevated temperatures [J]. Journal of Alloys and Compounds, 2004,378(1-2):184-187.
    [33]Keshavarz Z, Barnett M R. EBSD analysis of deformation modes in Mg-3A1-1Zn [J]. Scripta Materialia.2006,55(10):915-918.
    [34]Staroselsky A, Anand L. A constitutive model for hcp materials deforming by slip and twinning:application to magnesium alloy AZ31B [J]. International Journal of Plasticity.2003,19(10):1843-1864.
    [35]Barnett M R, Davies C H J, Ma X. An analytical constitutive law for twinning dominated flow in magnesium [J]. Scripta Materialia,2005,52(7):627-632.
    [36]Barnett M R, Keshavarz Z, Beer A G, et al. Non-Schmid behaviour during secondary twinning in a polycrystalline magnesium alloy [J]. Acta Materialia, 2008,56(1):5-15.
    [37]Cizek P. Barnett M R. Characteristics of the contraction twins formed close to the fracture surface in Mg-3Al-1Zn alloy deformed in tension [J]. Scripta Materialia,2008,59(9):959-962.
    [38]Brown D W, Agnew S R, Bourke M A M, et al. Internal strain and texture evolution during deformation twinning in magnesium [J]. Materials Science and Engineering a-Structural Materials Properties Microstructure and Processing, 2005,399(1-2):1-12.
    [39]Chino Y, Kimura K, Mabuchi M. Twinning behavior and deformation mechanisms of extruded AZ31 Mg alloy [J]. Materials Science and Engineering: A,2008,486(1-2):481-488.
    [40]Wang Y N. Huang J C. The role of twinning and untwinning in yielding behavior in hot-extruded Mg-Al-Zn alloy [J]. Acta Materialia,2007,55(3):897-905.
    [41]Barnett M R, Keshavarz Z, Beer A G, et al. Influence of grain size on the compressive deformation of wrought Mg-3Al-1Zn [J]. Acta Materialia,2004, 52(17):5093-5103.
    [42]Bohlen J, Dobron P, Swlostek J, et al. On the influence of the grain size and solute content on the AE response of magnesium alloys tested in tension and compression [J]. MaterialS Science and EngineeringA,2007,462(1-2):302-306.
    [43]吕宜振.Mg-Al-Zn合金组织、性能、变形和断裂行为研究[D].上海交通大学,博士学位论文,2001
    [44]杨尚林,张字,桂太龙,等.材料物理导论[M].哈尔滨:哈尔滨工业大学出版社,1999.116-118.
    [45]俞汉清,陈金德.金属塑性成形原理[M],北京:机械工业出版社,2004:6.30
    [46]Staroselskya A, Anandb L, A constitutive model for hcp materials deforming by slip and twinning:application to magnesium alloy AZ31B [J]. International Journal of Plasticity,2003, (19):1843-1864
    [47]Galiyev A, Kaibyshev R, Gottstein G. Microstructure Evolution in ZK60 Magnesium Alloy during Severe Plastic Deformation [J]. Acta Mater,2001, 49(9):1199-1205
    [48]张菊梅,蒋百灵等.镁合金强韧化的研究现状及发展.2006,35(8):65-69
    [49]潘复生,张静,汪凌云,等.变形镁合金研究最新进展及应用前景[C].2002年材料科学与工程新进展(上).2002年中国材料研讨会论文集,北京,2002,581.
    [50]Han B Q, Dunand D C. Microstructure and mechanical properties of magnesium containing high volume fraction soft triadis persoids[J]. Mater Sci Eng A,2000, 277-297.
    [51]Cahrdtw著,丁道云等译.非铁合金的结构与性能[M].北京:科学出版社,1999.
    [52]Valiev R Z, Islamgaliev R K, Alexandrov I V. Bulk nanostructured materials from severe plastic deformation[J]. Progress in Materials Science,2000,45(2): 103-189.
    [53]张师昌,段汉桥.镁合金的熔炼工艺现状及发展趋势[J].特种铸造及有色合金,2000,(6):51.
    [54]Sakai T. Dynamic recrystallization microstructures under hot working conditions [J]. Mater Proc Tech,1995,53(1-2):349-361
    [55]Kaibyshev R, Sitdikov O. Dynamic recrystallization of magnesium at ambient temperature[J]. Zeitschriftfur Metallkunde,1994,85:738-743.
    [56]Kaibyshev R, Sitdikov O. On the role of twinning in dynamic recrystallization [J]. Fizika Metallovi Metallovedenie,2000,89 (4):70-77.
    [57]Kaibyshev R, Galiev A, Sitdikov O. On the possibility of producing a nanocrystalline structure in magnesium and magnesium alloys [J]. Nanostructured Materials,1995,6:621-624.
    [58]Galiyev A, Kaibyshev R, Gottstein G. Grain refinement of ZK60 magnesium alloy during low temperature deformation [J]. TMS Annual Meeting,2002: 181-185.
    [59]Tan J C, Tan M J. Dynamic continuous recrystallization characteristics in two stage deformation of Mg-3Al-1Zn alloy sheet [J]. Materials Science and Engineering A,2003, A 339:124-132.
    [60]Perez-Prado M T, Del Valle J A, Contreras J M, et al. Microstructural evolution during large strain hot rolling of an AM60 Mg alloy [J]. Scripta Materialia,2004, 50:661-665.
    [61]Ion S E, Humphreys F J, White S H. Dynamic recrystallisation and the development of microstructure during the high temperature deformation of magnesium [J]. Acta Metallurgy,1982,30:1909-1919.
    [62]Del Valle J A, Perez-Prado M T, Ruano O A. Texture evolution during large-strain hot rolling of the Mg AZ61[J]. Materials Science and Engineering A, 2003, A355:68-78.
    [63]Perez-Prado M T, Del Vallel J A, Ruano O A. Effect of sheet thickness on the microstructural evolution of an Mg AZ61 alloy during large strain hot rolling [J]. Scripta Materialia,2004,50:667-671.
    [64]毛卫民,赵新兵,金属的再结晶与晶粒长大[M].北京:冶金工业出版社,1994,47-52
    [65]Lutton M J, Sellars C M. Binary Alloy Phase Diagrams [J]. Acta Met,1969,17: 1033
    [66]江坂一彬.材料性能预测和控制模型的开发[J].钢铁研究,1986,16:321-335
    [67]Colas R. A model for the hot defomlation of low-carbon steel [J]. Journal of Materials Processing technology,1996,62(1-3):180-184
    [68]Sellars C M, Whiteman J A. Recrystallization and grain growth in hot rolling [J]. Metal Science,1979,13(3-4):187-194
    [69]周海涛.AZ61镁合金高温塑性变形行为及管材热挤压研究:[博士论文].上海:上海交通大学,2004,1-88
    [70]毛卫民.金属材料的晶体学织构与各向异性[M].北京:科学出版社,2002.
    [71]毛卫民,张新民.晶体材料织构定量分析[M].北京:冶金工业出版社,1993.
    [72]张信誉.金属和合金的织构[M].北京:科学出版社,1976.
    [73]Wang Y N, Huang J C. Texture analysis in hexagonal materials [J]. Material Chemistry and Physics.2003,81(1):11
    [74]Yang P, Yu Y, Chen L, Mao W. Experimental determination and theoretical prediction of twin orientations in magnesium alloy AZ31 [J]. Scripta Materialia, 2004,50:1163.
    [75]Kalidindi S R. Incorparation of deformation twinning in crystal plasticity models [J]. Journal of the Mechanics and Physics of Solids,1998,46:267.
    [76]Mukai T, Watanabe H, Ishikawa K, Higashi K. Guide for enhancement of room temperature ductility in Mg alloys at high strain rates [J]. Materials Science Forum,2003,419-422:171
    [77]Myagachilov S, Dawson P R. Evolution of in aggregates of crystals exhibiting both slip and twinning [J]. Modelling and Simulation in Materials Science and Engineering,1999,7:975
    [78]Wagner L, Hilpert M, Wendt J. On methods for improving the fatigue performace of wrought magnesium alloys AZ31 and AZ80 [J], Materials Science Forum, 2003,419-422:93
    [79]Kalidindi S R. Modelling anisotropic strain hardening and deformation texture in low stacking fault energy materials [J]. International Journal of plasticity,2001, 17:837.
    [80]Poss R. Sheet metal production of magnesium [J]. Materials Science Forum, 2003,419-422:93
    [81]Styczynski A, Hartig Ch, Bohlen J. Cold rolling textures in AZ31 wrought magnesium alloy. Scripta Materialia,2004,50:934.
    [82]Perez-Prado M T, Ruano O A. Texture evolution during annealing of magnesium AZ31 alloy [J]. Scripta Materialia,2002,46:149.
    [83]徐祖耀,黄本立,鄢国强.中国材料工程大典-材料表征与检测技术[M].北京,2006.
    [84]Rao K P, Hawbolt E B. Development of Constitutive Relationships Using Compression Testing of Medium Carbon Steel [J]. Transactions of the ASME J. of Engineering Material and Technoloy,1992,114(1):116-123
    [85]牛济泰,材料和热加工领域的物理模拟技术[M].北京:国防工业出版社, 1999.
    [86]张先宏,崔振山,阮雪榆.镁合金塑性成形技术-AZ31B成形性能及流变应力[J].上海交通大学学报,2003,37(12):1874-1877.
    [87]胡庚祥,蔡殉,戎咏华.材料科学基础[M].上海:上海交通大学出版社,2006.
    [88]杜建锋.ZM6合金组织及高温性能研究:[硕士学位论文],哈尔滨:哈尔滨工业大学,2006.
    [89]Zener C, Hollomon J H. Effect of Strain-Rate upon the Plastic Flow of Steel[J]. Journal of Applied Physics,1944,15(1):22-28.
    [90]Takuda H, Fujimoto H, Hatta N. Modelling on flow stress of Mg-Al-Zn alloys at elevated temperatures [J]. Journal of Materials Processing Technology,1998, 80-81:513-516.
    [91]张娅,马春江,卢晨.变形镁合金的塑性变形机制与动态再结晶[J].轻合金加工技术,2003,31:35-39.
    [92]Roberts C S. Magnesium and its alloy[M]. U.S.A:John Wiley & Sons, Inc.1960: 81-107.
    [93]Myshlyaev M M, Mcqueen H J, Mwembela A, et al. Twinning, dynamic recovery and recrystallization in hot worked Mg-Al-Zn alloy [J]. Mater. Sci. Eng.,2002, A337:121-133.
    [94]刘楚明,刘子娟,朱秀荣.镁及镁合金动态再结晶研究进展[J].中国有色金属学报,2006,16:1-12.
    [95]Samman T A, Gottstein G. Dynamic recrystallization during high temperature deformation of magnesium [J]. Materials Science and Engineering,2008, A490: 411-420.
    [96]Tian Sugui, Wang Ling, Keun Yong Sohn, et al. Microstructure evolution and deformation features of AZ31 Mg-alloy during creep [J]. Materials Science and Engineering,2006, A415:309-316.
    [97]唐宁.连续铸轧AZ31B镁合金板坯的组织结构及退火行为:[硕士学位论文],长沙:中南大学,2008.
    [98]Yasumasa Chino, Kensuke Sassa, Akira Kamiya, Mamoru Mabuchi, Stretch formability at elevated temperature of a cross-rolled AZ31 Mg alloy sheet with different rolling routes, Materials Science and EngineeringA,2008(473): 195-200.
    [99]Reedhill R E. A study of the{1011} and{1013} twinninng modes in magnesium [J]. Transaction of the Metallurgical Society of AIME.1960,218(3):554-558.
    [100]Hartt W H, Reedhill R E. Internal deformation and fracture of second-order {1011}-{1012} twins in magnesium [J]. Transaction of the Metallurgical Society of AIME,1968,242(6):1127-1133.
    [101]Kelley E W, Hosford W F. Internal deformayion and fracture of second-order {1011}-{1012} twins in magnesium[J], Transaction of the metallurgical society of Transaction of the metallurgical society of AIME,1968(242):5-13.
    [102]Hartt W H, Reedhill R E. The irrational habit of second-order {10-11}-{10-12} twins in magnesium [J]. Transaction of the metallurgical society of AIME 1967(239):1511-1517.
    [103]LI X, YANG P, WANG L N, MENG L, CUI F. Orientational analysis of static recrystallization at compression twins in amagnesium alloy AZ31[J]. Materials Science and Engineering A,2009,517(1):160-169.
    [104]Kelley E W, Hosford W F. Plane-strain compression of magnesium and magnesium alloy crystals[J]. Transaction of the Metallurgical Society of AIME, 1968,242(1):5-13.
    [105]Couling S L, Pashak J F, Sturkey L. Unique deformation and aging characteristics of certain magnesium-base alloys[J]. Transaction of the ASM, 1958,51(1):94-107.
    [106]MENG L, YANG P, XIE Q, MAO W. Analyses on compression twins in magnesium[J]. Materials Transaction,2008,49(4):710-714.
    [107]Wonsiewcz B C, Backofen W A. Plasticity of magnesium crystals[J]. Transaction of the Metallurgical Society of AIME,1967,239(9):1422-1431.
    [108]Qbara T, Yoshinga H, Morozumi S.{1122}-{1123} slip system in magnesium[J]. Acta Metallurgica,1973,21(7):845-853.
    [109]Doherty R D, Hughes D A, et al. Current issues in recrystallization:a review [J], Materials Science and Engineering A,1997,238:219-274.

© 2004-2018 中国地质图书馆版权所有 京ICP备05064691号 京公网安备11010802017129号

地址:北京市海淀区学院路29号 邮编:100083

电话:办公室:(+86 10)66554848;文献借阅、咨询服务、科技查新:66554700